
Introductory Differential Equations using Sage

David Joyner Marshall Hampton

2009-11-24

v

There are some things which cannot
be learned quickly, and time, which is all we have,
must be paid heavily for their acquiring.
They are the very simplest things,
and because it takes a man’s life to know them
the little new that each man gets from life
is very costly and the only heritage he has to leave.

Ernest Hemingway
(From A. E. Hotchner, Papa Hemingway, Random House, NY, 1966)

vi

Contents

1 First order differential equations 3

1.1 Introduction to DEs . 3

1.2 Initial value problems . 11

1.3 Existence of solutions to ODEs . 15

1.3.1 First order ODEs . 15

1.3.2 Higher order constant coefficient linear homogeneous ODEs 19

1.4 First order ODEs - separable and linear cases 22

1.4.1 Autonomous ODEs . 25

1.4.2 Linear 1st order ODEs . 28

1.5 Isoclines and direction fields . 30

1.6 Numerical solutions - Euler’s method and improved Euler’s method 33

1.6.1 Euler’s Method . 34

1.6.2 Improved Euler’s method . 37

1.6.3 Euler’s method for systems and higher order DEs 38

1.7 Numerical solutions II - Runge-Kutta and other methods 41

1.7.1 Fourth-Order Runge Kutta method 42

1.7.2 Multistep methods - Adams-Bashforth 43

1.7.3 Adaptive step size . 43

1.8 Newtonian mechanics . 45

1.9 Application to mixing problems . 49

2 Second order differential equations 53

2.1 Linear differential equations . 53

2.2 Linear differential equations, continued . 57

2.3 Undetermined coefficients method . 62

2.3.1 Simple case . 63

2.3.2 Non-simple case . 65

2.3.3 Annihilator method . 68

2.4 Variation of parameters . 70

2.4.1 The Leibniz rule . 70

2.4.2 The method . 71

2.5 Applications of DEs: Spring problems . 73

2.5.1 Part 1 . 73

vii

viii CONTENTS

2.5.2 Part 2 . 78
2.5.3 Part 3 . 81

2.6 Applications to simple LRC circuits . 83
2.7 The power series method . 87

2.7.1 Part 1 . 87
2.7.2 Part 2 . 92

2.8 The Laplace transform method . 96
2.8.1 Part 1 . 96
2.8.2 Part 2 . 102

3 Matrix theory and systems of DEs 109
3.1 Row reduction and solving systems of equations 109

3.1.1 The Gauss elimination game . 109
3.1.2 Solving systems using inverses . 112
3.1.3 Solving higher-dimensional linear systems 115

3.2 Quick survey of linear algebra . 116
3.2.1 Matrix arithmetic . 116
3.2.2 Determinants . 117
3.2.3 Vector spaces . 118
3.2.4 Bases, dimension, linear independence and span 119
3.2.5 The Wronskian . 121

3.3 Application: Solving systems of DEs . 122
3.3.1 Modeling battles using Lanchester’s equations 124
3.3.2 Romeo and Juliet . 130
3.3.3 Electrical networks using Laplace transforms 133

3.4 Eigenvalue method for systems of DEs . 138
3.5 Introduction to variation of parameters for systems 147

3.5.1 Motivation . 147
3.5.2 The method . 148

4 Introduction to partial differential equations 153
4.1 Introduction to separation of variables . 153
4.2 Fourier series, sine series, cosine series . 157
4.3 The heat equation . 164

4.3.1 Method for zero ends . 165
4.3.2 Method for insulated ends . 166
4.3.3 Explanation . 170

4.4 The wave equation in one dimension . 173

5 Appendices 183
5.1 Appendix: Integral table . 184

x CONTENTS

Preface

The majority of this book came from lecture notes David Joyner (WDJ) typed up over the
years for a course on differential equations with boundary value problems at the US Naval
Academy (USNA). Though the USNA is a government institution and official work-related
writing is in the public domain, so much of this was done at home during the night and
weekends that he feels he has the right to claim copyright over this work. The DE course at
the USNA has used various editions of the following three books (in order of most common
use to least common use) at various times:

• Dennis G. Zill and Michael R. Cullen, Differential equations with Boundary
Value Problems, 6th ed., Brooks/Cole, 2005.

• R. Nagle, E. Saff, and A. Snider, Fundamentals of Differential Equations and
Boundary Value Problems, 4th ed., Addison/Wesley, 2003.

• W. Boyce and R. DiPrima, Elementary Differential Equations and Boundary
Value Problems, 8th edition, John Wiley and Sons, 2005.

You may see some similarities but, for the most part, WDJ has taught things a bit differently
and tried to impart this in these notes. Time will tell if there are any improvements.

After WDJ finished a draft of this book, he invited the second author, Marshall Hampton
(MH), to revise and extend it. At the University of Minnesota Duluth, MH teaches a course
on differential equations and linear algebra.

A new feature to this book is the fact that every section has at least one Sage exercise.
Sage is FOSS (free and open source software), available on the most common computer
platforms. Royalties for the sales of this book (if it ever makes it’s way to a publisher) will
go to further development of Sage .

This book is free and open source. It is licensed under the Attribution-ShareAlike Creative
Commons license, http: // creativecommons.org/ licenses/by-sa/ 3. 0/ , or the Gnu
Free Documentation License (GFDL), http:// www. gnu. org/copyleft/fdl.html , at
your choice.

The cover image was created with the following Sage code:
Sage

from math import cos, sin
def RK4(f, t_start, y_start, t_end, steps):

’’’
fourth-order Runge-Kutta solver with fixed time steps.
f must be a function of t,y.
’’’
step_size = (t_end - t_start)/steps
t_current = t_start
argn = len(y_start)
y_current = [x for x in y_start]
answer_table = []
answer_table.append([t_current,y_current])
for j in range(0,steps):

k1=f(t_current,y_current)

http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/copyleft/fdl.html

CONTENTS xi

k2=f(t_current+step_size/2,[y_current[i] + k1[i] * step_size/2 for i in range(argn)])
k3=f(t_current+step_size/2,[y_current[i] + k2[i] * step_size/2 for i in range(argn)])
k4=f(t_current+step_size,[y_current[i] + k3[i] * step_size for i in range(argn)])
t_current += step_size
y_current = [y_current[i] + (step_size/6) * (k1[i]+2 * k2[i]+2 * k3[i]+k4[i]) for i in range(len(k1))]
answer_table.append([t_current,y_current])

return answer_table

def e1(t, y):
return [-y[1],sin(y[0])]

npi = N(pi)
sols = []
for v in srange(-1,1+.04,.05):

p1 = RK4(e1,0.0,[0.0,v],-2.5 * npi,200)[::-1]
p1 = p1 + RK4(e1,0.0,[0.0,v],2.5 * npi,200)
sols.append(list_plot([[x[0],x[1][0]] for x in p1], plot joined=True, rgbcolor = ((v+1)/2.01,0,(1.01-v)/2.01)))

f = 2
show(sum(sols), axes = True, figsize = [f * 5* npi/3,f * 2.5], xmin = -7, xmax = 7, ymin = -1, ymax = 1)

CONTENTS 1

Acknowledgments

In a few cases we have made use of the excellent (public domain!) lecture notes by Sean
Mauch, Introduction to methods of Applied Mathematics, available online at
http://www.its.caltech.edu/~sean/book/unabridged.html (as of Fall, 2009).

In some cases, we have made use of the material on Wikipedia - this includes both discus-
sion and in a few cases, diagrams or graphics. This material is licensed under the GFDL or
the Attribution-ShareAlike Creative Commons license. In any case, the amount used here
probably falls under the “fair use” clause.

Software used:
Most of the graphics in this text was created using Sage (http://www.sagemath.org/)

and GIMP http://www.gimp.org/ by the authors. The most important components of
Sage for our purposes are: Maxima, SymPy and Matplotlib. The circuit diagrams were cre-
ated using Dia http://www.gnome.org/projects/dia/ and GIMP by the authors. A few
diagrams were “taken” from Wikipedia http://www.wikipedia.org/ (and acknowledged
in the appropriate placein the text). Of course, LATEX was used for the typesetting. Many
thanks to the developers of these programs for these free tools.

http://www.its.caltech.edu/~sean/book/unabridged.html
http://www.sagemath.org/
http://www.gimp.org/
http://www.gnome.org/projects/dia/
http://www.wikipedia.org/

2 CONTENTS

Chapter 1

First order differential equations

But there is another reason for the high repute of mathematics: it is mathe-
matics that offers the exact natural sciences a certain measure of security which,
without mathematics, they could not attain.

- Albert Einstein

1.1 Introduction to DEs

Roughly speaking, a differential equation is an equation involving the derivatives of one
or more unknown functions. Implicit in this vague definition is the assumption that the
equation imposes a constraint on the unknown function (or functions). For example, we
would not call the well-known product rule identity of differential calculus a differential
equation.

In calculus (differential-, integral- and vector-), you’ve studied ways of analyzing functions.
You might even have been convinced that functions you meet in applications arise naturally
from physical principles. As we shall see, differential equations arise naturally from general
physical principles. In many cases, the functions you met in calculus in applications to
physics were actually solutions to a naturally-arising differential equation.

Example 1.1.1. Consider a falling body of mass m on which exactly three forces act:

• gravitation, Fgrav ,

• air resistance, Fres,

• an external force, Fext = f(t), where f(t) is some given function.

3

4 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

mass m

?

Fgrav

6

Fres

Let x(t) denote the distance fallen from some fixed initial position. The velocity is denoted
by v = x′ and the acceleration by a = x′′. We choose an orientation so that downwards is
positive. In this case, Fgrav = mg, where g > 0 is the gravitational constant. We assume
that air resistance is proportional to velocity (a common assumption in physics), and write
Fres = −kv = −kx′, where k > 0 is a “friction constant”. The total force, Ftotal, is by
hypothesis,

Ftotal = Fgrav + Fres + Fext,

and, by Newton’s 2nd Law1,

Ftotal = ma = mx′′.

Putting these together, we have

mx′′ = ma = mg − kx′ + f(t),

or

mx′′ + mx′ = f(t) + mg.

This is a differential equation in x = x(t). It may also be rewritten as a differential equation
in v = v(t) = x′(t) as

mv′ + kv = f(t) + mg.

This is an example of a “first order differential equation in v”, which means that at most
first order derivatives of the unknown function v = v(t) occur.

In fact, you have probably seen solutions to this in your calculus classes, at least when
f(t) = 0 and k = 0. In that case, v′(t) = g and so v(t) =

∫

g dt = gt+C. Here the constant
of integration C represents the initial velocity.

Differential equations occur in other areas as well: weather prediction (more generally,
fluid-flow dynamics), electrical circuits, the temperature of a heated homogeneous wire, and
many others (see the table below). They even arise in problems on Wall Street: the Black-
Scholes equation is a PDE which models the pricing of derivatives [BS-intro]. Learning to
solve differential equations helps you understand the behaviour of phenomenon present in
these problems.

1“Force equals mass times acceleration.” http://en.wikipedia.org/wiki/Newtons_law

http://en.wikipedia.org/wiki/Newtons_law

1.1. INTRODUCTION TO DES 5

phenomenon description of DE

weather Navier-Stokes equation [NS-intro]
a non-linear vector-valued higher-order PDE

falling body 1st order linear ODE

motion of a mass attached Hooke’s spring equation
to a spring 2nd order linear ODE [H-intro]

motion of a plucked guitar string Wave equation
2nd order linear PDE [W-intro]

Battle of Trafalger Lanchester’s equations
system of 2 1st order DEs [L-intro], [M-intro], [N-intro]

cooling cup of coffee Newton’s Law of Cooling
in a room 1st order linear ODE

population growth logistic equation
non-linear, separable, 1st order ODE

Undefined terms and notation will be defined below, except for the equations themselves.
For those, see the references or wait until later sections when they will be introduced2.

Basic Concepts:

Here are some of the concepts to be introduced below:

• dependent variable(s),

• independent variable(s),

• ODEs,

• PDEs,

• order,

• linearity,

• solution.

It is really best to learn these concepts using examples. However, here are the general
definitions anyway, with examples to follow.

The term “differential equation” is sometimes abbreviated DE, for brevity.
Dependent/independent variables: Put simply, a differential equation is an equation

involving derivatives of one of more unknown functions. The variables you are differentiating
with respect to are the independent variables of the DE. The variables (the “unknown
functions”) you are differentiating are the dependent variables of the DE. Other variables
which might occur in the DE are sometimes called “parameters”.

2Except for the important Navier-Stokes equation, which is relatively complicated and would take us too
far afield, http://en.wikipedia.org/wiki/Navier-stokes.

6 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

ODE/PDE: If none of the derivatives which occur in the DE are partial derivatives (for
example, if the dependent variable/unknown function is a function of a single variable)
then the DE is called an ordinary differential equation or ODE. If some of the deriva-
tives which occur in the DE are partial derivatives then the DE is a partial differential
equation or PDE.

Order: The highest total number of derivatives you have to take in the DE is it’s order.

Linearity: This can be described in a few different ways. First of all, a DE is linear if
the only operations you perform on its terms are combinations of the following:

• differentiation with respect to independent variable(s),

• multiplication by a function of the independent variable(s).

Another way to define linearity is as follows. A linear ODE having independent variable
t and the dependent variable is y is an ODE of the form

a0(t)y
(n) + ... + an−1(t)y

′ + an(t)y = f(t),

for some given functions a0(t), . . . , an(t), and f(t). Here

y(n) = y(n)(t) =
dny(t)

dtn

denotes the n-th derivative of y = y(t) with respect to t. The terms a0(t), . . . , an(t) are
called the coefficients of the DE and we will call the term f(t) the non-homogeneous
term or the forcing function. (In physical applications, this term usually represents an
external force acting on the system. For instance, in the example above it represents the
gravitational force, mg.)

Solution: An explicit solution to a DE having independent variable t and the dependent
variable is x is simple a function x(t) for which the DE is true for all values of t.

Here are some examples:

Example 1.1.2. Here is a table of examples. As an exercise, determine which of the
following are ODEs and which are PDEs.

1.1. INTRODUCTION TO DES 7

DE indep vars dep vars order linear?

mx′′ + kx′ = mg t x 2 yes
falling body

mv′ + kv = mg t v 1 yes
falling body

k ∂2u

∂x2 = ∂u
∂t

t, x u 2 yes
heat equation

mx′′ + bx′ + kx = f(t) t x 2 yes
spring equation

P ′ = k(1 −

P
K

)P t P 1 no
logistic population equation

k ∂2u

∂x2 = ∂2u

∂2t
t, x u 2 yes

wave equation

T ′ = k(T − Troom) t T 1 yes
Newton’s Law of Cooling

x′ = −Ay, y′ = −Bx, t x, y 1 yes
Lanchester’s equations

Remark 1.1.1. Note that in many of these examples, the symbol used for the independent
variable is not made explicit. For example, we are writing x′ when we really mean x′(t) =
x(t)
dt . This is very common shorthand notation and, in this situation, we shall usually use t

as the independent variable whenever possible.

Example 1.1.3. Recall a linear ODE having independent variable t and the dependent
variable is y is an ODE of the form

a0(t)y
(n) + ... + an−1(t)y

′ + an(t)y = f(t),

for some given functions a0(t), . . . , an(t), and f(t). The order of this DE is n. In particular,
a linear 1st order ODE having independent variable t and the dependent variable is y is an
ODE of the form

a0(t)y
′ + a1(t)y = f(t),

for some a0(t), a1(t), and f(t). We can divide both sides of this equation by the leading
coefficient a0(t) without changing the solution y to this DE. Let’s do that and rename the
terms:

y′ + p(t)y = q(t),

where p(t) = a1(t)/a0(t) and q(t) = f(t)/a0(t). Every linear 1st order ODE can be put into
this form, for some p and q. For example, the falling body equation mv′ + kv = f(t) + mg
has this form after dividing by m and renaming v as y.

