
Undetermined coefficients in constant coefficient ODEs

Prof. Joyner1

The method of undetermined coefficients [U] can be used to solve the
following type of problem.

PROBLEM: Solve

ay′′ + by′ + cy = f(x), (1)

where a 6= 0, b and c are constants. (Even the case a = 0 can be handled
similarly, though some of the discussion below might need to be slightly
modified.) For this method to work, we must assume that f(x) is of a
special form (described below). The version of this method described below
can be found in Spiegel’s (long out-of-print) textbook [S] and requires no
memorization.

More-or-less equivalent is the method of annihilating operators [A] (they
solve the same class of DEs), but that method will be discussed separately.

For the moment, let us assume f(x) has the form a1 · p(x) · ea2x · cos(a3x),
or a1 · p(x) · ea2x · sin(a3x), where a1, a2, a3 are constants and p(x) is a
polynomial. (If f(x) is a sum of such functions, then fisrt solve the DEs for
each of the “parts” of f(x) then add them up2.)

Solution:

• Find the “homogeneous solution” yh to ay′′ + by′ + cy = 0, yh = c1y1 +
c2y2. Here y1 and y2 are determined as follows: let r1 and r2 denote
the roots of the characteristic polynomial aD2 + bD + c = 0.

– r1 6= r2 real: set y1 = er1x, y2 = er2x.

– r1 = r2 real: if r = r1 = r2 then set y1 = erx, y2 = xerx.

1These notes licensed under Attribution-ShareAlike Creative Commons license,
http://creativecommons.org/about/licenses/meet-the-licenses. Created Feb
2007; last revised 2008-11-28.

2By the superposition principle (or “linearity”), if y1 is a solution to ay′′ + by′ +
cy = f1(x) and y2 is a solution to ay′′ + by′ + cy = f2(x), then y1 + y2 is a solution to
ay′′ + by′ + cy = f1(x) + f2(x).
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– r1, r2 complex: if r1 = α + iβ, r2 = α − iβ, where α and β are
real, then set y1 = eαx cos(βx), y2 = eαx sin(βx).

• Compute f(x), f ′(x), f ′′(x), ... . Write down the list of all the different
terms which arise (via the product rule), ignoring constant factors, plus
signs, and minus signs:

f1(x), f2(x), ..., fk(x).

If any one of these agrees with y1 or y2 then multiply them all by x.
(If, after this, any of them still agrees with y1 or y2 then multiply them
all again by x.)

• Let yp be a linear combination of these functions (your “guess”):

yp = A1f1(x) + ... + Akfk(x).

This is called the general form of the particular solution. The
Ai’s are called undetermined coefficients.

• Plug yp into (1) and solve for A1, ..., Ak.

• Let y = yh + yp = yp + c1y1 + c2y2. This is the general solution to
(1). If there are any initial conditions for (1), solve for then c1, c2 now.

Diagramatically:

Factor characteristic polynomial

↓

Compute yh

↓

Compute the general form of the particular, yp

↓

Compute the undetermined coefficients
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↓

Answer: y = yh + yp.
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Examples

Example 1 Solve
y′′ − y = cos(2x).

• The characteristic polynomial is r2 − 1 = 0, which has ±1 for roots. The
“homogeneous solution” is therefore yh = c1e

x + c2e
−x.

• We compute f(x) = cos(2x), f ′(x) = −2 sin(2x), f ′′(x) = −4 cos(2x), ... .
They are all linear combinations of

f1(x) = cos(2x), f2(x) = sin(2x).

None of these agrees with y1 = ex or y2 = e−x, so we do not multiply by x.

• Let yp be a linear combination of these functions:

yp = A1 cos(2x) + A2 sin(2x).

• You can compute both sides of y′′p − yp = cos(2x):

(−4A1 cos(2x) − 4A2 sin(2x)) − (A1 cos(2x) + A2 sin(2x)) = cos(2x).

Equating the coefficients of cos(2x), sin(2x) on both sides gives 2 equations
in 2 unknowns: −5A1 = 1 and −5A2 = 0. Solving, we get A1 = −1/5 and
A2 = 0.

• The general solution: y = yh + yp = c1e
x + c2e

−x − 1

5
cos(2x).

Example 2 Solve
y′′ − y = x cos(2x).

• The characteristic polynomial is r2 − 1 = 0, which has ±1 for roots. The
“homogeneous solution” is therefore yh = c1e

x + c2e
−x.

• We compute f(x) = x cos(2x), f ′(x) = cos(2x)−2x sin(2x), f ′′(x) = −2 sin(2x)−
2 sin(2x) − 2x cos(2x), ... . They are all linear combinations of

f1(x) = cos(2x), f2(x) = sin(2x), f3(x) = x cos(2x), .f4(x) = x sin(2x).

None of these agrees with y1 = ex or y2 = e−x, so we do not multiply by x.
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• Let yp be a linear combination of these functions:

yp = A1 cos(2x) + A2 sin(2x) + A3x cos(2x) + A4x sin(2x).

• In principle, you can compute both sides of y′′p −yp = x cos(2x) and solve for
the Ai’s. (Equate coefficients of x cos(2x) on both sides, equate coefficients
of cos(2x) on both sides, equate coefficients of x sin(2x) on both sides, and
equate coefficients of sin(2x) on both sides. This gives 4 equations in 4
unknowns, which can be solved.) You will not be asked to solve for the Ai’s
for a problem this hard.

Example 3 Solve
y′′ + 4y = x cos(2x).

• The characteristic polynomial is r2 + 4 = 0, which has ±2i for roots. The
“homogeneous solution” is therefore yh = c1 cos(2x) + c2 sin(2x).

