Electrical networks using Laplace transforms

Prof. D. Joyner and Prof. G. Nakosﬁ

Suppose we have an electrical network (i.e., a series of electrical circuits)
involving emfs (electromotive forces or batteries), resistors, capacitors and in-
ductors. We use the following “dictionary” to translate between the diagram
and the DEs.

EE object term in DE units symbol
(the voltage drop)
charge qg=[i(t)dt coulombs
current i=q amps

emf e =e(t) volts V. | — F—
resistor Rq¢ = Ri ohms Q@ | —VM\—
capacitor C~1q farads | —1 F—
inductor Lq¢" = L henries m

Kirchoff’s First Law: The algebraic sum of the currents travelling into
any node is zero.

Kirchoff’s Second Law: The algebraic sum of the voltage drops around
any closed loop is zero.

Example 1: Consider the simple RC circuit given by the following dia-
gram.

According to Kirchoff’s 2" Law and the above “dictionary”, this circuit
corresponds to the DE
q +5q=2.

The general solution to this is ¢(t) = 1 + ce™*, where ¢ is a constant
which depends on the initial charge on the capacitor. [

!'These notes are placed in the public domain, except for the graphics
which are licensed under the Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses. The diagrams
were created using SAGE and and GIMP http://www.gimp.org/ by the first author. Last
modified 2009-3-25.
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Figure 1: A simple circuit.

Aside: The convention of assuming that electricity flows from positive to
negative on the terminals of a battery is referred to as “conventional flow”.
The physically-correct but opposite assumption is referred to as “electron
flow”. We shall assume the “electron flow” convention.

Example 2: Consider the network given by the following diagram.
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Assume the initial charges are 0.

One difference between this circuit and the one above is that the charges
on the three paths between the two nodes (labeled node 1 and node 2 for
convenience) must be labeled. The charge passing through the 5 ohm resistor
we label ¢, the charge on the capacitor we denote by ¢, and the charge
passing through the 1 ohm resistor we label gs.
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Figure 2: A network.



There are three closed loops in the above diagram: the “top loop”, the
“bottom loop”, and the “big loop”. The loops will be traversed in the “clock-
wise” direction. Note the “top loop” looks like the simple circuit given in
Example 1 but it cannot be solved in the same way, since the current pass-
ing through the 5 ohm resistor will affect the charge on the capacitor. This
current is not present in the circuit of Example 1 but it does occur in the
network above.

Kirchoft’s Laws and the above “dictionary” give

Qé + 5Q2 - 27 QI(()) = 07
5QQ - 5(12 = 07 q2(0) = 07
5¢) +q3 =2, q3(0)=0.

Notice the minus sign in front of the term associated to the capacitor (—5¢s).
This is because we are going clockwise, against the “direction of the current”.
Kirchoft’s 1% law says ¢3 = ¢} + ¢5. Since ¢1(0) = ¢2(0) = ¢3(0) = 0, this
implies g3 = ¢q1 + q2. After taking Laplace transforms of the 3 differential
equations above, we get

sQs3(s) +5Qa(s) =2/s,  5sQi(s) — 5Qa(s) = 0.

Note you don’t need to take th eLT of the 3"? equation since it is the sum
of the first two equations. The LT of the above ¢; 4+ ¢2 = g3 (Kirchoft’s law)
gives Q1(s) + Q2(s) — Q3(s) = 0. We therefore have this matrix equation

0 5 Q1(s) 2/s
55 0 s Qa2(s) | = 0
11 -1 Qs(s) 0
The augmented matrix describing this system is
0 5 s 2/s
5s 0 s 2/3
1 1 -1 0
The row-reduced echelon form is
100 2/(s® + 65?)
010 2/(s* + 65)
0 0 1 2(s+1)/(s*(s+6))

Therefore



1/18  1/18 | 1/3
Q1(s) Zwiba)—sér—ﬁ— /S +SL2,
Qals) = 52((5%1))’ 5/18 | 5/18 | 1/3
s+
Q) =amg ="t 5 T &

This implies

q(t) = —1/18+¢ % /18+1/3,

These are plotted in Figure (3.

@(t) = 1/3—e7%/3,

q3(t) = 5/18—5e % /18+/3.

Figure 3: Another network.

O
This computation can be done in SAGE as well:

SAGE

sage: s,t = var('s,t")

*s"2)I(5

sage: A = matrix([[0,5,s,2/s],[5 *s,0,s,2/s],[1,1,-1,0]])
sage: B = A.echelon_form(); B

[ 1 0 0 2/(5 *s°2) - (-2/(5 *s) - 2/(5

[ O 1 0 2[5 =xs) - (-2/I(6  *s) - 2/(5

[ O 0 1 (-2/(5 *s) - 2I(5 *s"2))/(-s/5 - 6/5)
sage: Q1 = B[0,3]; Q1

2/(5 *s™2) - (-2/(5 *s) - 2/(5 *s"2))/(5 *(-s/5 - 6/5))

*(-s/5 - 6/5))

©52)) *sl(5 *(-s/5 - 6/5))




sage: ql = Ql.inverse_laplace(s,t); gl

e'(-(6 =*t))/18 + /3 - 1/18

sage: Q2 = B[1,3]; Q2

2/5 *s) - (-2I(5 *s) - 2[(6 *s572)) *s/(5 *(-s/5 - 6/5))
sage: g2 = Q2.inverse_laplace(s,t); g2

13 - e(-(6  *t))/3

sage: Q3 = B[2,3]; Q3

(-2/(5 *s) - 2/(6 =*s"2))/(-s/5 - 6/5)

sage: g3 = Q3.inverse_laplace(s,t); g3

-5xe"(-(6 *t))/18 + t/3 + 5/18

Example 3: Consider the network given by the following diagram.
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Figure 4: Another network.

Assume the initial currents are 0.
Using Kirchoft’s Laws, you get a system

le - ’ig - ig == O,
2i1 + iy + (0.2)i] = 6,
(0.1)i —ia = 0.
Take LTs of these three DEs. You get a 3 x 3 system in the unknowns
Li(s) = Llirn(t)](s), Ia(s) = Llia(t)](s), and I3(s) = L[is(t)](s). The aug-

mented matrix of this system is




1 -1 -1 0
2+s/5 1 0 6/s
0 -1 s/10 0

(Check this yourself!) The row-reduced echelon form is

30(s+10)
100 s(s2+2§)69+100)
010 s2+235690+100
0 01 s(s2+255+100)
Therefore
1 2 3 2 2 1 4 3
[ = — — —_ I = — —— [ = _— - .
)= —T0 sas Ty RO mtsy BT s

This implies

i1(t) =3 -2 — e dy(t) =2 =27 gs(t) = 3 —4de 4720,
O

Exercise: Use SAGE to solve for i (t), i2(t), and i3(¢) in the above problem.
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