What does a differential equation like mx′′ + kx′ = mg or P ′ = k(1− P
K)P or k ∂2u

∂x2 = ∂2u
∂2t

really mean? In mx′′ + kx′ = mg, m and k and g are given constants. The only things that
can vary are t and the unknown function x = x(t).

8 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Example 1.1.4. To be specific, let’s consider x′+x = 1. This means for all t, x′(t)+x(t) =
1. In other words, a solution x(t) is a function which, when added to its derivative you
always get the constant 1. How many functions are there with that property? Try guessing
a few “random” functions:

• Guess x(t) = sin(t). Compute (sin(t))′ + sin(t) = cos(t) + sin(t) =
√

2 sin(t + π
4).

x′(t) + x(t) = 1 is false.

• Guess x(t) = exp(t) = et. Compute (et)′ + et = 2et. x′(t) + x(t) = 1 is false.

• Guess x(t) = exp(t) = t2. Compute (t2)′ + t2 = 2t + t2. x′(t) + x(t) = 1 is false.

• Guess x(t) = exp(−t) = e−t. Compute (e−t)′ + e−t = 0. x′(t) + x(t) = 1 is false.

• Guess x(t) = exp(t) = 1. Compute (1)′ + 1 = 0 + 1 = 1. x′(t) + x(t) = 1 is true.

We finally found a solution by considering the constant function x(t) = 1. Here a way of
doing this kind of computation with the aid of the computer algebra system Sage :

Sage

sage: t = var(’t’)
sage: de = lambda x: diff(x,t) + x - 1
sage: de(sin(t))
sin(t) + cos(t) - 1
sage: de(exp(t))
2* eˆt - 1
sage: de(tˆ2)
tˆ2 + 2 * t - 1
sage: de(exp(-t))
-1
sage: de(1)
0

Note we have rewritten x′ + x = 1 as x′ + x− 1 = 0 and then plugged various functions for
x to see if we get 0 or not.

Obviously, we want a more systematic method for solving such equations than guessing
all the types of functions we know one-by-one. We will get to those methods in time. First,
we need some more terminology.
IVP: A first order initial value problem (abbreviated IVP) is a problem of the form

x′ = f(t, x), x(a) = c,

where f(t, x) is a given function of two variables, and a, c are given constants. The equation
x(a) = c is the initial condition.

Under mild conditions of f , an IVP has a solution x = x(t) which is unique. This means
that if f and a are fixed but c is a parameter then the solution x = x(t) will depend on c.
This is stated more precisely in the following result.

1.1. INTRODUCTION TO DES 9

Theorem 1.1.1. (Existence and uniqueness) Fix a point (t0, x0) in the plane. Let f(t, x)

be a function of t and x for which both f(t, x) and fx(t, x) = ∂f(t,x)
∂x are continuous on some

rectangle

a < t < b, c < x < d,

in the plane. Here a, b, c, d are any numbers for which a < t0 < b and c < x0 < d. Then
there is an h > 0 and a unique solution x = x(t) for which

x′ = f(t, x), for all t ∈ (t0 − h, t0 + h),

and x(t0) = x0.

This is proven in §2.8 of Boyce and DiPrima [BD-intro], but we shall not prove this here
(though we will return to it in more detail in §1.3 below). In most cases we shall run across,
it is easier to construct the solution than to prove this general theorem.

Example 1.1.5. Let us try to solve

x′ + x = 1, x(0) = 1.

The solutions to the DE x′+x = 1 which we “guessed at” in the previous example, x(t) = 1,
satisfies this IVP.

Here a way of finding this slution with the aid of the computer algebra system Sage :

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: diff(y,t) + y - 1
sage: desolve(de(x),[x,t],[0,1])
1

(The command desolve is a DE solver in Sage .) Just as an illustration, let’s try another
example. Let us try to solve

x′ + x = 1, x(0) = 2.

The Sage commands are similar:

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: diff(y,t) + y - 1
sage: x0 = 2 # this is forthe IC x(0) = 2
sage: soln = desolve(de(x),[x,t],[0,x0])
sage: solnx = lambda s: RR(soln.subs(t=s))

10 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

sage: P = plot(solnx,0,5)
sage: soln; show(P)
(eˆt + 1) * eˆ(-t)

This gives the solution x(t) = (et + 1)e−t = 1 + e−t and the plot given in Figure 1.1.

Figure 1.1: Solution to IVP x′ + x = 1, x(0) = 2.

Example 1.1.6. Now let us consider an example which does not satisfy all of the assump-
tions of the existence and uniqueness theorem: x′ = x2/3. The function x = (t/3 + C)3 is a
solution to this differential equation for any choice of the constant C. If we consider only
solutions with the initial value x(0) = 0, we see that we can choose C = 0 - i.e. x = t3/27
satisfies the differential equation and has x(0) = 0. But there is another solution with that
initial condition - the solution x = 0. So a solutions exist, but they are not necessarily
unique.

Some conditions on the ODE which guarantee a unique solution will be presented in §1.3.

Exercises:

1. Verify that x = t3 + 5 is a solution to the differential equation x′ = 3t2.

2. Subsitute x = ert into the differential equation x′′ + x′ − 6x = 0 and determine all
values of the parameter r which give a solution.

3. (a) Verify the, for any constant c, the function x(t) = 1+ ce−t solves x′ + x = 1. Find
the c for which this function solves the IVP x′ + x = 1, x(0) = 3.

(b) Solve

x′ + x = 1, x(0) = 3,

using Sage .

1.2. INITIAL VALUE PROBLEMS 11

1.2 Initial value problems

Recall, 1st order initial value problem, or IVP, is simply a 1st order ODE and an initial
condition. For example,

x′(t) + p(t)x(t) = q(t), x(0) = x0,

where p(t), q(t) and x0 are given. The analog of this for 2nd order linear DEs is this:

a(t)x′′(t) + b(t)x′(t) + c(t)x(t) = f(t), x(0) = x0, x′(0) = v0,

where a(t), b(t), c(t), x0, and v0 are given. This 2nd order linear DE and initial conditions
is an example of a 2nd order IVP. In general, in an IVP, the number of initial conditions
must match the order of the DE.

Example 1.2.1. Consider the 2nd order DE

x′′ + x = 0.

(We shall run across this DE many times later. As we will see, it represents the displacement
of an undamped spring with a unit mass attached. The term harmonic oscillator is
attached to this situation [O-ivp].) Suppose we know that the general solution to this DE
is

x(t) = c1 cos(t) + c2 sin(t),

for any constants c1, c2. This means every solution to the DE must be of this form. (If
you don’t believe this, you can at least check it it is a solution by computing x′′(t) + x(t)
and verifying that the terms cancel, as in the following Sage example. Later, we see how to
derive this solution.) Note that there are two degrees of freedom (the constants c1 and c2),
matching the order of the DE.

Sage

sage: t = var(’t’)
sage: c1 = var(’c1’)
sage: c2 = var(’c2’)
sage: de = lambda x: diff(x,t,t) + x
sage: de(c1 * cos(t) + c2 * sin(t))
0
sage: x = function(’x’, t)
sage: soln = desolve(de(x),[x,t]); soln
k1 * sin(t) + k2 * cos(t)
sage: solnx = lambda s: RR(soln.subs(k1=1, k2=0, t=s))
sage: P = plot(solnx,0,2 * pi)
sage: show(P)

12 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

This is displayed in Figure 1.2.

Now, to solve the IVP

x′′ + x = 0, x(0) = 0, x′(0) = 1.

the problem is to solve for c1 and c2 for which the x(t) satisfies the initial conditions. The
two degrees of freedom in the general solution matching the number of initial conditions in
the IVP. Plugging t = 0 into x(t) and x′(t), we obtain

0 = x(0) = c1 cos(0) + c2 sin(0) = c1, 1 = x′(0) = −c1 sin(0) + c2 cos(0) = c2.

Therefore, c1 = 0, c2 = 1 and x(t) = sin(t) is the unique solution to the IVP.

Figure 1.2: Solution to IVP x′′ + x = 0, x(0) = 0, x′(0) = 1.

In Figure 1.2, you see the solution oscillates, as t increases.

Another example,

Example 1.2.2. Consider the 2nd order DE

x′′ + 4x′ + 4x = 0.

(We shall run across this DE many times later as well. As we will see, it represents the
displacement of a critially damped spring with a unit mass attached.) Suppose we know
that the general solution to this DE is

x(t) = c1 exp(−2t) + c2t exp(−2t) = c1e
−2t + c2te

−2t,

for any constants c1, c2. This means every solution to the DE must be of this form. (Again,
you can at least check it is a solution by computing x′′(t), 4x′(t), 4x(t), adding them up
and verifying that the terms cancel, as in the following Sage example.)

Sage

sage: t = var(’t’)
sage: c1 = var(’c1’)
sage: c2 = var(’c2’)
sage: de = lambda x: diff(x,t,t) + 4 * diff(x,t) + 4 * x

1.2. INITIAL VALUE PROBLEMS 13

sage: de(c1 * exp(-2 * t) + c2 * t * exp(-2 * t))
0
sage: desolve(de(x),[x,t])
(k2 * t + k1) * eˆ(-2 * t)
sage: P = plot(t * exp(-2 * t),0,pi)
sage: show(P)

The plot is displayed in Figure 1.3.
Now, to solve the IVP

x′′ + 4x′ + 4x = 0, x(0) = 0, x′(0) = 1.

we solve for c1 and c2 using the initial conditions. Plugging t = 0 into x(t) and x′(t), we
obtain

0 = x(0) = c1 exp(0) + c2 · 0 · exp(0) = c1,

1 = x′(0) = c1 exp(0) + c2 exp(0) − 2c2 · 0 · exp(0) = c1 + c2.

Therefore, c1 = 0, c1 + c2 = 1 and so x(t) = t exp(−2t) is the unique solution to the IVP.
In Figure 1.3, you see the solution tends to 0, as t increases.

Figure 1.3: Solution to IVP x′′ + 4x′ + 4x = 0, x(0) = 0, x′(0) = 1.

Suppose, for the moment, that for some reason you mistakenly thought that the general
solution to this DE was

x(t) = c1 exp(−2t) + c2 exp(−2t) = e−2t(c1 + c2),

for arbitray constants c1, c2. (Note: the “extra t-factor” on the second term on the right is
missing from this expression.) Now, if you try to solve for the constant c1 and c2 using the
initial conditions x(0) = 0, x′(0) = 1 you will get the equations

14 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

c1 + c2 = 0
−2c1 − 2c2 = 1.

These equations are impossible to solve! The moral of the story is that you must have a
correct general solution to insure that you can always solve your IVP.

One more quick example.

Example 1.2.3. Consider the 2nd order DE

x′′ − x = 0.

Suppose we know that the general solution to this DE is

x(t) = c1 exp(t) + c2 exp(−t) = c1e
t + c2e

−t,

for any constants c1, c2. (Again, you can check it is a solution.)
The solution to the IVP

x′′ − x = 0, x(0) = 1, x′(0) = 0,

is x(t) = et+e−t

2 . (You can solve for c1 and c2 yourself, as in the examples above.) This par-
ticular function is also called a hyperbolic cosine function, denoted cosh(t) (pronounced
“kosh”). The hyperbolic sine function, denoted sinh(t) (pronounced “sinch”), satisfies
the IVP

x′′ − x = 0, x(0) = 0, x′(0) = 1.

The hyperbolic trig functions have many properties analogous to the usual trig functions
and arise in many areas of applications [H-ivp]. For example, cosh(t) represents a catenary
or hanging cable [C-ivp].

Sage

sage: t = var(’t’)
sage: c1 = var(’c1’)
sage: c2 = var(’c2’)
sage: de = lambda x: diff(x,t,t) - x
sage: de(c1 * exp(-t) + c2 * exp(-t))
0
sage: desolve(de(x)),[x,t])
k1 * eˆt + k2 * eˆ(-t)
sage: P = plot(eˆt/2-eˆ(-t)/2,0,3)
sage: show(P)

You see in Figure 1.4 that the solution tends to infinity, as t gets larger.

1.3. EXISTENCE OF SOLUTIONS TO ODES 15

Figure 1.4: Solution to IVP x′′ − x = 0, x(0) = 0, x′(0) = 1.

Exercises:

1. Find the value of the constant C that makes x = Ce3t a solution to the IVP x′ = 3x,
x(0) = 4.

2. Verify that x = (C+t) cos(t) satisfies the differential equation x′+x tan(t)−cos(t) = 0
and find the value of C that gives the initial condition x(2π) = 0.

3. Use Sage to check that the general solution to the falling body problem

mv′ + kv = mg,

is v(t) = mg
k + ce−kt/m. If v(0) = v0, you can solve for c in terms of v0 to get

c = v0 − mg
k . Take m = k = v0 = 1, g = 9.8 and use Sage to plot v(t) for 0 < t < 1.

1.3 Existence of solutions to ODEs

When do solutions to an ODE exist? When are they unique? This section gives some
necessary conditions for determining existence and uniqueness.

1.3.1 First order ODEs

We begin by considering the first order initial value problem

x′(t) = f(t, x(t)), x(a) = c. (1.1)

What conditions on f (and a and c) guarantee that a solution x = x(t) exists? If it exists,
what (further) conditions guarantee that x = x(t) is unique?

The following result addresses the first question.

16 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Theorem 1.3.1. (“Peano’s existence theorem” [P-intro]) Suppose f is bounded and con-
tinuous in x, and t. Then, for some value ǫ > 0, there exists a solution x = x(t) to the
initial value problem within the range [a − ǫ, a + ǫ].

Giuseppe Peano (18581932) was an Italian mathematician, who is mostly known for his
important work on the logical foundations of mathematics. For example, the common
notations for union ∪ and intersections ∩ first appeared in his first book dealing with
mathematical logic, written while he was teaching at the University of Turin.

Example 1.3.1. Take f(x, t) = x2/3. This is continuous and bounded in x and t in
−1 < x < 1, t ∈ R. The IVP x′ = f(x, t), x(0) = 0 has two solutions, x(t) = 0 and
x(t) = t3/27.

You all know what continuity means but you may not be familiar with the slightly stronger
notion of “Lipschitz continuity”. This is defined next.

Definition 1.3.1. Let D ⊂ R
2 be a domain. A function f : D → R is called Lipschitz

continuous if there exists a real constant K > 0such that, for all x1, x2 ∈ D,

|f(x1) − f(x2)| ≤ K|x1 − x2|.

The smallest such K is called the Lipschitz constant of the function f on D.

For example,

• the function f(x) = x2/3 defined on [−1, 1] is not Lipschitz continuous;

• the function f(x) = x2 defined on [−3, 7] is Lipschitz continuous, with Lipschitz
constant K = 14;

• the function f defined by f(x) = x3/2 sin(1/x) (x 6= 0) and f(0) = 0 restricted to
[0, 1], gives an example of a function that is differentiable on a compact set while not
being Lipschitz.

Theorem 1.3.2. (“Picard’s existence and uniqueness theorem” [PL-intro]) Suppose f is
bounded, Lipschitz continuous in x, and continuous in t. Then, for some value ǫ > 0,
there exists a unique solution x = x(t) to the initial value problem (1.1) within the range
[a − ǫ, a + ǫ].

Charles Émile Picard (1856-1941) was a leading French mathematician. Picard made his
most important contributions in the fields of analysis, function theory, differential equations,
and analytic geometry. In 1885 Picard was appointed to the mathematics faculty at the
Sorbonne in Paris. Picard was awarded the Poncelet Prize in 1886, the Grand Prix des
Sciences Mathmatiques in 1888, the Grande Croix de la Légion d’Honneur in 1932, the
Mittag-Leffler Gold Medal in 1937, and was made President of the International Congress
of Mathematicians in 1920. He is the author of many books and his collected papers run to
four volumes.