• We compute f(x) = x cos(2x), f ′(x) = cos(2x)−2x sin(2x), f ′′(x) = −2 sin(2x)−
2 sin(2x) − 2x cos(2x), ... . They are all linear combinations of

f1(x) = cos(2x), f2(x) = sin(2x), f3(x) = x cos(2x), .f4(x) = x sin(2x).

Two of these agree with y1 = cos(2x) or y2 = sin(2x), so we do multiply by
x:

f1(x) = x cos(2x), f2(x) = x sin(2x), f3(x) = x2 cos(2x), .f4(x) = x2 sin(2x).

• Let yp be a linear combination of these functions:

yp = A1x cos(2x) + A2x sin(2x) + A3x
2 cos(2x) + A4x

2 sin(2x).

• In principle, you can compute both sides of y′′p + 4yp = x cos(2x) and solve
for the Ai’s. You will not be asked to solve for the Ai’s for a problem this
hard.

More generally, suppose that you want to solve ay′′ + by′ + cy = f(x),
where f(x) is a sum of functions of the above form. In other words, f(x) =
f1(x)+f2(x)+ ...+fk(x), where each fj(x) is of the form c ·p(x) ·eax ·cos(bx),
or c · p(x) · eax · sin(bx), where a, b, c are constants and p(x) is a polynomial.
You can proceed in either one of the following ways.
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1. Split up the problem by solving each of the k problems ay′′ +by′ +cy =
fj(x), 1 ≤ j ≤ k, obtaining the solution y = yj(x), say. The solution
to ay′′ + by′ + cy = f(x) is then y = y1 + y2 + .. + yk (the superposition
principle).

2. Proceed as in the examples above but with the following slight revision:

• Find the “homogeneous solution” yh to ay′′ + by′ = cy = 0, yh =
c1y1 + c2y2.

• Compute f(x), f ′(x), f ′′(x), ... . Write down the list of all the
different terms which arise, ignoring constant factors, plus signs,
and minus signs:

t1(x), t2(x), ..., tk(x).

• Group these terms into their families. Each family is determined
from its parent(s) - which are the terms in f(x) = f1(x)+ f2(x)+
... + fk(x) which they arose form by differentiation. For example,
if f(x) = x cos(2x) + e−x sin(x) + sin(2x) then the terms you get
from differentiating and ignoring constants, plus signs and minus
signs, are

x cos(2x), x sin(2x), cos(2x), sin(2x), (from x cos(2x)),

e−x sin(x), e−x cos(x), (from e−x sin(x)),

and
sin(2x), cos(2x), (from sin(2x)).

The first group absorbes the last group, since you can only count
the different terms. Therefore, there are only two families in
this example: {x cos(2x), x sin(2x), cos(2x), sin(2x)} is a “family”
(with “parent” x cos(2x) and the other terms as its “children”) and
{e−x sin(x), e−x cos(x)} is a “family” (with “parent” e−x sin(x) and
the other term as its “child”).

If any one of these terms agrees with y1 or y2 then multiply the
entire family by x. In other words, if any child or parent is “bad”
then the entire family is “bad”. (If, after this, any of them still

agrees with y1 or y2 then multiply them all again by x.)
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• Let yp be a linear combination of these functions (your “guess”):

yp = A1t1(x) + ... + Aktk(x).

This is called the general form of the particular solution.
The Ai’s are called undetermined coefficients.

• Plug yp into (1) and solve for A1, ..., Ak.

• Let y = yh + yp = yp + c1y1 + c2y2. This is the general solution

to (1). If there are any initial conditions for (1), solve for then
c1, c2 last - after the undetermined coefficients.

Example 4 Solve

y′′′ − y′′ − y′ + y = 12xex.

We use SAGE for this.

SAGE

sage: x = var("x")
sage: y = function("y",x)
sage: R.<D> = PolynomialRing(QQ, "D")
sage: f = Dˆ3 - Dˆ2 - D + 1
sage: f.factor()

(D + 1) * (D - 1)ˆ2
sage: f.roots()

[(-1, 1), (1, 2)]

So the roots of the characteristic polynomial are 1, 1,−1, which means that

the homogeneous part of the solution is

yh = c1e
x + c2e

−x + c3xe−x.

SAGE

sage: de = lambda y: diff(y,x,3) - diff(y,x,2) - diff(y,x,1) + y
sage: c1 = var("c1"); c2 = var("c2"); c3 = var("c3")
sage: yh = c1 * eˆx + c2 * x* eˆx + c3 * eˆ(-x)
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sage: de(yh)
0

sage: de(xˆ3 * eˆx-(3/2) * xˆ2 * eˆx)
12* x* eˆx

This just confirmed that yh solves y′′′− y′′− y′ + y = 0. Using the derivatives

of F (x) = 12xex, we generate the general form of the particular:

SAGE

sage: F = 12 * x* eˆx
sage: diff(F,x,1); diff(F,x,2); diff(F,x,3)

12* x* eˆx + 12 * eˆx
12* x* eˆx + 24 * eˆx
12* x* eˆx + 36 * eˆx

sage: A1 = var("A1"); A2 = var("A2")
sage: yp = A1 * xˆ2 * eˆx + A2 * xˆ3 * eˆx

Now plug this into the DE and compare coefficients of like terms to solve for

the undertermined coefficients:

SAGE

sage: de(yp)
12* x* eˆx * A2 + 6* eˆx * A2 + 4* eˆx * A1

sage: solve([12 * A2 == 12, 6 * A2+4* A1 == 0],A1,A2)
[[A1 == -3/2, A2 == 1]]

Finally, lets check if this is correct:

SAGE

sage: y = yh + (-3/2) * xˆ2 * eˆx + (1) * xˆ3 * eˆx
sage: de(y)

12* x* eˆx
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Exercise: Using SAGE , solve

y′′′ − y′′ + y′ − y = 12xex.
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