The wave equation in one dimension

Prof. J oyneIﬁ

The theory of the vibrating string touches on musical theory and the
theory of oscillating waves, so has likely been a concern of scholars since
ancient times. Nevertheless, it wasn’t until the late 1700s that mathematical
progress was made. Though the problem of describing mathematically a
vibrating string requires no calculus, the solution does. With the advent of
calculus, Jean le Rond dAlembert, Daniel Bernoulli, Leonard Euler, Joseph-
Louis Lagrange were able to arrive at solutions to the one-dimensional wave
equation in the eighteenth-century. Daniel Bernoulli’s solution dealt with an
infinite series of sines and cosines (derived from what we now call a “Fourier
series”, though it predates it), his contemporaries did not believe that he was
correct. Bernoullis technique would be later used by Joseph Fourier when he
solved the thermodynamic heat equation in 1807. It is Bernoulli’s idea which
we discuss here as well. Euler was wrong: Bernoulli’s method was basically
correct after all.

Now, d’Alembert was mentioned in the lecture on the transport equation
and it is worthwhile very briefly discussing what his basic idea was. The
theorem of dAlembert on the solution to the wave equation is stated roughly
as follows: The partial differential equation:
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is satisfied by any function of the form w = w(z,t) = g(x + ct) + h(z — ct),
where g and h are “arbitrary” functions. (This is called “the dAlembert
solution”.) Geometrically speaking, the idea of the proof is to observe that
9w + ¢2Y is a constant times the directional derivative D,;w(z,t), where v
is a unit vector in the direction (+¢, 1). Therefore, you integrate
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twice, once in the v} direction, once in the v”, to get the solution. Easier
said than done, but still, that’s the idea.

The wave equation with zero ends boundary conditions models the motion
of a (perfectly elastic) guitar string of length L:
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w(0,t) = w(L,t) =

Here w(x,t) denotes the displacement from rest of a point z on the string at
time ¢. The initial displacement f(x) and initial velocity g(z) at specified by

the equations

Method:
e Find the sine series of f(z) and g(z):

Z b, (f) sin( nmc ), Z b, (g) sin( mrx)

e The solution is

w(z,t) = Z(b”(f) cos(cnzt) + Lij:bgrg) sin(cnzt)) sin(n—?).

Example: Let
-1, 0<t<7/2,
o) ={ /

2, w/2<t<m,
and let g(x) = 0. Then L =, b,(g9) =0, and

_ z/ﬂf(:c)sin(m:)dx _ 5 2 cos(nm) — 3 cos(1/2nm) + 1.

n

Thus

f(z) ~ by (f)sin(z)+bo(f) sin(2z)+... = % sin(:c)—g sin(2x)+3% sin(3x)+

The function f(x), and some of the partial sums of its sine series, looks like

This was computed using the following SAGE commands:
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Figure 1: Using 50 terms of the sine series of f(x).

SAGE
sage: x = var("x")
sage: f1 = lanbda x: -1
sage: f2 = lanbda x: 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])

sage: P1 = f.plot(rgbcolor=(1,0,0))

sage: b50 = [f.sine_series_coefficient(n,pi) for n in range(l,50
sage: ss50 = sun([b50[i-1]*sin(i*x) for i in range(1,50)])

sage: b50[ 0: 5]

[2/pi, -6/pi, 2/(3*pi), 0, 2/(5+pi)]

sage: P2 = ss50.plot(-5,5,linestyle="--")

sage: (P1+P2).show)

As you can see, taking more and more terms gives functions which better
and better approximate f(z).
The solution to the wave equation, therefore, is

w(z,t) = Z(b”(f) cos(cnzt) + Li;;grg) sin(cnzt)) Sin(nzx).

Taking only the first 50 terms of this series, the graph of the solution at
t=0,t=0.1,t=1/5,t=1/4, looks approximately like:
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Figure 2: Wave equation with ¢ = 3.

This was produced using the SAGE commands:

SAGE

sage: t = var("t")
sage: w50t1 = sun{[b50[i-1]+*sin(ix*x)*cos(3*i*(1/10)) for i in range(1,50)])
sage: P3 = wh0t1.plot(0,pi,linestyle=":")
sage: W50t2 = sun([b50[i-1]*sin(i*x)*cos(3+i*(1/5)) for i in range(1,50)])

sage: P4 = ws0t2.plot(0,pi,linestyle=":",rgbcolor=(0,1,0))
sage: w50t3 = sun([b50[i-1]*sin(i*x)*cos(3+i*(1/4)) for i in range(1,50)])
sage: P5 = wh0t3.plot(0,pi,linestyle=":",rgbcolor=(1/3,1/3,1/3))

sage: (P1+P2+P3+P4+P5).show()

Of course, taking terms would give a better approximation to w(z,t). Taking
the first 100 terms of this series (but with different times):

Figure 3: Wave equation with ¢ = 3.



Exercise: Solve the wave equation

282w(r,t) _ 0%w(z,t)
ox2 T Ot2
w(0,t) =w(3,t) =0
w(z,0) =2z
wy(x,0) =0,

using SAGE to plot approximations as above.
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