1.3. EXISTENCE OF SOLUTIONS TO ODES 17

The proofs of Peano’s theorem or Picard’s theorem go well beyond the scope of this course.
However, for the curious, a very brief indication of the main ideas will be given in the sketch
below. For details, see an advanced text on differential equations.

sketch or the idea of the proof: A simple proof of existence of the solution is obtained by
successive approximations. In this context, the method is known as Picard iteration.

Set x0(t) = c and

xi(t) = c +

∫ t

a
f(s, xi−1(s)) ds.

It turns out that Lipschitz continuity implies that the mapping T defined by

T (y)(t) = c +

∫ t

a
f(s, y(s)) ds,

is a contraction mapping on a certain Banach space. It can then be shown, by using the
Banach fixed point theorem, that the sequence of “Picard iterates” xi is convergent and
that the limit is a solution to the problem. The proof of uniqueness uses a result called
Grönwall’s Lemma. �

Example 1.3.2. Consider the IVP

x′ = 1 − x, x(0) = 1,

with the constant solution x(t) = 1. Computing the Picard iterates by hand is easy:
x0(t) = 1, x1(t) = 1+

∫ t
0 1−x0(s)) ds = 1, x2(t) = 1+

∫ t
0 1−x1(s)) ds = 1, and so on. Since

each xi(t) = 1, we find the solution

x(t) = lim
i→∞

xi(t) = lim
i→∞

1 = 1.

We now try the Picard iteration method in Sage . Consider the IVP

x′ = 1 − x, x(0) = 2,

which we considered earlier.

Sage

sage: var(’t, s’)
sage: f = lambda t,x: 1-x
sage: a = 0; c = 2
sage: x0 = lambda t: c; x0(t)
2
sage: x1 = lambda t: c + integral(f(s,x0(s)), s, a, t); x1(t)
2 - t
sage: x2 = lambda t: c + integral(f(s,x1(s)), s, a, t); x2(t)
tˆ2/2 - t + 2
sage: x3 = lambda t: c + integral(f(s,x2(s)), s, a, t); x3(t)
-tˆ3/6 + tˆ2/2 - t + 2

18 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

sage: x4 = lambda t: c + integral(f(s,x3(s)), s, a, t); x4(t)
tˆ4/24 - tˆ3/6 + tˆ2/2 - t + 2
sage: x5 = lambda t: c + integral(f(s,x4(s)), s, a, t); x5(t)
-tˆ5/120 + tˆ4/24 - tˆ3/6 + tˆ2/2 - t + 2
sage: x6 = lambda t: c + integral(f(s,x5(s)), s, a, t); x6(t)
tˆ6/720 - tˆ5/120 + tˆ4/24 - tˆ3/6 + tˆ2/2 - t + 2
sage: P1 = plot(x2(t), t, 0, 2, linestyle=’--’)
sage: P2 = plot(x4(t), t, 0, 2, linestyle=’-.’)
sage: P3 = plot(x6(t), t, 0, 2, linestyle=’:’)
sage: P4 = plot(1+exp(-t), t, 0, 2)
sage: (P1+P2+P3+P4).show()

From the graph in Figure 1.5 you can see how well these iterates are (or at least appear to
be) converging to the true solution x(t) = 1 + e−t.

Figure 1.5: Picard iteration for x′ = 1 − x, x(0) = 2.

More generally, here is some Sage code for Picard iteration.

Sage

def picard_iteration(f, a, c, N):
’’’
Computes the N-th Picard iterate for the IVP

x’ = f(t,x), x(a) = c.

EXAMPLES:
sage: var(’x t s’)

1.3. EXISTENCE OF SOLUTIONS TO ODES 19

(x, t, s)
sage: a = 0; c = 2
sage: f = lambda t,x: 1-x
sage: picard_iteration(f, a, c, 0)
2

sage: picard_iteration(f, a, c, 1)
2 - t
sage: picard_iteration(f, a, c, 2)
tˆ2/2 - t + 2
sage: picard_iteration(f, a, c, 3)
-tˆ3/6 + tˆ2/2 - t + 2

’’’
if N == 0:

return c * t ** 0
if N == 1:

x0 = lambda t: c + integral(f(s,c * s** 0), s, a, t)
return expand(x0(t))

for i in range(N):
x_old = lambda s: picard_iteration(f, a, c, N-1).subs(t=s)
x0 = lambda t: c + integral(f(s,x_old(s)), s, a, t)

return expand(x0(t))

Exercise: Apply the Picard iteration method in Sage to the IVP

x′ = (t + x)2, x(0) = 2,

and find the first three iterates.

1.3.2 Higher order constant coefficient linear homogeneous ODEs

We begin by considering the second order3 initial value problem

ax′′ + bx′ + cx = 0, x(0) = d0, x′(0) = d1, (1.2)

where a, b, c, d0, d1 are constants and a 6= 0. What conditions guarantee that a solution
x = x(t) exists? If it exists, what (further) conditions guarantee that x = x(t) is unique?
It turns out that no conditions are needed - a solution to 1.2 always exists and is unique.
As we will see later, we can construct distinct explicit solutions, denoted x1 = x1(t) and
x2 = x2(t) and sometimes called fundamental solutions, to ax′′ + bx′ + cx = 0. If we
let x = c1x1 + c2x2, for any constants c1 and c2, then we know that x is also a solution4,
sometimes called the general solution to ax′′ + bx′ + cx = 0. But how do we know there
exist c1 and c2 for which this general solution also satisfies the initial conditions x(0) = d0

and x′(0) = d1? For this to hold, we need to be able to solve

3It turns out that the reasoning in the second order case is very similar to the general reasoning for n-th
order DEs. For simplicity of presentation, we restrict to the 2-nd order case.

4This follows form the linearity assumption.

20 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

c1x1(0) + c2x2(0) = d1, c1x
′
1(0) + c2x

′
2(0) = d2,

for c1 and c2. By Cramer’s rule,

c1 =

∣

∣

∣

∣

d1 x2(0)
d2 x′

2(0)

∣

∣

∣

∣

∣

∣

∣

∣

x1(0) x2(0)
x′

1(0) x′
2(0)

∣

∣

∣

∣

, c2 =

∣

∣

∣

∣

x1(0) d1

x′
1(0) d2

∣

∣

∣

∣

∣

∣

∣

∣

x1(0) x2(0)
x′

1(0) x′
2(0)

∣

∣

∣

∣

.

For this solution to exist, the denominators in these quotients must be non-zero. This
denominator is the value of the “Wronskian” [W-linear] at t = 0.

Definition 1.3.2. For n functions f1, . . . , fn, which are n − 1 times differentiable on an
interval I, the Wronskian W (f1, ..., fn) as a function on I is defined by

W (f1, . . . , fn)(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for x ∈ I.

The matrix constructed by placing the functions in the first row, the first derivative of
each function in the second row, and so on through the (n − 1)-st derivative, is a square
matrix sometimes called a fundamental matrix of the functions. The Wronskian is the
determinant of the fundamental matrix.

Theorem 1.3.3. (“Abel’s identity”) Consider a homogeneous linear second-order ordinary
differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = 0

on the real line with a continuous function p. The Wronskian W of two solutions of the
differential equation satisfies the relation

W (x) = W (0) exp

(

−
∫ x

0
P (s) ds

)

.

Example 1.3.3. Consider x′′ + 3x′ + 2x = 0.

Sage

sage: t = var("t")
sage: x = function("x",t)
sage: DE = diff(x,t,t)+3 * diff(x,t)+2 * x==0
sage: desolve(DE, [x,t])
k1 * eˆ(-t) + k2 * eˆ(-2 * t)

1.3. EXISTENCE OF SOLUTIONS TO ODES 21

sage: Phi = matrix([[eˆ(-t), eˆ(-2 * t)],[-eˆ(-t), -2 * eˆ(-2 * t)]]); Phi

[eˆ(-t) eˆ(-2 * t)]
[-eˆ(-t) -2 * eˆ(-2 * t)]
sage: W = det(Phi); W
-eˆ(-3 * t)
sage: Wt = eˆ(-integral(3,t)); Wt
eˆ(-3 * t)
sage: W * W(t=0) == Wt
eˆ(-3 * t) == eˆ(-3 * t)
sage: bool(W * W(t=0) == Wt)
True

Definition 1.3.3. We say n functions f1, . . . , fn are linearly dependent over the interval
I, if there are numbers a1, · · · , an (not all of them zero) such that

a1f1(x) + · · · + anfn(x) = 0,

for x ∈ I. If the functions are not linearly dependent then they are called linearly inde-
pendent.

Theorem 1.3.4. If the Wronskian is non-zero at some point in an interval, then the asso-
ciated functions are linearly independent on the interval.

Example 1.3.4. If f1(t) = et and f2(t) = e−t then

∣

∣

∣

∣

et e−t

et −e−t

∣

∣

∣

∣

= −2.

Indeed,

Sage

sage: var(’t’)
t
sage: f1 = exp(t); f2 = exp(-t)
sage: wronskian(f1,f2)
-2

Therefore, the fundamental solutions x1 = et, x2 = e−t are

Exercise: Using Sage , verify Abel’s identity

(a) in the example x′′ − x = 0,

(b) in the example x′′ + 2 ∗ x′ + 2x = 0.

22 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

1.4 First order ODEs - separable and linear cases

Separable DEs:

We know how to solve any ODE of the form

y′ = f(t),

at least in principle - just integrate both sides5. For a more general type of ODE, such as

y′ = f(t, y),

this fails. For instance, if y′ = t + y then integrating both sides gives y(t) =
∫ dy

dt dt =
∫

y′ dt =
∫

t+y dt =
∫

t dt+
∫

y(t) dt = t2

2 +
∫

y(t) dt. So, we have only succeeded in writing
y(t) in terms of its integral. Not very helpful.

However, there is a class of ODEs where this idea works, with some modification. If the
ODE has the form

y′ =
g(t)

h(y)
, (1.3)

then it is called separable6.

To solve a separable ODE:

(1) write the ODE (1.3) as dy
dt = g(t)

h(y) ,

(2) “separate” the t’s and the y’s:

h(y) dy = g(t) dt,

(3) integrate both sides:

∫

h(y) dy =

∫

g(t) dt + C (1.4)

I’ve added a “+C” to emphasize that a constant of integration must be included in
your answer (but only on one side of the equation).

5Recall y′ really denotes dy

dt
, so by the fundamental theorem of calculus, y =

R

dy

dt
dt =

R

y′ dt =
R

f(t) dt =
F (t) + c, where F is the “anti-derivative” of f and c is a constant of integration.

6It particular, any separable DE must be first order, ordinary differential equation.

1.4. FIRST ORDER ODES - SEPARABLE AND LINEAR CASES 23

The answer obtained in this manner is called an “implicit solution” of (1.3) since it
expresses y implicitly as a function of t.

Why does this work? It is easiest to understand by working backwards from the formula
(1.4). Recall that one form of the fundamental theorem of calculus is d

dy

∫

h(y)dy = h(y).
If we think of y as a being a function of t, and take the t-derivative, we can use the chain
rule to get

g(t) =
d

dt

∫

g(t)dt =
d

dt

∫

h(y)dy = (
d

dy

∫

h(y)dy)
dy

dt
= h(y)

dy

dt
.

So if we differentiate both sides of equation (1.4) with respect to t, we recover the original
differential equation.

Example 1.4.1. Are the following ODEs separable? If so, solve them.

(a) (t2 + y2)y′ = −2ty,

(b) y′ = −x/y, y(0) = −1,

(c) T ′ = k · (T − Troom), where k < 0 and Troom are constants,

(d) ax′ + bx = c, where a 6= 0, b 6= 0, and c are constants

(e) ax′ + bx = c, where a 6= 0, b, are constants and c = c(t) is not a constant.

(f) y′ = (y − 1)(y + 1), y(0) = 2.

(g) y′ = y2 + 1, y(0) = 1.

Solutions:

(a) not separable,

(b) y dy = −x dx, so y2/2 = −x2/2+ c, so x2 +y2 = 2c. This is the general solution (note
it does not give y explicitly as a function of x, you will have to solve for y algebraically
to get that). The initial conditions say when x = 0, y = 1, so 2c = 02 + 12 = 1, which
gives c = 1/2. Therefore, x2 + y2 = 1, which is a circle. That is not a function so
cannot be the solution we want. The solution is either y =

√
1 − x2 or y = −

√
1 − x2,

but which one? Since y(0) = −1 (note the minus sign) it must be y = −
√

1 − x2.

(c) dT
T−Troom

= kdt, so ln |T − Troom| = kt + c (some constant c), so T − Troom = Cekt

(some constant C), so T = T (t) = Troom + Cekt.

(d) dx
dt = (c − bx)/a = − b

a(x − c
b), so dx

x− c
b

= − b
a dt, so ln |x − c

b | = − b
at + C, where C is a

constant of integration. This is the implicit general solution of the DE. The explicit

general solution is x = c
b + Be−

b
a
t, where B is a constant.

The explicit solution is easy find using Sage :

24 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Sage

sage: a = var(’a’)
sage: b = var(’b’)
sage: c = var(’c’)
sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: a * diff(y,t) + b * y - c
sage: desolve(de(x),[x,t])
(c * eˆ(b * t/a)/b + c) * eˆ(-b * t/a)

(e) If c = c(t) is not constant then ax′ + bx = c is not separable.

(f) dy
(y−1)(y+1) = dt so 1

2 (ln(y−1)− ln(y+1)) = t+C, where C is a constant of integration.

This is the “general (implicit) solution” of the DE.

Note: the constant functions y(t) = 1 and y(t) = −1 are also solutions to this DE.
These solutions cannot be obtained (in an obvious way) from the general solution.

The integral is easy to do using Sage :

Sage

sage: y = var(’y’)
sage: integral(1/((y-1) * (y+1)),y)
log(y - 1)/2 - (log(y + 1)/2)

Now, let’s try to get Sage to solve for y in terms of t in 1
2 (ln(y−1)− ln(y+1)) = t+C:

Sage

sage: C = var(’C’)
sage: solve([log(y - 1)/2 - (log(y + 1)/2) == t+C],y)
[log(y + 1) == -2 * C + log(y - 1) - 2 * t]

This is not working. Let’s try inputting the problem in a different form:

Sage

sage: C = var(’C’)
sage: solve([log((y - 1)/(y + 1)) == 2 * t+2 * C],y)
[y == (-eˆ(2 * C + 2* t) - 1)/(eˆ(2 * C + 2* t) - 1)]

1.4. FIRST ORDER ODES - SEPARABLE AND LINEAR CASES 25

This is what we want. Now let’s assume the initial condition y(0) = 2 and solve for
C and plot the function.

Sage

sage: solny=lambda t:(-eˆ(2 * C+2* t)-1)/(eˆ(2 * C+2* t)-1)
sage: solve([solny(0) == 2],C)
[C == log(-1/sqrt(3)), C == -log(3)/2]
sage: C = -log(3)/2
sage: solny(t)
(-eˆ(2 * t)/3 - 1)/(eˆ(2 * t)/3 - 1)
sage: P = plot(solny(t), 0, 1/2)
sage: show(P)

This plot is shown in Figure 1.6. The solution has a singularity at t = ln(3)/2 =
0.5493....

Figure 1.6: Plot of y′ = (y − 1)(y + 1), y(0) = 2, for 0 < t < 1/2.

(g) dy
y2+1 = dt so arctan(y) = t + C, where C is a constant of integration. The initial

condition y(0) = 1 says arctan(1) = C, so C = π
4 . Therefore y = tan(t + π

4) is the
solution.

