
Solving ODEs:
using the power series method, I

Prof. Joyner1

In this part, we recall some basic facts about power series and Taylor
series. We will turn to solving DEs in part II.

Roughly speaking, power series are simply infinite degree polynomials

f(x) = a0 + a1x + a2x
2 + ... =

∞
∑

k=0

akx
k, (1)

for some real or complex numbers a0, a1, ... The number ak is called the
coefficient of xk, for k = 0, 1, .... Let us ignore for the moment the precise
meaning of this infinite sum (How do you associate a value to an infinite
sum? Does the sum converge for some values of x? If so, for which values?
...) We will return to that later.

First, some motivation. Why study these? This type of function is con-
venient for several reasons

• it is easy to differentiate (term-by-term):

f ′(x) = a1 + 2a2x + 3a3x
2 + ... =

∞
∑

k=0

kakx
k−1 =

∞
∑

k=0

(k + 1)ak+1x
k,

• it is easy to integrate (term-by-term):

∫

f(x) dx = a0x+
1

2
a1x

2+
1

3
a2x

3+... =

∞
∑

k=0

1

k + 1
akx

k+1 =

∞
∑

k=1

1

k
ak+1x

k,

1These notes licensed under Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses. The graphs were
created using SAGE and and GIMP http://www.gimp.org/ by the author. Originally
written 9-25-2007. Some of the latex code is taken from the excellent (public domain!)
text by Sean Mauch [M].

1

http://creativecommons.org/about/licenses/meet-the-licenses
http://www.gimp.org/


• if (as is often the case) the ak’s tend to zero very quickly, then the
sum of the first few terms of the series are often a good numerical
approximation for the function itself,

• power series enable one to reduce the solution of certain differential
equations down to (often the much easier problem of) solving certain
recurrance relations.

• Power series expansions arise naturally in Taylor’s Theorem of the

Mean: If f(x) is n + 1 times continuously differentiable in (a, x) then
there exists a point ξ ∈ (a, x) such that

f(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · ·

+
(x − a)n

n!
f (n)(a) +

(x − a)n+1

(n + 1)!
f (n+1)(ξ). (2)

The sum

Tn(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · ·+ (x − a)n

n!
f (n)(a),

is called the n-th degree Taylor polynomial of f centered at a.
For the case n = 0, the formula is

f(x) = f(a) + (x − a)f ′(ξ),

which is just a rearrangement of the terms in the theorem of the mean,

f ′(ξ) =
f(x) − f(a)

x − a
.

Some examples:

• Geometric series:

1

1 − x
= 1 + x + x2 + x3 + x4 + · · ·

=

∞
∑

n=0

xn (3)
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To see this, assume |x| < 1 and let n → ∞ in the polynomial identity

1 + x + x2 + · · · + xn−1 =
1 − xn+1

1 − x
.

For x ≥ 1, the series does not converge.

• The exponential function:

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ · · ·

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

=

∞
∑

n=0

xn

n!
(4)

To see this, take f(x) = ex and a = 0 in Taylor’s theorem (2), using
the fact that d

dx
ex = ex and e0 = 1:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+

ξn+1

(n + 1)!
,

for some ξ between 0 and x. Perhaps it is not clear to everyone that as
n becomes larger and larger (x fixed), the last (“remainder”) term in
this sum goes to 0. However, Stirling’s formula tells us how large the
factorial function grows,

n! ∼
√

2πn
(n

e

)n

(1 + O(
1

n
)),

so we may indeed take the limit as n → ∞ to get (4).

Wikipedia’s entry on “Power series” [P1] has a nice animation showing
how more and more terms in the Taylor polynomials approximate ex

better and better.
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• The cosine function:

cos x = 1 − x2

2
+

x4

24
− x6

720
+ · · ·

= 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

=

∞
∑

n=0

(−1)n x2n

(2n)!
(5)

This too follows from Taylor’s theorem (take f(x) = cos x and a = 0).
However, there is another trick: Replace x in (4) by ix and use the fact
(“Euler’s formula”) that eix = cos(x)+ i sin(x). Taking real parts gives
(5). Taking imaginary parts gives (6), below.

