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Suppose we have an electrical network (i.e., a series of electrical circuits)
involving emfs (electromotive forces or batteries), resistors, capacitors and in-
ductors. We use the following “dictionary” to translate between the diagram
and the DEs.

EE object term in DE units symbol
(the voltage drop)

charge q =
∫

i(t) dt coulombs
current i = q′ amps

emf e = e(t) volts V

resistor Rq′ = Ri ohms Ω

capacitor C−1q farads

inductor Lq′′ = Li′ henries

A network is for us a graph with vertices (or “nodes”) and edges (or
“branches”). Each vertex has exactly three edges incident to it. The charges
and currents on each branch should be labeled differently (e.g., in Figure
2 using q1 for the charge on the 1 ohm resistor, q2 for the charge on the
capacitor, and q3 for the charge on the 2 ohm resistor).

Kirchoff’s First Law: The algebraic sum of the currents travelling into
any node is zero.

Kirchoff’s Second Law: The algebraic sum of the voltage drops around
any closed loop is zero.

Example 1: Consider the simple RC circuit given by the following dia-
gram.

1These notes are placed in the public domain, except for the graphics

which are licensed under the Attribution-ShareAlike Creative Commons license,

http://creativecommons.org/about/licenses/meet-the-licenses. The diagrams

were created using SAGE and and GIMP http://www.gimp.org/ by the first author. Last

modified 2008-11-28.
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Figure 1: A simple circuit.

According to Kirchoff’s 2nd Law and the above “dictionary”, this circuit
corresponds to the DE

q′ + 2q = 2.

The general solution to this is q(t) = 1 + ce−2t, where c is a constant
which depends on the initial charge on the capacitor. �

Aside: The convention of assuming that electricity flows from positive to
negative on the terminals of a battery is referred to as “conventional flow”.
The physically-correct but opposite assumption is referred to as “electron
flow”. We shall assume the “electron flow” convention.

Example 2: Consider the network given by the following diagram.

Figure 2: A network.
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Assume the initial charges are 0.
One difference between this circuit and the one above is that the charges

on the three paths between the two nodes (labeled node 1 and node 2 for
convenience) must be labeled. The charge passing through the 5 ohm resistor
we label q1, the charge on the capacitor we denote by q2, and the charge
passing through the 1 ohm resistor we label q3.

There are three closed loops in the above diagram: the “top loop”, the
“bottom loop”, and the “big loop”. The loops will be traversed in the “clock-
wise” direction. Note the “top loop” looks like the simple circuit given in
Example 1 but it cannot be solved in the same way, since the current pass-
ing through the 5 ohm resistor will affect the charge on the capacitor. This
current is not present in the circuit of Example 1 but it does occur in the
network above.

Kirchoff’s Laws and the above “dictionary” give







q′3 + 5q2 = 2, q1(0) = 0,
5q′1 − 5q2 = 0, q2(0) = 0,
5q′1 + q′3 = 2, q3(0) = 0.

(Note you don’t really need the 3rd equation since it is the sum of the first
two equations.) Notice the minus sign in front of the term associated to
the capacitor (−5q2). This is because we are going clockwise, against the
“direction of the current”. Kirchoff’s 1st law says q′3 = q′1 + q′2. Since q1(0) =
q2(0) = q3(0) = 0, this implies q3 = q1 + q2. This gives the system







q′3 + 5q2 = 2, q1(0) = 0,
5q′1 + q′3 = 2, q2(0) = 0.
q1 + q2 − q3 = 0, q3(0) = 0.

After taking Laplace transforms of these three differential equations, we get

sQ3(s)+5Q2(s) = 2/s, 5sQ1(s)+sQ3(s) = 2/s, Q1(s)+Q2(s)−Q3(s) = 0.

We therefore have this matrix equation





0 5 s
5s 0 s
1 1 −1









Q1(s)
Q2(s)
Q3(s)



 =





2/s
0
0



 .

The augmented matrix describing this system is
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



0 5 s 2/s
5s 0 s 0
1 1 −1 0





The row-reduced echelon form is





1 0 0 2/25/(−s2/5 − 6s/5)
0 1 0 −12/25/(−s2/5 − 6s/5)
0 0 1 −2/5/(−s2/5 − 6s/5)





Therefore

Q1(s) =
2/5

−s2 − 6s
, Q2(s) =

−12/5

−s2 − 6s
, Q3(s) =

−2

−s2 − 6s
.

This implies

q1(t) = −1/15 + e−6t/15, q2(t) = 2/5 − 2e−6t/5, q3(t) = 1/3 − e−6t/3.

�

This computation can be done in SAGE as well:

SAGE

sage: s = var("s")
sage: MS = MatrixSpace(SymbolicExpressionRing(), 3, 4)
sage: A = MS([[0,5,s,2/s],[5 * s,0,s,0],[1,1,-1,0]])
sage: A.eche
A.echelon_form A.echelonize
sage: B = A.echelon_form(); B

[ 1 0 0 2/(25 * (-s/5 - 6/5) * s)]
[ 0 1 0 2/(5 * s) + 2/(25 * (-s/5 - 6/5))]
[ 0 0 1 -2/(5 * (-s/5 - 6/5) * s)]

sage: B[0,3]
2/(25 * (-s/5 - 6/5) * s)
sage: Q1 = B[0,3]
sage: t = var("t")
sage: Q1.inverse_laplace(s,t)
eˆ(-(6 * t))/15 - 1/15
sage: Q2 = B[1,3]
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sage: Q2.inverse_laplace(s,t)
2/5 - 2 * eˆ(-(6 * t))/5
sage: Q3 = B[2,3]
sage: Q3.inverse_laplace(s,t)
1/3 - eˆ(-(6 * t))/3

Example 3: Consider the network given by the following diagram.

Figure 3: Another network.

Assume the initial charges are 0.
Using Kirchoff’s Laws, you get a system







i1 − i2 − i3 = 0,
2i1 + i2 + (0.2)i′1 = 6,

(0.1)i′3 − i2 = 0.

Take LTs of these three DEs. You get a 3 × 3 system in the unknowns
I1(s) = L[i1(t)](s), I2(s) = L[i2(t)](s), and I3(s) = L[i3(t)](s). The aug-
mented matrix of this system is
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



1 −1 −1 0
2 + s/5 1 0 6/s

0 −1 s/10 0





(Check this yourself!) The row-reduced echelon form is







1 0 0 30(s+10)
s(s2+25s+100)

0 1 0 30
s2+25s+100

0 0 1 300
s(s2+25s+100)







Therefore

I1(s) = −
1

s + 20
−

2

s + 5
+

3

s
, I2(s) = −

2

s + 20
+

2

s + 5
, I3(s) =

1

s + 20
−

4

s + 5
+

3

s
.

This implies

i1(t) = 3− 2e−5t
− e−20t, i2(t) = 2e−5t

− 2e−20t, i3(t) = 3− 4e−5t + e−20t.

�

Exercise: Use SAGE to solve for i1(t), i2(t), and i3(t) in the above problem.
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