1.4.1 Autonomous ODEs

A special subclass of separable ODEs is the class of autonomous ODEs, which have the
form

y′ = f(y),

26 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

where f is a given function (i.e., the slope y only depends on the value of the dependent
variable y). The cases (c), (d), (f), and (g) above are examples.

One of the simplest examples of an autonomous ODE is dy
dt = ky, where k is a constant.

We can divide by y and integrate to get

∫

1

y
dy = log |y| =

∫

k dt = kt + C1.

After exponentiating, we get

|y| = ekt+C1 = eC1ekt.

We can drop the absolute value if we allow positive and negative solutions:

y = ±eC1ekt.

Now note that ±eC1 can be any nonzero number, but in fact y = 0 is also a solution to the
ODE so we can write the general solution as y = Cekt for an arbitrary constant C. If k is
positive, solutions will grow in magnitude exponentially, and if k is negative solutions will
decay to 0 exponentially.

Perhaps the most famous use of this type of ODE is in carbon dating.

Example 1.4.2. Carbon-14 has a half-life of about 5730 years, meaning that after that
time one-half of a given amount will radioactively decay (into stable nitrogen-14). Prior to
the nuclear tests of the 1950s, which raised the level of C-14 in the atmosphere, the ratio
of C-14 to C-12 in the air, plants, and animals was 10−15. If this ratio is measured in an
archeological sample of bone and found to be 3.6 · 10−17, how old is the sample?

Solution: Since a constant fraction of C-14 decays per unit time, the amount of C-14
satisfies a differential equation y′ = ky with solution y = Cekt. Since

y(5730) = Cek5730 = y(0)/2 = C/2,

we can compute k = − log(2)/5730 ≈ 1.21 · 10−5.
We know that

y(0)/y(ti) =
10−17

10−15
= 10−2 =

C

Cekti
=

1

ekti
,

where ti is the time of death of whatever the sample is from. So ti = log 102

k ≈ −38069 years
before the present.

Here is a non-linear example.

Example 1.4.3. Consider

y′ = (y − 1)(y + 1), y(0) = 1/2.

Here is one way to solve this using Sage :

1.4. FIRST ORDER ODES - SEPARABLE AND LINEAR CASES 27

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: diff(y,t) == yˆ2 - 1
sage: soln = desolve(de(x),[x,t]); soln
1/2 * log(x(t) - 1) - 1/2 * log(x(t) + 1) == c + t
sage: # needs an abs. value ...
sage: c,xt = var("c,xt")
sage: solnxt = (1/2) * log(abs(xt - 1)) - (1/2) * log(abs(xt + 1))

== c + t
sage: solve(solnxt.subs(t=0, xt=1/2),c)
[c == -1/2 * log(3/2) - 1/2 * log(2)]
sage: c0 = solve(solnxt.subs(t=0, xt=1/2),c)[0].rhs(); c 0
-1/2 * log(3/2) - 1/2 * log(2)
sage: soln0 = solnxt.subs(c=c0); soln0
1/2 * log(abs(xt - 1)) - 1/2 * log(abs(xt + 1))

== t - 1/2 * log(3/2) -1/2 * log(2)
sage: implicit_plot(soln0,(t,-1/2,1/2),(xt,0,0.9))

Sage cannot solve this (implicit) solution for x(t), though I’m sure you can do it by hand if
you want. The (implicit) plot is given in Figure 1.7.

Figure 1.7: Plot of y′ = (y − 1)(y + 1), y(0) = 1/2, for −1/2 < t < 1/2.

A more complicated example is

y′ = y(y − 1)(y − 2).

28 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

This has constant solutions y(t) = 0, y(t) = 1, and y(t) = 2. (Check this.) Several
non-constant solutions are plotted in Figure 1.8.

1 2 3 4

0.5

1

1.5

2

Figure 1.8: Plot of y′ = y(y − 1)(y − 2), y(0) = y0, for 0 < t < 4, and various values of y0.

Exercise: Find the general solution to y′ = y(y − 1)(y − 2) either “by hand” or using Sage

.

1.4.2 Linear 1st order ODEs

The bottom line is that we want to solve any problem of the form

x′ + p(t)x = q(t), (1.5)

where p(t) and q(t) are given functions (which, let’s assume, aren’t “too horrible”). Every
first order linear ODE can be written in this form. Examples of DEs which have this form:
Falling Body problems, Newton’s Law of Cooling problems, Mixing problems, certain simple
Circuit problems, and so on.

There are two approaches

• “the formula”,

• the method of integrating factors.

Both lead to the exact same solution.

“The Formula”: The general solution to (1.5) is

x =

∫

e
R

p(t) dtq(t) dt + C

e
R

p(t) dt
, (1.6)

where C is a constant. The factor e
R

p(t) dt is called the integrating factor and is often
denoted by µ. This formula was apparently first discovered by Johann Bernoulli [F-1st].

1.4. FIRST ORDER ODES - SEPARABLE AND LINEAR CASES 29

Example 1.4.4. Solve

xy′ + y = ex.

We rewrite this as y′ + 1
xy = ex

x . Now compute µ = e
R

1
x

dx = eln(x) = x, so the formula
gives

y =

∫

x ex

x dx + C

x
=

∫

ex dx + C

x
=

ex + C

x
.

Here is one way to do this using Sage :

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: de = lambda y: diff(y,t) + (1/t) * y - exp(t)/t
sage: desolve(de(x),[x,t])
(c + eˆt)/t

“Integrating factor method”: Let µ = e
R

p(t) dt. Multiply both sides of (1.5) by µ:

µx′ + p(t)µx = µq(t).

The product rule implies that

(µx)′ = µx′ + p(t)µx = µq(t).

(In response to a question you are probably thinking now: No, this is not obvious. This is
Bernoulli’s very clever idea.) Now just integrate both sides. By the fundamental theorem
of calculus,

µx =

∫

(µx)′ dt =

∫

µq(t) dt.

Dividing both side by µ gives (1.6).

Exercises: Find the general solution to the following seperable differential equations:

1. x′ = 2xt.

2. x′ − x sin(t) = 0

3. (1 + t)x′ = 2x.

30 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

4. x′ − xt − x = 1 + t.

Solve the following linear equations. Find the general solution if no initial condition
is given.

5. x′ + x = 1, x(0) = 0.

6. x′ + 4x = 2te−4∗t.

7. tx′ + 2x = 2t, x(1) = 1
2 .

8. The function e−t2 does not have an anti-derivative in terms of elementary functions,
but this anti-derivative is important in probability. So we define a new function,
erf(t) := 2√

π

∫ u
0 e−u2

du. Find the solution of x′ − 2xt = 1 in terms of erf(t).

9. (a) Use Sage ’s desolve command to solve

tx′ + 2x = et/t.

(b) Use Sage to plot the solution to y′ = y2 − 1, y(0) = 2.

1.5 Isoclines and direction fields

Recall from vector calculus the notion of a two-dimensional vector field: ~F (x, y) = (g(x, y), h(x, y)).
To plot ~F , you simply draw the vector ~F (x, y) at each point (x, y).

The idea of the direction field (or slope field) associated to the first order ODE

y′ = f(x, y), y(a) = c, (1.7)

is similar. At each point (x, y) you plot a small vector having slope f(x, y). For example,
the vector field plot of ~F (x, y) = (1, f(x, y)) or ~F (x, y) = (1, f(x, y))/

√

1 + f(x, y)2 (which
is a unit vector).

How would you draw such a direction field plot by hand? You could compute the value of
f(x, y) for lots and lots of points (x, y) nd then plot a tiny arrow of slope f(x, y) at each
of these points. Unfortunately, this would be virtually impossible for a person to do if the
number of points was large.

For this reason, the notion of the “isoclines” of the ODE is very useful. An isocline of
(1.7) is a level curve of the function z = f(x, y):

{(x, y) | f(x, y) = m},

where the given constant m is called the slope of the isocline. In terms of the ODE, this
curve represents the collection of all points (x, y) at which the solution has slope m. In
terms of the direction field of the ODE, it represents the collection of points where the

1.5. ISOCLINES AND DIRECTION FIELDS 31

vectors have slope m. This means that once you have draw a single isocline, you can sketch
ten or more tiny vectors describing your direction field. Very useful indeed! This idea is
recoded below more algorithmically.

How to draw the direction field of (1.7) by hand:

• Draw several isoclines, making sure to include one which contains the point (a, c).
(You may want to draw these in pencil.)

• On each isocline, draw “hatch marks” or “arrows” along the line each having slope
m.

This is a crude direction field plot. The plot of arrows form your direction field. The
isoclines, having served their usefulness, can now safely be ignored.

Example 1.5.1. The direction field, with three isoclines, for

y′ = 5x + y − 5, y(0) = 1,

is given by the graph in Figure 1.9.

Figure 1.9: Plot of y′ = 5x + y − 5, y(0) = 1, for −1 < x < 1.

The isoclines are the curves (coincidentally, lines) of the form 5x + y − 5 = m. These are
lines of slope −5, not to be confused with the fact that it represents an isocline of slope m.

The above example can be solved explicitly. (Indeed, y = −5x+ ex solves y′ = 5x+ y− 5,
y(0) = 1.) In the next example, such an explicit solution is not possible. Therefore, a
numerical approximation plays a more important role.

Example 1.5.2. The direction field, with three isoclines, for

y′ = x2 + y2, y(0) = 3/2,

32 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Figure 1.10: Direction field and solution plot of y′ = x2 + y2, y(0) = 3/2, for −2 < x < 2.

is given by the in Figure 1.10.

The isoclines are the concentric circles x2 + y2 = m.
The plot in Figure 1.10 was obtaining using the Sage code below.

Sage

sage: x,y = var("x,y")
sage: f(x,y) = xˆ2 + yˆ2
sage: plot_slope_field(f(x,y), (x,-2,2),(y,-2,2)).sho w(aspect_ratio=1)

There is also a way to “manually draw” these direction fields using Sage .

Sage

sage: pts = [(-2+i/5,-2+j/5) for i in range(20) \
for j in range(20)] # square [-2,2]x[-2,2]

sage: f = lambda p:p[0]ˆ2+p[1]ˆ2 # x = p[0] and y = p[1]
sage: arrows = [arrow(p, (p[0]+0.02,p[1]+(0.02) * f(p)), \

width=1/100, rgbcolor=(0,0,1)) for p in pts]
sage: show(sum(arrows))

This gives the plot in Figure 1.11.

Exercises:

1. Match the solution curves in Figure 1.12 to the ODEs below.

1.6. NUMERICAL SOLUTIONS - EULER’S METHOD AND IMPROVED EULER’S METHOD33

Figure 1.11: Direction field for y′ = x2 + y2, y(0) = 3/2, for −2 < x < 2.

(a) y′ = y2 − 1

(b) y′ = y
t2−1

(c) y′ = sin(t) sin(y)

(d) y′ = sin(ty)

(e) y′ = 2t + y

(f) y′ = sin(3t)

2. Using Sage , plot the direction field for y′ = x2 − y2.

1.6 Numerical solutions - Euler’s method and improved Eu-

ler’s method

Read Euler: he is our master in everything.

- Pierre Simon de Laplace

Leonhard Euler was a Swiss mathematician who made significant contributions to a wide
range of mathematics and physics including calculus and celestial mechanics (see [Eu1-num]
and [Eu2-num] for further details).

34 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Figure 1.12: Solution curve plots for exercise 1

1.6.1 Euler’s Method

The goal is to find an approximate solution to the problem

1.6. NUMERICAL SOLUTIONS - EULER’S METHOD AND IMPROVED EULER’S METHOD35

y′ = f(x, y), y(a) = c, (1.8)

where f(x, y) is some given function. We shall try to approximate the value of the solution
at x = b, where b > a is given. Sometimes such a method is called “numerically integrating
(1.8)”.

Note: the first order DE must be in the form (1.8) or the method described below does
not work. A version of Euler’s method for systems of 1-st order DEs and higher order DEs
will also be described below.

Geometric idea: The basic idea can be easily expressed in geometric terms. We know
the solution, whatever it is, must go through the point (a, c) and we know, at that point,
its slope is m = f(a, c). Using the point-slope form of a line, we conclude that the tangent
line to the solution curve at (a, c) is (in (x, y)-coordinates, not to be confused with the
dependent variable y and independent variable x of the DE)

y = c + (x − a)f(a, c).

In particular, if h > 0 is a given small number (called the increment) then taking x = a+h
the tangent-line approximation from calculus I gives us:

y(a + h) ∼= c + h · f(a, c).

Now we know the solution passes through a point which is “nearly” equal to (a + h, c + h ·
f(a, c). We now repeat this tangent-line approximation with (a, c) replaced by (a + h, c +
h · f(a, c). Keep repeating this number-crunching at x = a, x = a + h, x = a + 2h, ..., until
you get to x = b.

Algebraic idea: The basic idea can also be explained “algebraically”. Recall from the
definition of the derivative in calculus 1 that

y′(x) ∼= y(x + h) − y(x)

h
,

h > 0 is a given and small. This an the DE together give f(x, y(x)) ∼= y(x+h)−y(x)
h . Now

solve for y(x + h):

y(x + h) ∼= y(x) + h · f(x, y(x)).

If we call h · f(x, y(x)) the “correction term” (for lack of anything better), call y(x) the
“old value of y”, and call y(x + h) the “new value of y”, then this approximation can be
re-expressed

ynew = yold + h · f(x, yold).

Tabular idea: Let n > 0 be an integer, which we call the step size. This is related to
the increment by

36 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

h =
b − a

n
.

This can be expressed simplest using a table.

x y hf(x, y)

a c hf(a, c)

a + h c + hf(a, c)
...

a + 2h
...

...
b ??? xxx

The goal is to fill out all the blanks of the table but the xxx entry and find the ??? entry,
which is the Euler’s method approximation for y(b).

Example 1.6.1. Use Euler’s method with h = 1/2 to approximate y(1), where

y′ − y = 5x − 5, y(0) = 1.

Putting the DE into the form (1.8), we see that here f(x, y) = 5x + y − 5, a = 0, c = 1.

x y hf(x, y) = 1
2 (5x + y − 5)

0 1 −2
1/2 1 + (−2) = −1 −7/4
1 −1 + (−7/4) = −11/4

so y(1) ∼= −11
4 = −2.75. This is the final answer.

Aside: For your information, y = ex − 5x solves the DE and y(1) = e − 5 = −2.28....

Here is one way to do this using Sage :

Sage

sage: x,y=PolynomialRing(QQ,2,"xy").gens()
sage: eulers_method(5 * x+y-5,1,1,1/3,2)

x y h * f(x,y)
1 1 1/3

4/3 4/3 1
5/3 7/3 17/9

2 38/9 83/27
sage: eulers_method(5 * x+y-5,0,1,1/2,1,method="none")
[[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
sage: pts = eulers_method(5 * x+y-5,0,1,1/2,1,method="none")
sage: P = list_plot(pts)
sage: show(P)
sage: P = line(pts)
sage: show(P)

1.6. NUMERICAL SOLUTIONS - EULER’S METHOD AND IMPROVED EULER’S METHOD37

sage: P1 = list_plot(pts)
sage: P2 = line(pts)
sage: show(P1+P2)

The plot is given in Figure 1.13.

Figure 1.13: Euler’s method with h = 1/2 for x′ + x = 1, x(0) = 2.

1.6.2 Improved Euler’s method

Geometric idea: The basic idea can be easily expressed in geometric terms. As in Euler’s
method, we know the solution must go through the point (a, c) and we know its slope there
is m = f(a, c). If we went out one step using the tangent line approximation to the solution
curve, the approximate slope to the tangent line at x = a + h, y = c + h · f(a, c) would be
m′ = f(a+h, c+h ·f(a, c)). The idea is that instead of using m = f(a, c) as the slope of the
line to get our first approximation, use m+m′

2 . The “improved” tangent-line approximation
at (a, c) is:

y(a + h) ∼= c + h · m + m′

2
= c + h · f(a, c) + f(a + h, c + h · f(a, c))

2
.