• The sine function:

sin x = x − x3

6
+

x5

120
− x7

5040
+ · · ·

= 1 − x3

3!
+

x5

5!
− x7

7!
+ · · ·

=
∞

∑

n=0

(−1)n x2n+1

(2n + 1)!
(6)

Indeed, you can formally check (using formal term-by-term differenti-
ation) that

− d

dx
cos(x) = sin(x).

(Alternatively, you can use this fact to deduce (6) from (5).)

• The logarithm function:

log(1 − x) = −x − 1

2
x2 − 1

3
x3 − 1

4
x4 + · · ·

= −
∞

∑

n=0

1

n
xn (7)

This follows from (3) since (using formal term-by-term integration)
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∫ x

0

1

1 − t
= − log(1 − x).

SAGE

sage: taylor(sin(x), x, 0, 5)
x - xˆ3/6 + xˆ5/120

sage: P1 = plot(sin(x),0,pi)
sage: P2 = plot(x,0,pi,linestyle="--")
sage: P3 = plot(x-xˆ3/6,0,pi,linestyle="-.")
sage: P4 = plot(x-xˆ3/6+xˆ5/120,0,pi,linestyle=":")
sage: T1 = text("x",(3,2.5))
sage: T2 = text("x-xˆ3/3!",(3.5,-1))
sage: T3 = text("x-xˆ3/3!+xˆ5/5!",(3.7,0.8))
sage: T4 = text("sin(x)",(3.4,0.1))
sage: show(P1+P2+P3+P4+T1+T2+T3+T4)

This is displayed below:

Figure 1: Taylor polynomial approximations for sin(x).

Exercise: Use SAGE to plot successive Taylor polynomial approximations
for cos(x).
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Finally, we turn to the meaning of these sums. How do you associate a
value to an infinite sum? Does the sum converge for some values of x? If so,
for which values? . We will (for the most part) answer all of these.

First, consider our infinite power series f(x) in (1), where the ak are all
given and x is fixed for the momemnt. The partial sums of this series are

f0(x) = a0, f1(x) = a0 + a1x, f2(x) = a0 + a1x + a2x
2, · · · .

We say that the series in (1) converges at x if the limit of partial sums

lim
n→∞

fn(x)

exists. There are several tests for determining whether or not a series con-
verges. One of the most commonly used tests is the

Root test: Assume

L = lim
k→∞

|akx
k|1/k = |x| lim

k→∞

|ak|1/k

exists. If L < 1 then the infinite power series f(x) in (1) converges at x. In
general, (1) converges for all x satisfying

− lim
k→∞

|ak|−1/k < x < lim
k→∞

|ak|−1/k.

The number limk→∞ |ak|−1/k (if it exists, though it can be ∞) is called the
radius of convergence.

Example: The radius of convergence of ex (and cos(x) and sin(x)) is ∞:

limk→∞ |ak|−1/k = limk→∞ |1/k!|−1/k

= limk→∞ k!1/k = limk→∞[
√

2πk
(

k
e

)k
(1 + O( 1

k
))]1/k

= limk→∞(
√

2πk)1/k
(

k
e

)

= ∞.

The radius of convergence of 1/(1 − x) (and log(1 + x)) is 1.

Example: The radius of convergence of

f(x) =

∞
∑

k=0

k7 + k + 1

2k + k2
xk

can be determined with the help of SAGE . We want to compute
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lim
k→∞

|k
7 + k + 1

2k + k2
|−1/k.

SAGE

sage: k = var(’k’)
sage: limit(((kˆ7+k+1)/(2ˆk+kˆ2))ˆ(-1/k),k=infinity)
2

In other words, the series converges for all x satisfying −2 < x < 2.

Exercise: Use SAGE to find the radius of convergence of

f(x) =

∞
∑

k=0

k3 + 1

3k + 1
x2k
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