(This turns out to be a better approximation than the tangent-line approximation y(a+h) ∼=
c+h·f(a, c) used in Euler’s method.) Now we know the solution passes through a point which
is “nearly” equal to (a + h, c + h · m+m′

2). We now repeat this tangent-line approximation
with (a, c) replaced by (a+h, c+h ·f(a, c). Keep repeating this number-crunching at x = a,
x = a + h, x = a + 2h, ..., until you get to x = b.
Tabular idea: The integer step size n > 0 is related to the increment by

h =
b − a

n
,

38 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

as before.
The improved Euler method can be expressed simplest using a table.

x y hm+m′

2 = h
2 (f(x, y) + f(x + h, y + h · f(x, y)))

a c h
2 (f(a, c) + f(a + h, c + h · f(a, c)))

a + h c + h
2 (f(a, c) + f(a + h, c + h · f(a, c)))

...

a + 2h
...

...
b ??? xxx

The goal is to fill out all the blanks of the table but the xxx entry and find the ??? entry,
which is the improved Euler’s method approximation for y(b).

Example 1.6.2. Use the improved Euler’s method with h = 1/2 to approximate y(1),
where

y′ − y = 5x − 5, y(0) = 1.

Putting the DE into the form (1.8), we see that here f(x, y) = 5x + y − 5, a = 0, c = 1.
We first compute the “correction term”:

hf(x,y)+f(x+h,y+h·f(x,y))
2 = 1

4 (5x + y − 5 + 5(x + h) + (y + h · f(x, y)) − 5)
= 1

4 (5x + y − 5 + 5(x + h) + (y + h · (5x + y − 5) − 5)

= (1 + h
2)5x + (1 + h

2)y − 5
2

= 25x/4 + 5y/4 − 5.

x y hm+m′

2 = 25x+5y−10
4

0 1 −15/8
1/2 1 + (−15/8) = −7/8 −95/64
1 −7/8 + (−95/64) = −151/64

so y(1) ∼= −151
64 = −2.35... This is the final answer.

Aside: For your information, this is closer to the exact value y(1) = e− 5 = −2.28... than
the “usual” Euler’s method approximation of −2.75 we obtained above.

1.6.3 Euler’s method for systems and higher order DEs

We only sketch the idea in some simple cases. Consider the DE

y′′ + p(x)y′ + q(x)y = f(x), y(a) = e1, y′(a) = e2,

and the system

1.6. NUMERICAL SOLUTIONS - EULER’S METHOD AND IMPROVED EULER’S METHOD39

y′1 = f1(x, y1, y2), y1(a) = c1,
y′2 = f2(x, y1, y2), y2(a) = c2.

We can treat both cases after first rewriting the DE as a system: create new variables
y1 = y and let y2 = y′. It is easy to see that

y′1 = y2, y1(a) = e1,
y′2 = f(x) − q(x)y1 − p(x)y2, y2(a) = e2.

Tabular idea: Let n > 0 be an integer, which we call the step size. This is related to
the increment by

h =
b − a

n
.

This can be expressed simplest using a table.

x y1 hf1(x, y1, y2) y2 hf2(x, y1, y2)

a e1 hf1(a, e1, e2) e2 hf2(a, e1, e2)

a + h e1 + hf1(a, e1, e2)
... e1 + hf1(a, e1, e2)

...

a + 2h
...

...
b ??? xxx xxx xxx

The goal is to fill out all the blanks of the table but the xxx entry and find the ??? entries,
which is the Euler’s method approximation for y(b).

Example 1.6.3. Using 3 steps of Euler’s method, estimate x(1), where x′′ − 3x′ + 2x = 1,
x(0) = 0, x′(0) = 1

First, we rewrite x′′− 3x′ +2x = 1, x(0) = 0, x′(0) = 1, as a system of 1st order DEs with
ICs. Let x1 = x, x2 = x′, so

x′
1 = x2, x1(0) = 0,

x′
2 = 1 − 2x1 + 3x2, x2(0) = 1.

This is the DE rewritten as a system in standard form. (In general, the tabular method
applies to any system but it must be in standard form.)

Taking h = (1 − 0)/3 = 1/3, we have

t x1 x2/3 x2 (1 − 2x1 + 3x2)/3

0 0 1/3 1 4/3
1/3 1/3 7/9 7/3 22/9
2/3 10/9 43/27 43/9 xxx
1 73/27 xxx xxx xxx

40 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

So x(1) = x1(1) ∼ 73/27 = 2.7....

Here is one way to do this using Sage :

Sage

sage: RR = RealField(sci_not=0, prec=4, rnd=’RNDU’)
sage: t, x, y = PolynomialRing(RR,3,"txy").gens()
sage: f = y; g = 1-2 * x+3 * y
sage: L = eulers_method_2x2(f,g,0,0,1,1/3,1,method="no ne")
sage: L
[[0, 0, 1], [1/3, 0.35, 2.5], [2/3, 1.3, 5.5],

[1, 3.3, 12], [4/3, 8.0, 24]]
sage: eulers_method_2x2(f,g, 0, 0, 1, 1/3, 1)

t x h * f(t,x,y) y h * g(t,x,y)
0 0 0.35 1 1.4
1/3 0.35 0.88 2.5 2.8
2/3 1.3 2.0 5.5 6.5
1 3.3 4.5 12 11

sage: P1 = list_plot([[p[0],p[1]] for p in L])
sage: P2 = line([[p[0],p[1]] for p in L])
sage: show(P1+P2)

1.7. NUMERICAL SOLUTIONS II - RUNGE-KUTTA AND OTHER METHODS 41

The plot of the approximation to x(t) is given in Figure 1.14.

Figure 1.14: Euler’s method with h = 1/3 for x′′ − 3x′ + 2x = 1, x(0) = 0, x′(0) = 1.

Exercise: Use Sage and Euler’s method with h = 1/3 for the following problems:

1. (a) Use Euler’s method to estimate x(1) if x(0) = 1 and dx
dt = x + t2, using 1,2, and

4 steps.

(b) Find the exact value of x(1) by solving the ODE (it is a linear ODE).

2. Find the approximate values of x(1) and y(1) where

{

x′ = x + y + t, x(0) = 0,
y′ = x − y, y(0) = 0,

3. Find the approximate value of x(1) where x′ = x2 + t2, x(0) = 1.

1.7 Numerical solutions II - Runge-Kutta and other methods

The methods of 1.6 are sufficient for computing the solutions of many problems, but often
we are given difficult cases that require more sophisticated methods. One class of methods
are called the Runge-Kutta methods, particularly the fourth-order method of that class
since it achieves a popular balance of efficiency and simplicity. Another class, the multistep
methods, use information from some number m of previous steps. Within that class, we
will briefly describe the Adams-Bashforth method. Finally, we will say a little bit about
adaptive step sizes - i.e. changing h adaptively depending on some local estimate of the
error.

42 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

1.7.1 Fourth-Order Runge Kutta method

To explain why we describe the method as ”fourth-order” it is necessary to introduce a
convenient (big-O) notation for the size of the errors in our approximations. We say that a
function f(x) is O(g(x)) as x → 0 if there exist a positive constants M and x0 such that for
all x ∈ [−x0, x0] we have |f(x)| ≤ M |g(x)|. The constant M is called the implied constant.
This notation is also commonly used for the case when x → ∞ but in this text we will always
be considering the behavior of f(x) near x = 0. For example, sin(x) = O(x), as x → 0, but
sin(x) = O(1), as x → ∞. More informally, a function is O(g(x)) if it approaches 0 at a rate
equal to or faster than g(x). As another example, the function f(x) = 3x2 + 6x4 is O(x2)
(as x → 0). As we approach x = 0, the higher order terms become less and less important,
and eventually the 3x2 term dominates the value of the function. There are many concrete
choices of x0 and the implied constant M . One choice would be x0 = 1 and M = 9.

For a numerical method we are interested in how fast the error decreases as we reduce
the stepsize. By ”the error” we mean the global truncation error: for the problem of
approximating y(xf) if y′ = f(x, y) and y(xi) = yi the global truncation error is defined as
E(h) = |y(xf) − yn|. Here yn is our approximate value for y at x = xf after taking n steps

of stepsize h =
xf−xi

n .
For Euler’s method, E(h) = O(h) and we say that it is a first-order method. This means

that as we decrease the stepsize h, at some point our error will become linear in h. In
other words, we expect that if we halve the stepsize our error will be reduced by half. The
improved Euler method is a second-order method, so E(h) = O(h2). This is very good
news, because while the improved Euler method involves roughly twice as much work per
step as the Euler method, the error will eventually fall quadratically in h.

The fourth-order Runge-Kutta method involves computing four slopes and taking a
weighted average of them. We denote these slopes as k1, k2, k3, and k4, and the formula
are:

xn+1 = xn + h,
yn+1 = yn + h(k1 + 2k2 + 2k3 + k4)/6,

where

k1 = f(xn, yn),

k2 = f(xn + h/2, yn + hk1/2),

k3 = f(xn + h/2), yn + hk2/2),

and
k4 = f(xn + h, yn + hk3).

Example 1.7.1. Lets consider the IVP y′ = y(y−x)
x(y+x) , y(1) = 1, and suppose we wish to

approximate y(2). The table below shows the Euler, improved Euler, and fourth-order
Runge-Kutta (RK4) approximations for various numbers of steps from 1 to 512.

1.7. NUMERICAL SOLUTIONS II - RUNGE-KUTTA AND OTHER METHODS 43

steps Euler imp. Euler RK4

1 1.0 0.916666666667 0.878680484793

2 0.933333333333 0.889141488073 0.876938215214

4 0.90307164531 0.880183944727 0.876770226006

8 0.889320511452 0.877654079757 0.876757721415

16 0.882877913323 0.87698599324 0.87675688939

32 0.879775715551 0.876814710289 0.876756836198

64 0.878255683243 0.876771374145 0.876756832844

128 0.877503588678 0.876760476927 0.876756832634

256 0.877129540678 0.876757744807 0.876756832621

512 0.876943018826 0.876757060805 0.876756832620

The final Runge-Kutta value is correct to the number of digits shown. Note that even
after 512 steps, Euler’s method has not acheived the accuracy of 4 steps of Runge-Kutta or
8 steps of the improved Euler method.

1.7.2 Multistep methods - Adams-Bashforth

The fourth-order Adams-Bashforth method is:

xn+1 = xn + h, (1.9)

yn+1 = yn + h
24(55fn − 59fn−1 + 37fn−2 − 9fn−3), (1.10)

where fi = f(xi, yi).

1.7.3 Adaptive step size

In our discussion of numerical methods we have only considered a fixed step size. In some
applications this is sufficient but usually it is better to adaptively change the stepsize to
keep the local error below some tolerance. One approach for doing this is to use two different
methods for each step, and if the methods differ by more than the tolerance we decrease
the stepsize. The Sage code below implements this for the improved Euler method and the
fourth-order Runge-Kutta method.

Sage

def RK24(xstart, ystart, xfinish, f, nsteps = 10, tol = 10ˆ(- 5.0)):
’’’
Simple adaptive step-size routine. This compares the impro ved

44 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Euler method and the fourth-order Runge-Kutta method to
estimate the error.

EXAMPLE:
The exact solution to this IVP is y(x) = exp(x), so y(1)
should equal e = 2.718281828...
Initially the stepsize is 1/10 but this is decreased during
the calculation:

sage: esol = RK24(0.0,1.0,1.0,lambda x,y: y)
sage: print "Error is: ", N(esol[-1][1]-e)
Error is: -8.66619043193850e-9

’’’
sol = [ystart]
xvals = [xstart]
h = N((xfinish-xstart)/nsteps)
while xvals[-1] < xfinish:

Calculate slopes at various points:
k1 = f(xvals[-1],sol[-1])
rk2 = f(xvals[-1] + h/2,sol[-1] + k1 * h/2)
rk3 = f(xvals[-1] + h/2,sol[-1] + rk2 * h/2)
rk4 = f(xvals[-1] + h,sol[-1] + rk3 * h)
iek2 = f(xvals[-1] + h,sol[-1] + k1 * h)
Runge-Kutta increment:
rk_inc = h * (k1+2 * rk2+2 * rk3+rk4)/6
Improved Euler increment:
ie_inc = h * (k1+iek2)/2
#Check if the error is smaller than the tolerance:
if abs(ie_inc - rk_inc) < tol:

sol.append(sol[-1] + rk_inc)
xvals.append(xvals[-1] + h)

If not, halve the stepsize and try again:
else:

h = h/2
return zip(xvals,sol)

More sophisticated implementations will also increase the stepsize when the error stays
small for several steps. A very popular scheme of this type is the Runge-Kutta-Fehlberg
method, which combines fourth- and fifth-order Runge-Kutta methods in a particularly
efficient way [A-ode].

Exercises:

1. For the initial value problem y(1) = 1 and dy
dx = y

x

(

y−x
x+y

)

, approximate y(2) by using:

(a) a 2-step improved Euler method

(b) a 1-step 4th-order Runge-Kutta method.

1.8. NEWTONIAN MECHANICS 45

2. Compare the results of using the fourth-order Runge-Kutta and Adams-Bashforth
methods to approximate y(3) for the IVP dy

dx = sinc(x) − y, y(0) = 1 for 5, 10, and
100 steps. Use the Runge-Kutta values to prime the Adams-Bashforth method.

3. Modify the adaptive stepsize code so that the stepsize is increased if the estimated
error is below some threshold. Pick a problem and time your code compared to the
original version.

4. Sometimes we wish to model quantities that are subjected to random influences, as
in Brownian motion or in financial markets. If the random influences change on
arbitrarily small timescales, the result is usually nondifferentiable. In these cases,
it is better to express the evolution in terms of integrals, but they are often called
stochastic differential equations nonetheless. One example from financial markets is a
model of the value of a stock, which in integral form is:

S(t) = S0 +

∫ t

0
µS ds +

∫ t

0
σS dW,

where W is a Brownian motion. For such a model there is a stochastic analogue of
Euler’s method called the Euler-Maruyama method (see [H-sde] for more details
and references). The main subtlety is correctly scaling the increment of the Brownian
motion with the stepsize: dW =

√
dt ∗ w0,1, where w(0, 1) is a sample from a normal

distribution with mean 0 and standard deviation 1. So for this example, the Euler-
Maruyama method gives:

Si+1 = Si + 2Sih +
√

hSiw0,1.

Implement the Euler-Maruyama method to simulate an IVP of this example with
µ = 2 and σ = 1 from t = 0 to t = 1 with 100 steps, with S(0) = S0 = 0. To generate
the w(0, 1) in Sage you can use the normalvariate command. Compute the average
trajectory of 100 simulation runs - is it equal to the deterministic ODE S′ = µS?
(This is a reasonable guess since the expected value of the Brownian motion W is 0.)

1.8 Newtonian mechanics

We briefly recall how the physics of the falling body problem leads naturally to a differential
equation (this was already mentioned in the introduction and forms a part of Newtonian
mechanics [M-mech]). Consider a mass m falling due to gravity. We orient coordinates to
that downward is positive. Let x(t) denote the distance the mass has fallen at time t and
v(t) its velocity at time t. We assume only two forces act: the force due to gravity, Fgrav ,
and the force due to air resistence, Fres. In other words, we assume that the total force is
given by

Ftotal = Fgrav + Fres.

46 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

We know that Fgrav = mg, where g > 0 is the gravitational constant, from high school
physics. We assume, as is common in physics, that air resistance is proportional to velocity:
Fres = −kv = −kx′(t), where k ≥ 0 is a constant. Newton’s second law [N-mech] tells us
that Ftotal = ma = mx′′(t). Putting these all together gives mx′′(t) = mg − kx′(t), or

v′(t) +
k

m
v(t) = g. (1.11)

This is the differential equation governing the motion of a falling body. Equation (1.11)
can be solved by various methods: separation of variables or by integrating factors. If we
assume v(0) = v0 is given and if we assume k > 0 then the solution is

v(t) =
mg

k
+ (v0 −

mg

k
)e−kt/m. (1.12)

In particular, we see that the limiting velocity is vlimit = mg
k .

Example 1.8.1. Wile E. Coyote (see [W-mech] if you haven’t seen him before) has mass
100 kgs (with chute). The chute is released 30 seconds after the jump from a height of 2000
m. The force due to air resistence is given by ~Fres = −k~v, where

k =

{

15, chute closed,
100, chute open.

Find

(a) the distance and velocity functions during the time when the chute is closed (i.e.,
0 ≤ t ≤ 30 seconds),

(b) the distance and velocity functions during the time when the chute is open (i.e., 30 ≤ t
seconds),

(c) the time of landing,

(d) the velocity of landing. (Does Wile E. Coyote survive the impact?)

soln: Taking m = 100, g = 9.8, k = 15 and v(0) = 0 in (1.12), we find

v1 (t) =
196

3
− 196

3
e−

3
20

t.

This is the velocity with the time t starting the moment the parachutist jumps. After t = 30
seconds, this reaches the velocity v0 = 196

3 − 196
3 e−9/2 = 64.607.... The distance fallen is

x1(t) =
∫ t
0 v1(u) du

= 196
3 t + 3920

9 e−
3
20

t − 3920
9 .

After 30 seconds, it has fallen x1(30) = 13720
9 + 3920

9 e−9/2 = 1529.283... meters.

Taking m = 100, g = 9.8, k = 100 and v(0) = v0, we find

1.8. NEWTONIAN MECHANICS 47

v2 (t) =
49

5
+ e−t

(

833

15
− 196

3
e−9/2

)

.

This is the velocity with the time t starting the moment Wile E. Coyote opens his chute
(i.e., 30 seconds after jumping). The distance fallen is

x2(t) =
∫ t
0 v2(u) du + x1(30)

= 49
5 t − 833

15 e−t + 196
3 e−te−9/2 + 71099

45 + 3332
9 e−9/2.

Now let us solve this using Sage .

Sage

sage: RR = RealField(sci_not=0, prec=50, rnd=’RNDU’)
sage: t = var(’t’)
sage: v = function(’v’, t)
sage: m = 100; g = 98/10; k = 15
sage: de = lambda v: m * diff(v,t) + k * v - m* g
sage: desolve(de(v),[v,t],[0,0])
196/3 * (eˆ(3/20 * t) - 1) * eˆ(-3/20 * t)
sage: soln1 = lambda t: 196/3-196 * exp(-3 * t/20)/3
sage: P1 = plot(soln1(t),0,30,plot_points=1000)
sage: RR(soln1(30))
64.607545559502

This solves for the velocity before the coyote’s chute is opened, 0 < t < 30. The last number
is the velocity Wile E. Coyote is traveling at the moment he opens his chute.

Sage

sage: t = var(’t’)
sage: v = function(’v’, t)
sage: m = 100; g = 98/10; k = 100
sage: de = lambda v: m * diff(v,t) + k * v - m* g
sage: desolve(de(v),[v,t],[0,RR(soln1(30))])
1/10470 * (102606 * eˆt + 573835) * eˆ(-t)
sage: soln2 = lambda t: 49/5+(631931/11530) * exp(-(t-30))\

+ soln1(30) - (631931/11530) - 49/5
sage: RR(soln2(30))
64.607545559502
sage: RR(soln1(30))
64.607545559502
sage: P2 = plot(soln2(t),30,50,plot_points=1000)
sage: show(P1+P2)

This solves for the velocity after the coyote’s chute is opened, t > 30. The last command
plots the velocity functions together as a single plot. (You would see a break in the graph if

48 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

you omitted the Sage ’s plot option ,plot_points=1000. That is because the number of
samples taken of the function by default is not sufficient to capture the jump the function
takes at t = 30.) The terms at the end of soln2 were added to insure x2(30) = x1(30).

Next, we find the distance traveled at time t:

Sage

sage: integral(soln1(t),t)
3920 * eˆ(-(3 * t/20))/9 + 196 * t/3
sage: x1 = lambda t: 3920 * eˆ(-(3 * t/20))/9 + 196 * t/3
sage: RR(x1(30))
1964.8385851589

This solves for the distance the coyote traveled before the chute was open, 0 < t < 30. The
last number says that he has gone about 1965 meters when he opens his chute.

Sage

sage: integral(soln2(t),t)
49* t/5 - (631931 * eˆ(30 - t)/11530)
sage: x2 = lambda t: 49 * t/5 - (631931 * eˆ(30 - t)/11530)

+ x1(30) + (631931/11530) - 49 * 30/5
sage: RR(x2(30.7))
1999.2895090436
sage: P4 = plot(x2(t),30,50)
sage: show(P3+P4)

(Again, you see a break in the graph because of the round-off error.) The terms at the
end of x2 were added to insure x2(30) = x1(30). You know he is close to the ground at
t = 30, and going quite fast (about 65 m/s!). It makes sense that he will hit the ground
soon afterwards (with a large puff of smoke, if you’ve seen the cartoons), even though his
chute will have slowed him down somewhat.

The graph of the velocity 0 < t < 50 is in Figure 1.15. Notice how it drops at t = 30 when
the chute is opened. The graph of the distance fallen 0 < t < 50 is in Figure 1.16. Notice
how it slows down at t = 30 when the chute is opened.

The time of impact is timpact = 30.7.... This was found numerically by solving x2(t) =
2000.

The velocity of impact is v2(timpact) ≈ 37 m/s.

Exercise: Drop an object with mass 10 kgs from a height of 2000 m. Suppose the force
due to air resistence is given by ~Fres = −10~v. Find the velocity after 10 seconds using Sage

. Plot this velocity function for 0 < t < 10.

1.9. APPLICATION TO MIXING PROBLEMS 49

Figure 1.15: Velocity of falling parachutist.

Figure 1.16: Distance fallen by a parachutist.

1.9 Application to mixing problems

Suppose that we have two chemical substances where one is soluable in the other, such as
salt and water. Suppose that we have a tank containing a mixture of these substances, and
the mixture of them is poured in and the resulting “well-mixed” solution pours out through
a value at the bottom. (The term “well-mixed” is used to indicate that the fluid being
poured in is assumed to instantly dissolve into a homogeneous mixture the moment it goes
into the tank.) The rough idea is depicted in Figure 1.17.

Assume for concreteness that the chemical substances are salt and water. Let

50 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

Figure 1.17: Solution pours into a tank, mixes with another type of solution. and then
pours out.

• A(t) denote the amount of salt at time t,

• FlowRateIn = the rate at which the solution pours into the tank,

• FlowRateOut = the rate at which the mixture pours out of the tank,

• Cin = “concentration in” = the concentration of salt in the solution being poured into
the tank,

• Cout = “concentration out” = the concentration of salt in the solution being poured
out of the tank,

• Rin = rate at which the salt is being poured into the tank = (FlowRateIn)(Cin),

• Rout = rate at which the salt is being poured out of the tank = (FlowRateOut)(Cout).

Remark 1.9.1. Some things to make note of:

• If FlowRateIn = FlowRateOut then the “water level” of the tank stays the same.

• We can determine Cout as a function of other quantities:

Cout =
A(t)

T (t)
,

where T (t) denotes the volume of solution in the tank at time t.

1.9. APPLICATION TO MIXING PROBLEMS 51

• The rate of change of the amount of salt in the tank, A′(t), more properly could be
called the “net rate of change”. If you think if it this way then you see A′(t) =
Rin − Rout.

Now the differential equation for the amount of salt arises from the above equations:

A′(t) = (FlowRateIn)Cin − (FlowRateOut)
A(t)

T (t)
.

Example 1.9.1. Consider a tank with 200 liters of salt-water solution, 30 grams of which
is salt. Pouring into the tank is a brine solution at a rate of 4 liters/minute and with a
concentration of 1 grams per liter. The “well-mixed” solution pours out at a rate of 5
liters/minute. Find the amount at time t.

We know

A′(t) = (FlowRateIn)Cin − (FlowRateOut)
A(t)

T (t)
= 4 − 5

A(t)

200 − t
, A(0) = 30.

Writing this in the standard form A′ + pA = q, we have

A(t) =

∫

µ(t)q(t) dt + C

µ(t)
,

where µ = e
R

p(t) dt = e−5
R

1
200−t

dt = (200 − t)−5 is the “integrating factor”. This gives
A(t) = 200 − t + C · (200 − t)5, where the initial condition implies C = −170 · 200−5.

Here is one way to do this using Sage :

Sage

sage: t = var(’t’)
sage: A = function(’A’, t)
sage: de = lambda A: diff(A,t) + (5/(200-t)) * A - 4
sage: desolve(de(A),[A,t])
(t - 200)ˆ5 * (c - 1/(t - 200)ˆ4)

This is the form of the general solution. (Sage uses Maxima and %c is Maxima’s notation
for an arbitrary constant.) Let us now solve this general solution for c, using the initial
conditions.

Sage

sage: c,t = var(’c,t’)
sage: tank = lambda t: 200-t
sage: solnA = lambda t: (c + 1/tank(t)ˆ4) * tank(t)ˆ5
sage: solnA(t)
(c - (1/(t - 200)ˆ4)) * (t - 200)ˆ5
sage: solnA(0)

52 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

-320000000000 * (c - 1/1600000000)
sage: solve([solnA(0) == 30],c)
[c == 17/32000000000]
sage: c = 17/32000000000
sage: solnA(t)
(17/32000000000 - (1/(t - 200)ˆ4)) * (t - 200)ˆ5
sage: P = plot(solnA(t),0,200)
sage: show(P)

This plot is given in Figure 1.18.

Figure 1.18: A(t), 0 < t < 200, A′ = 4 − 5A(t)/(200 − t), A(0) = 30.

Exercises:

1. Now use Sage to solve the same problem but with the same flow rate out as 4 liters/min
(note: in this case, the “water level” in the tank is constant). Find and plot the
solution A(t), 0 < t < 200.

2. Consider two tanks that are linked in a cascade - i.e. the first tank empties into the
second. Suppose the first tank has 100 liters of water in it, and the second has 300
liters of water. Each tank initially has 50 kilograms of salt dissolved in the water.
Suppose that pure water flows into the first tank at 5 liters per minute, well-mixed
water flows from the first tank to the second at the same rate (5 liters/minute), and
well-mixed water also flows out of the second tank at 5 liters/minute.

(a) Find the amount of salt in the first tank x1(t). Note that this does not depend
on what is happening in the second tank.

(b) Find the amount of salt in the second tank x2(t).

(c) Find the time when there is the maximum amount of salt in the second tank.

Chapter 2

Second order differential equations

If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is.
- John von Neumann

2.1 Linear differential equations

To begin, we want to describe the general form a solution to a linear ODE can take. We
want to describe the solution as a sum of terms which can be computed explicitly in some
way.

Before doing this, we introduce two pieces of terminology.

• Suppose f1(t), f2(t), . . . , fn(t) are given functions. A linear combination of these
functions is another function of the form

c1f1(t) + c2f2(t) + · · · + cnfn(t),

for some constants c1, ..., cn. For example, 3 cos(t) − 2 sin(t) is a linear combination
of cos(t), sin(t). An arbitrary linear combination of cos(t), sin(t) would be written as
c1 cos(t) + c2 sin(t).

• A linear ODE of the form

y(n) + b1(t)y
(n−1) + ... + bn−1(t)y

′ + bn(t)y = f(t), (2.1)

is called homogeneous if f(t) = 0 (i.e., f is the 0 function) and otherwise it is called
non-homogeneous.

53

54 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Consider the n-th order ODE

y(n) + b1(t)y
(n−1) + ... + bn−1(t)y

′ + bn(t)y = 0. (2.2)

Suppose there are n functions y1(t), . . . , yn(t) such that

• each y = yi(t) (1 ≤ i ≤ n) satisfies this homogeneous ODE (2.2),

• every solution y to (2.2) is a linear combination of these functions y1, . . . , yn:

y = c1y1 + · · · + cnyn,

for some (unique) constants c1, ... , cn.

In this case, the yi’s are called fundamental solutions.

Remark 2.1.1. If you are worried that this definition is not very practical, then don’t. We
shall give a condition later (the “Wronskian test”) which will make it much easier to see if
a collection of n functions form a set of fundamental solutions.

The following result describes the general solution to a linear ODE.

Theorem 2.1.1. Consider a linear ODE of the above form (2.1), for some given continuous
functions b1(t), . . . , bn(t), and f(t). Then the following hold.

• There are n functions y1(t), . . . , yn(t) (above-mentioned fundamental solutions), each
y = yi(t) (1 ≤ i ≤ n) satisfying the homogeneous ODE, such that every solution yh

to (2.2) can be written

yh = c1y1 + · · · + cnyn,

for some (unique) constants c1, ... , cn.

• Suppose you know a solution yp(t) (a particular solution) to (2.1). Then every
solution y = y(t) (the general solution) to the DE (2.1) has the form

y(t) = yh(t) + yp(t), (2.3)

where yh (the “homogeneous part” of the general solution) is a linear combination

yh(t) = c1y1(t) + y2(t) + ... + cnyn(t),

for some constants ci, 1 ≤ i ≤ n.

• Conversely, every function of the form (2.3), for any constants ci for 1 ≤ i ≤ n, is a
solution to (2.1).

2.1. LINEAR DIFFERENTIAL EQUATIONS 55

Example 2.1.1. Recall Example 1.1.4 in the introduction where we looked for functions
solving x′ + x = 1 by “guessing”. We found that the function xp(t) = 1 is a particular
solution to x′ + x = 1. The function x1(t) = e−t is a fundamental solution to x′ + x = 0.
The general solution is therefore x(t) = 1 + c1e

−t, for a constant c1.

Example 2.1.2. Let’s look for functions solving x′′ − x = 1 by “guessing”. Motivated
by the above example, we find that the function xp(t) = −1 is a particular solution to
x′′ − x = 1. The functions x1(t) = et, x2(t) = e−t are fundamental solutions to x′′ − x = 0.
The general solution is therefore x(t) = 1 + c1e

−t, for a constant c1.

Example 2.1.3. The charge on the capacitor of an RLC electrical circuit is modeled by a
2-nd order linear DE [C-linear].

Series RLC Circuit notations:

• E = E(t) - the voltage of the power source (a battery or other “electromotive force”,
measured in volts, V)

• q = q(t) - the current in the circuit (measured in coulombs, C)

• i = i(t) - the current in the circuit (measured in amperes, A)

• L - the inductance of the inductor (measured in henrys, H)

• R - the resistance of the resistor (measured in ohms, Ω);

• C - the capacitance of the capacitor (measured in farads, F)

The charge q on the capacitor satisfies the linear IPV:

Lq′′ + Rq′ +
1

C
q = E(t), q(0) = q0, q′(0) = i0.

Figure 2.1: RLC circuit.

56 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Example 2.1.4. The displacement from equilibrium of a mass attached to a spring sus-
pended from a ceiling as in Figure 2.2 is modeled by a 2-nd order linear DE [O-ivp].

Spring-mass notations:

• f(t) - the external force acting on the spring (if any)

• x = x(t) - the displacement from equilibrium of a mass attached to a spring

• m - the mass

• b - the damping constant (if, say, the spring is immersed in a fluid)

• k - the spring constant.

The displacement x satisfies the linear IPV:

mx′′ + bx′ + kx = f(t), x(0) = x0, x′(0) = v0.

Figure 2.2: spring-mass model.

Notice that each general solution to an n-th order ODE has n “degrees of freedom” (the
arbitrary constants ci). According to this theorem, to find the general solution of a linear
ODE, we need only find a particular solution yp and n fundamental solutions y1(t), . . . ,
yn(t).

Example 2.1.5. Let us try to solve

x′ + x = 1, x(0) = c,

where c = 1, c = 2, and c = 3. (Three different IVP’s, three different solutions, find each
one.)

The first problem, x′ + x = 1 and x(0) = 1, is easy. The solutions to the DE x′ + x = 1
which we “guessed at” in the previous example, x(t) = 1, satisfies this.

2.2. LINEAR DIFFERENTIAL EQUATIONS, CONTINUED 57

The second problem, x′ + x = 1 and x(0) = 2, is not so simple. To solve this (and the
third problem), we really need to know what the form is of the “general solution”.

According to the theorem above, the general solution x has the form x = xp + xh. In
this case, xp(t) = 1 and xh(t) = c1x1(t) = c1e

−t, by an earlier example. Therefore, every
solution to the DE above is of the form x(t) = 1 + c1e

−t, for some constant c1. We use the
initial condition to solve for c1:

• x(0) = 1: 1 = x(0) = 1 + c1e
0 = 1 + c1 so c1 = 0 and x(t) = 1.

• x(0) = 2: 2 = x(0) = 1 + c1e
0 = 1 + c1 so c1 = 1 and x(t) = 1 + e−t.

• x(0) = 3: 3 = x(0) = 1 + c1e
0 = 1 + c1 so c1 = 2 and x(t) = 1 + 2e−t.

Here is one way to use Sage to solve for c1. (Of course, you can do this yourself, but this
shows you the Sage syntax for solving equations. Type solve? in Sage to get more details.)
We use Sage to solve the last IVP discussed above and then to plot the solution.

Sage

sage: t = var(’t’)
sage: x = function(’x’,t)
sage: desolve(diff(x,t)+x==1,[x,t])
(c + eˆt) * eˆ(-t)
sage: c = var(’c’)
sage: solnx = lambda t: 1+c * exp(-t) # the soln from desolve
sage: solnx(0)
c + 1
sage: solve([solnx(0) == 3],c)
[c == 2]
sage: c0 = solve([solnx(0) == 3], c)[0].rhs()
sage: solnx1 = lambda t: 1+c0 * exp(-t); solnx1(t)
sage: P = plot(solnx1(t),0,5)
sage: show(P)

This plot is shown in Figure 2.3.

Exercise: Use Sage to solve and plot the solution to x′ + x = 1 and x(0) = 2.

2.2 Linear differential equations, continued

To better describe the form a solution to a linear ODE can take, we need to better under-
stand the nature of fundamental solutions and particular solutions.

Recall that the general solution to

y(n) + b1(t)y
(n−1) + ... + bn−1(t)y

′ + bn(t)y = f(t),

58 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Figure 2.3: Solution to IVP x′ + x = 1, x(0) = 3.

has the form y = yp + yh, where yh is a linear combination of fundamental solutions.

Example 2.2.1. The general solution to the differential equation equation

x′′ − 5x′ + 6x = 0

has the form x = x(t) = c1 exp(2t) + c2 exp(3t), for arbitrary constants c1 and c2. Suppose
we are also given n initial conditions y(x0) = a0, y′(x0) = a1, . . . , y(n−1)(x0) = an−1. For
example, we could impose the initial conditions: x(0) = 3 and x′(0) = 4. Of course, no
matter what x0 and v0 are are given, we want to be able to solve for the coefficients c1, c2

in x(t) = c1 exp(2t) + c2 exp(3t) to obtain a unique solution. More generally, we want to be
able to solve an n-th order IVP and obtain a unique solution.

A few questions arise.

• How do we know this can be done?

• How do we know that (for some c1, c2) some linear combination x(t) = c1 exp(2t) +
c2 exp(3t) isn’t identically 0 (which, if true, would imply that x = x(t) couldn’t
possibly satisfy x(0) = 3 and x′(0) = 4)?

We shall answer this question below.

The complete answer to the questions mentioned in the above example actually involves
methods from linear algebra which go beyond this course. The basic idea though is not
hard to understand and it involves what is called “the Wronskian1” [W-linear].

Before we motivate the idea of the Wronskian by returning to the above example, we need
to recall a basic fact from linear algebra.

1Josef Wronski was a Polish-born French mathematician who worked in many different areas of applied
mathematics and mechanical engineering [Wr-linear].

2.2. LINEAR DIFFERENTIAL EQUATIONS, CONTINUED 59

Lemma 2.2.1. (Cramer’s rule) Consider the system of two equations in two unknowns
x, y:

ax + by = s1, cx + dy = s2.

The solution to this system is

x =

det

(

s1 b
s2 d

)

det

(

a b
c d

) , y =

det

(

a s1

c s2

)

det

(

a b
c d

) .

Note the determinant det

(

a b
c d

)

= ad − bc is in the denominator of both expressions.

In particular, if the determinant is 0 then the formula is invalid (and in that case, the
solution either does not exist or is not unique).

Example 2.2.2. Write the general solution to x′′−5x′ +6x = 0 as x(t) = c1x1(t)+ c2x2(t)
(we know x1(t) = exp(2t), x2(t) = exp(3t), but we leave it in this more abstract notation
to make a point). Assume the initial conditions x(0) = 3 and x′(0) = 4 hold. We can try
solve for c1, c2 but plugging t = 0 into the general solution:

3 = x(0) = c1e
0 + c2e

0 = c1 + c2, 4 = x′(0) = c12e
0 + c23e

0 = 2c1 + 3c2.

You can solve these “by hand” for c1, c2 (and you encouraged to do so). However, to
motivate Wronskian’s we shall use the initial conditions in the more abstract form of the
general solution:

3 = x(0) = c1x1(0) + c2x2(0), 4 = x′(0) = c1x
′
1(0) + c2x

′
2(0).

Cramers’ rule gives us the solution for this system of two equations in two unknowns c1, c2:

c1 =

det

(

3 x2(0)
4 x′

2(0)

)

det

(

x1(0) x2(0)
x′

1(0) x′
2(0)

) , y =

det

(

x1(0) 3
x′

1(0) 4

)

det

(

x1(0) x2(0)
x′

1(0) x′
2(0)

) .

In the denominator of these expressions, you see the “Wronskian” of the fundamental solu-
tions x1, x2 evaluated at t = 0.

From the example above we see “Wronskians” arise “naturally” in the process of solving
for c1 and c2.

In general terms, what is a Wronskian? It is best to explain what this means not just for
two functions (say, fundamental solutions x1, x2 of a second-order ODE, as we did above)
but for any finite number of functions. This more general case would be useful in case we
wanted to try to solve a higher order ODE by the same method. If f1(t), f2(t), . . . , fn(t)

60 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

are given n-times differentiable functions then their fundamental matrix is the n × n
matrix

Φ = Φ(f1, ..., fn) =











f1(t) f2(t) . . . fn(t)
f ′
1(t) f ′

2(t) . . . f ′
n(t)

...
...

...

f
(n−1)
1 (t) f

(n−1)
2 (t) . . . f

(n−1)
n (t)











.

The determinant of the fundamental matrix is called the Wronskian, denoted W (f1, ..., fn).
The Wronskian actually helps us answer both questions above simultaneously.

Example 2.2.3. Take f1(t) = sin2(t), f2(t) = cos2(t), and f3(t) = 1. Sage allows us to
easily compute the Wronskian:

Sage

sage: t = var(’t’)
sage: Phi = matrix([[sin(t)ˆ2,cos(t)ˆ2,1],

[diff(sin(t)ˆ2,t),diff(cos(t)ˆ2,t),0],
[diff(sin(t)ˆ2,t,t),diff(cos(t)ˆ2,t,t),0]])

sage: Phi

[sin(t)ˆ2 cos(t)ˆ2 1]
[2 * sin(t) * cos(t) -2 * sin(t) * cos(t) 0]
[-2 * sin(t)ˆ2 + 2 * cos(t)ˆ2 2 * sin(t)ˆ2 - 2 * cos(t)ˆ2 0]
sage: det(Phi)
0

Here det(Phi) is the determinant of the fundamental matrix Phi. Since it is zero, this
means

W (sin(t)2, cos(t)2, 1) = 0.

Let’s try another example using Sage .

Sage

sage: t = var(’t’)
sage: Phi = matrix([[sin(t)ˆ2,cos(t)ˆ2], [diff(sin(t)ˆ2 ,t),diff(cos(t)ˆ2,t)]])
sage: Phi

[sin(t)ˆ2 cos(t)ˆ2]
[2 * cos(t) * sin(t) -2 * cos(t) * sin(t)]
sage: Phi.det()
-2 * cos(t) * sin(t)ˆ3 - 2 * cos(t)ˆ3 * sin(t)

2.2. LINEAR DIFFERENTIAL EQUATIONS, CONTINUED 61

This means W (sin(t)2, cos(t)2) = −2 cos(t) sin(t)3 − 2 cos(t)3 sin(t), which is non-zero.

If there are constants c1, ..., cn, not all zero, for which

c1f1(t) + c2f2(t) · · · + cnfn(t) = 0, for all t, (2.4)

then the functions fi (1 ≤ i ≤ n) are called linearly dependent. If the functions fi

(1 ≤ i ≤ n) are not linearly dependent then they are called linearly independent (this
definition is frequently seen for linearly independent vectors [L-linear] but holds for functions
as well). This condition (2.4) can be interpreted geometrically as follows. Just as c1x+c2y =
0 is a line through the origin in the plane and c1x + c2y + c3z = 0 is a plane containing the
origin in 3-space, the equation

c1x1 + c2x2 · · · + cnxn = 0,

is a “hyperplane” containing the origin in n-space with coordinates (x1, ..., xn). This con-
dition (2.4) says geometrically that the graph of the space curve ~r(t) = (f1(t), . . . , fn(t))
lies entirely in this hyperplane. If you pick n functions “at random” then they are “prob-
ably” linearly independent, because “random” space curves don’t lie in a hyperplane. But
certainly not all collections of functions are linearly independent.

Example 2.2.4. Consider just the two functions f1(t) = sin2(t), f2(t) = cos2(t). We
know from the Sage computation in the example above that these functions are linearly
independent.

Sage

sage: P = parametric_plot((sin(t)ˆ2,cos(t)ˆ2),0,5)
sage: show(P)

The Sage plot of this space curve ~r(t) = (sin(t)2, cos(t)2) is given in Figure 2.4. It is
obviously not contained in a line through the origin, therefore making it geometrically clear
that these functions are linearly independent.

The following two results answer the above questions.

Theorem 2.2.1. (Wronskian test) If f1(t), f2(t), . . . , fn(t) are given n-times differen-
tiable functions with a non-zero Wronskian then they are linearly independent.

As a consequence of this theorem, and the Sage computation in the example above, f1(t) =
sin2(t), f2(t) = cos2(t), are linearly independent.

Theorem 2.2.2. Given any homogeneous n-th linear ODE

y(n) + b1(t)y
(n−1) + ... + bn−1(t)y

′ + bn(t)y = 0,

with differentiable coefficients, there always exists n solutions y1(t), ..., yn(t) which have a
non-zero Wronskian.

62 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Figure 2.4: Parametric plot of (sin(t)2, cos(t)2).

The functions y1(t), ..., yn(t) in the above theorem are called fundamental solutions.

We shall not prove either of these theorems here. Please see [BD-intro] for further details.

Exercises:

1. Use Sage to compute the Wronskian of

(a) f1(t) = sin(t), f2(t) = cos(t),

(b) f1(t) = 1, f2(t) = t, f3(t) = t2, f4(t) = t3.

2. Use the Wronskian test to check that

(a) y1(t) = sin(t), y2(t) = cos(t) are fundamental solutions for y′′ + y = 0,

(b) y1(t) = 1, y2(t) = t, y3(t) = t2, y4(t) = t3 are fundamental solutions for y(4) =
y′′′′ = 0.

2.3 Undetermined coefficients method

The method of undetermined coefficients [U-uc] can be used to solve the following type of
problem.

PROBLEM: Solve

ay′′ + by′ + cy = f(x), (2.5)

2.3. UNDETERMINED COEFFICIENTS METHOD 63

where a 6= 0, b and c are constants, and f(x) is a special type of function. (Even the case
a = 0 can be handled similarly, though some of the discussion below might need to be
slightly modified.) Thet assumption that f(x) is of a “special form” will be explained in
moe detail later.

More-or-less equivalent is the method of annihilating operators [A-uc] (they solve the same
class of DEs), but that method will be discussed separately.

2.3.1 Simple case

For the moment, let us assume f(x) has the “simple” form a1 · p(x) · ea2x · cos(a3x), or
a1 · p(x) · ea2x · sin(a3x), where a1, a2, a3 are constants and p(x) is a polynomial.

Solution:

• Solve the homogeneous DE ay′′ + by′ + cy = 0 as follows. Let r1 and r2 denote the
roots of the characteristic polynomial aD2 + bD + c = 0.

– r1 6= r2 real: the solution is y = c1e
r1x + c2e

r2x.

– r1 = r2 real: if r = r1 = r2 then the solution is y = c1e
rx + c2xerx.

– r1, r2 complex: if r1 = α + iβ, r2 = α − iβ, where α and β are real, then the
solution is y = c1e

αx cos(βx) + c2e
αx sin(βx).

Denote this solution yh (some texts use yc) and call this the homogeneous part of
the solution. (Some texts call this the complementary part of the solution.)

• Compute f(x), f ′(x), f ′′(x), Write down the list of all the different terms which
arise (via the product rule), ignoring constant factors, plus signs, and minus signs:

t1(x), t2(x), ..., tk(x).

If any one of these agrees with y1 or y2 then multiply them all by x. (If, after this,
any of them still agrees with y1 or y2 then multiply them all again by x.)

• Let yp be a linear combination of these functions (your “guess”):

yp = A1t1(x) + ... + Aktk(x).

This is called the general form of the particular solution (when you have not
solved for the constants Ai). The Ai’s are called undetermined coefficients.

• Plug yp into (2.5) and solve for A1, ..., Ak.

• Let y = yh + yp = yp + c1y1 + c2y2. This is the general solution to (2.5). If there
are any initial conditions for (2.5), solve for then c1, c2 now.

64 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Diagramatically:

Factor characteristic polynomial

↓
Compute yh

↓
Compute the general form of the particular, yp

↓
Compute the undetermined coefficients

↓
Answer: y = yh + yp.

Examples

Example 2.3.1. Solve
y′′ − y = cos(2x).

• The characteristic polynomial is r2 − 1 = 0, which has ±1 for roots. The “homogeneous
solution” is therefore yh = c1e

x + c2e
−x.

• We compute f(x) = cos(2x), f ′(x) = −2 sin(2x), f ′′(x) = −4 cos(2x), They are all linear
combinations of

f1(x) = cos(2x), f2(x) = sin(2x).

None of these agrees with y1 = ex or y2 = e−x, so we do not multiply by x.

• Let yp be a linear combination of these functions:

yp = A1 cos(2x) + A2 sin(2x).

• You can compute both sides of y′′

p − yp = cos(2x):

(−4A1 cos(2x) − 4A2 sin(2x)) − (A1 cos(2x) + A2 sin(2x)) = cos(2x).

Equating the coefficients of cos(2x), sin(2x) on both sides gives 2 equations in 2 unknowns:
−5A1 = 1 and −5A2 = 0. Solving, we get A1 = −1/5 and A2 = 0.

• The general solution: y = yh + yp = c1e
x + c2e

−x − 1
5 cos(2x).

Example 2.3.2. Solve
y′′ − y = x cos(2x).

• The characteristic polynomial is r2 − 1 = 0, which has ±1 for roots. The “homogeneous
solution” is therefore yh = c1e

x + c2e
−x.

2.3. UNDETERMINED COEFFICIENTS METHOD 65

• We compute f(x) = x cos(2x), f ′(x) = cos(2x)− 2x sin(2x), f ′′(x) = −2 sin(2x)− 2 sin(2x)−
2x cos(2x), They are all linear combinations of

f1(x) = cos(2x), f2(x) = sin(2x), f3(x) = x cos(2x), .f4(x) = x sin(2x).

None of these agrees with y1 = ex or y2 = e−x, so we do not multiply by x.

• Let yp be a linear combination of these functions:

yp = A1 cos(2x) + A2 sin(2x) + A3x cos(2x) + A4x sin(2x).

• In principle, you can compute both sides of y′′

p − yp = x cos(2x) and solve for the Ai’s.
(Equate coefficients of x cos(2x) on both sides, equate coefficients of cos(2x) on both sides,
equate coefficients of x sin(2x) on both sides, and equate coefficients of sin(2x) on both sides.
This gives 4 equations in 4 unknowns, which can be solved.) You will not be asked to solve
for the Ai’s for a problem this hard.

Example 2.3.3. Solve
y′′ + 4y = x cos(2x).

• The characteristic polynomial is r2 + 4 = 0, which has ±2i for roots. The “homogeneous
solution” is therefore yh = c1 cos(2x) + c2 sin(2x).

• We compute f(x) = x cos(2x), f ′(x) = cos(2x)− 2x sin(2x), f ′′(x) = −2 sin(2x)− 2 sin(2x)−
2x cos(2x), They are all linear combinations of

f1(x) = cos(2x), f2(x) = sin(2x), f3(x) = x cos(2x), .f4(x) = x sin(2x).

Two of these agree with y1 = cos(2x) or y2 = sin(2x), so we do multiply by x:

f1(x) = x cos(2x), f2(x) = x sin(2x), f3(x) = x2 cos(2x), .f4(x) = x2 sin(2x).

• Let yp be a linear combination of these functions:

yp = A1x cos(2x) + A2x sin(2x) + A3x
2 cos(2x) + A4x

2 sin(2x).

• In principle, you can compute both sides of y′′

p + 4yp = x cos(2x) and solve for the Ai’s. You
will not be asked to solve for the Ai’s for a problem this hard.

2.3.2 Non-simple case

More generally, suppose that you want to solve ay′′ + by′ + cy = f(x), where f(x) is a
sum of functions of the “simple” functions in the previous subsection. In other words,
f(x) = f1(x) + f2(x) + ... + fk(x), where each fj(x) is of the form c · p(x) · eax · cos(bx), or
c · p(x) · eax · sin(bx), where a, b, c are constants and p(x) is a polynomial. You can proceed
in either one of the following ways.

1. Split up the problem by solving each of the k problems ay′′ + by′ + cy = fj(x),
1 ≤ j ≤ k, obtaining the solution y = yj(x), say. The solution to ay′′+by′+cy = f(x)
is then y = y1 + y2 + .. + yk (the superposition principle).

66 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

2. Proceed as in the examples above but with the following slight revision:

• Find the “homogeneous solution” yh to ay′′ + by′ = cy = 0, yh = c1y1 + c2y2.

• Compute f(x), f ′(x), f ′′(x), Write down the list of all the different terms
which arise, ignoring constant factors, plus signs, and minus signs:

t1(x), t2(x), ..., tk(x).

• Group these terms into their families. Each family is determined from its par-
ent(s) - which are the terms in f(x) = f1(x)+f2(x)+ ...+fk(x) which they arose
form by differentiation. For example, if f(x) = x cos(2x) + e−x sin(x) + sin(2x)
then the terms you get from differentiating and ignoring constants, plus signs
and minus signs, are

x cos(2x), x sin(2x), cos(2x), sin(2x), (from x cos(2x)),

e−x sin(x), e−x cos(x), (from e−x sin(x)),

and
sin(2x), cos(2x), (from sin(2x)).

The first group absorbes the last group, since you can only count the different
terms. Therefore, there are only two families in this example:

{x cos(2x), x sin(2x), cos(2x), sin(2x)}
is a “family” (with “parent” x cos(2x) and the other terms as its “children”) and

{e−x sin(x), e−x cos(x)}
is a “family” (with “parent” e−x sin(x) and the other term as its “child”).

If any one of these terms agrees with y1 or y2 then multiply the entire family by
x. In other words, if any child or parent is “bad” then the entire family is “bad”.
(If, after this, any of them still agrees with y1 or y2 then multiply them all again
by x.)

• Let yp be a linear combination of these functions (your “guess”):

yp = A1t1(x) + ... + Aktk(x).

This is called the general form of the particular solution. The Ai’s are
called undetermined coefficients.

• Plug yp into (2.5) and solve for A1, ..., Ak.

• Let y = yh + yp = yp + c1y1 + c2y2. This is the general solution to (2.5).
If there are any initial conditions for (2.5), solve for then c1, c2 last - after the
undetermined coefficients.

2.3. UNDETERMINED COEFFICIENTS METHOD 67

Example 2.3.4. Solve

y′′′ − y′′ − y′ + y = 12xex.

We use Sage for this.

Sage

sage: x = var("x")
sage: y = function("y",x)
sage: R.<D> = PolynomialRing(QQ[I], "D")
sage: f = Dˆ3 - Dˆ2 - D + 1
sage: f.factor()

(D + 1) * (D - 1)ˆ2
sage: f.roots()

[(-1, 1), (1, 2)]

So the roots of the characteristic polynomial are 1, 1,−1, which means that the homogeneous
part of the solution is

yh = c1e
x + c2xex + c3e

−x.

Sage

sage: de = lambda y: diff(y,x,3) - diff(y,x,2) - diff(y,x,1) + y
sage: c1 = var("c1"); c2 = var("c2"); c3 = var("c3")
sage: yh = c1 * eˆx + c2 * x* eˆx + c3 * eˆ(-x)
sage: de(yh)

0
sage: de(xˆ3 * eˆx-(3/2) * xˆ2 * eˆx)

12* x* eˆx

This just confirmed that yh solves y′′′−y′′−y′+1 = 0. Using the derivatives of F (x) = 12xex,
we generate the general form of the particular:

Sage

sage: F = 12 * x* eˆx
sage: diff(F,x,1); diff(F,x,2); diff(F,x,3)

12* x* eˆx + 12 * eˆx
12* x* eˆx + 24 * eˆx
12* x* eˆx + 36 * eˆx

sage: A1 = var("A1"); A2 = var("A2")
sage: yp = A1 * xˆ2 * eˆx + A2 * xˆ3 * eˆx

68 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Now plug this into the DE and compare coefficients of like terms to solve for the underter-
mined coefficients:

Sage

sage: de(yp)
12* x* eˆx * A2 + 6* eˆx * A2 + 4* eˆx * A1

sage: solve([12 * A2 == 12, 6 * A2+4* A1 == 0],A1,A2)
[[A1 == -3/2, A2 == 1]]

Finally, lets check if this is correct:

Sage

sage: y = yh + (-3/2) * xˆ2 * eˆx + (1) * xˆ3 * eˆx
sage: de(y)

12* x* eˆx

Exercise: Using Sage , solve

y′′′ − y′′ + y′ − y = 12xex.

2.3.3 Annihilator method

We consider again the same type of differential equation as in the above subsection, but
take a slightly different approach here.

PROBLEM: Solve

ay′′ + by′ + cy = f(x). (2.6)

We assume that f(x) is of the form c · p(x) · eax · cos(bx), or c · p(x) · eax · sin(bx), where
a, b, c are constants and p(x) is a polynomial.

soln:

• Write the ODE in symbolic form (aD2 + bD + c)y = f(x).

• Find the “homogeneous solution” yh to ay′′ + by′ = cy = 0, yh = c1y1 + c2y2.

• Find the differential operator L which annihilates f(x): Lf(x) = 0. The following
annihilator table may help.

2.3. UNDETERMINED COEFFICIENTS METHOD 69

function annihilator

xk Dk+1

xkeax (D − a)k+1

xkeαx cos(βx) (D2 − 2αD + α2 + β2)k+1

xkeαx sin(βx) (D2 − 2αD + α2 + β2)k+1

• Find the general solution to the homogeneous ODE, L · (aD2 + bD + c)y = 0.

• Let yp be the function you get by taking the solution you just found and subtracting
from it any terms in yh.

• Solve for the undetermined coefficients in yp as in the method of undetermined coef-
ficients.

Example

Example 2.3.5. Solve
y′′ − y = cos(2x).

• The DE is (D2 − 1)y = cos(2x).

• The characteristic polynomial is r2−1 = 0, which has ±1 for roots. The “homogeneous
solution” is therefore yh = c1e

x + c2e
−x.

• We find L = D2 + 4 annihilates cos(2x).

• We solve (D2 + 4)(D2 − 1)y = 0. The roots of the characteristic polynomial (r2 +
4)(r2 − 1) are ±2i,±1. The solution is

y = A1 cos(2x) + A2 sin(2x) + A3e
x + A4e

−x.

• This solution agrees with yh in the last two terms, so we guess

yp = A1 cos(2x) + A2 sin(2x).

• Now solve for A1 and A2 as before: Compute both sides of y′′p − yp = cos(2x),

(−4A1 cos(2x) − 4A2 sin(2x)) − (A1 cos(2x) + A2 sin(2x)) = cos(2x).

Next, equate the coefficients of cos(2x), sin(2x) on both sides to get 2 equations in 2
unknowns. Solving, we get A1 = −1/5 and A2 = 0.

• The general solution: y = yh + yp = c1e
x + c2e

−x − 1
5 cos(2x).

Exercises: Solve the following problems using the method of undetermined coefficients:

70 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

1. (a) Find the general solution to x′′ − x′ − 20x = 0.

(b) Use the general solution to solve the initial value problem x′′ − x′ − 20x = 0,
x(0) = 1, x′(0) = 1.

2. Find the general solution to x′′ − x′ = t.

3. Find the general solution to y′′ + 4y = 2
cos (2x) .

2.4 Variation of parameters

The method of variation of parameters is originally attributed to Joseph Louis La-
grange (1736-1813), an Italian-born mathematician and astronomer, who worked much of
his professional life in Berlin and Paris [L-var]. It involves, at one step, a prepeated differ-
entiation which is theoretically described by the so-called Leibniz rule, described next.

2.4.1 The Leibniz rule

In general, the Leibniz rule (or generalized product rule) is

(fg)′ = f ′g + fg′,

(fg)′′ = f ′′g + 2f ′g′ + fg′′,

(fg)′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′,

and so on, where the coefficients occurring in (fg)(n) are binomial coefficients

(

n
i

)

computed for example using Pascal’s triangle,

1

1 1

1 2 1

1 3 3 1,

1 4 6 4 1,

and so on. (For second order ODEs, we only need the first two Leibntiz rules.)

Using Sage , this can be checked as follows:

2.4. VARIATION OF PARAMETERS 71

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: y = function(’y’, t)
sage: diff(x(t) * y(t),t)
x(t) * diff(y(t), t, 1) + y(t) * diff(x(t), t, 1)
sage: diff(x(t) * y(t),t,t)
x(t) * diff(y(t), t, 2) + 2 * diff(x(t), t, 1) * diff(y(t), t, 1)

+ y(t) * diff(x(t), t, 2)
sage: diff(x(t) * y(t),t,t,t)
x(t) * diff(y(t), t, 3) + 3 * diff(x(t), t, 1) * diff(y(t), t, 2)

+ 3* diff(x(t), t, 2) * diff(y(t), t, 1) + y(t) * diff(x(t), t, 3)

2.4.2 The method

Consider an ordinary constant coefficient non-homogeneous 2nd order linear differential
equation,

ay′′ + by′ + cy = F (x)

where F (x) is a given function and a, b, and c are constants. (The varation of parameters
method works even if a, b, and c depend on the independent variable x. However, for
simplicity, we assume that they are constants here.)

Let y1(x), y2(x) be fundamental solutions of the corresponding homogeneous equation

ay′′ + by′ + cy = 0.

Starts by assuming that there is a particular solution in the form

yp(x) = u1(x)y1(x) + u2(x)y2(x), (2.7)

where u1(x), u2(x) are unknown functions [V-var]. We want to solve for u1 and u2.
By assumption, yp solves the ODE, so

ay′′p + by′p + cyp = F (x).

After some algebra, this becomes:

a(u′
1y1 + u′

2y2)
′ + a(u′

1y
′
1 + u′

2y
′
2) + b(u′

1y1 + u′
2y2) = F.

If we assume

u′
1y1 + u′

2y2 = 0

then we get massive simplification:

a(u′
1y

′
1 + u′

2y
′
2) = F.

72 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Cramer’s rule (Lemma 2.2.1) implies that the solution to this system is

u′
1 =

det

(

0 y2

F (x) y′2

)

det

(

y1 y2

y′1 y′2

) , u′
2 =

det

(

y1 0
y′1 F (x)

)

det

(

y1 y2

y′1 y′2

) . (2.8)

(Note that the Wronskian W (y1, y2) of the fundamental solutions is in the denominator.)
Solve these for u1 and u2 by integration and then plug them back into (2.7) to get your
particular solution.

Example 2.4.1. Solve

y′′ + y = tan(x).

soln: The functions y1 = cos(x) and y2 = sin(x) are fundamental solutions with Wronskian
W (cos(x), sin(x)) = 1. The formulas (2.8) become:

u′
1 =

det

(

0 sin(x)
tan(x) cos(x)

)

1
, u′

2 =

det

(

cos(x) 0
− sin(x) tan(x)

)

1
.

Therefore,

u′
1 = −sin2(x)

cos(x)
, u′

2 = sin(x).

Therefore, using methods from integral calculus, u1 = − ln | tan(x) + sec(x)| + sin(x) and
u2 = − cos(x). Using Sage , this can be check as follows:

Sage

sage: integral(-sin(t)ˆ2/cos(t),t)
-log(sin(t) + 1)/2 + log(sin(t) - 1)/2 + sin(t)
sage: integral(cos(t)-sec(t),t)
sin(t) - log(tan(t) + sec(t))
sage: integral(sin(t),t)
-cos(t)

As you can see, there are other forms the answer can take. The particular solution is

yp = (− ln | tan(x) + sec(x)| + sin(x)) cos(x) + (− cos(x)) sin(x).

The homogeneous (or complementary) part of the solution is

yh = c1 cos(x) + c2 sin(x),

so the general solution is

2.5. APPLICATIONS OF DES: SPRING PROBLEMS 73

y = yh + yp = c1 cos(x) + c2 sin(x)
+(− ln | tan(x) + sec(x)| + sin(x)) cos(x) + (− cos(x)) sin(x).

Using Sage , this can be carried out as follows:

Sage

sage: SR = SymbolicExpressionRing()
sage: MS = MatrixSpace(SR, 2, 2)
sage: W = MS([[cos(t),sin(t)],[diff(cos(t), t),diff(sin (t), t)]])
sage: W

[cos(t) sin(t)]
[-sin(t) cos(t)]
sage: det(W)
sin(t)ˆ2 + cos(t)ˆ2
sage: U1 = MS([[0,sin(t)],[tan(t),diff(sin(t), t)]])
sage: U2 = MS([[cos(t),0],[diff(cos(t), t),tan(t)]])
sage: integral(det(U1)/det(W),t)
-log(sin(t) + 1)/2 + log(sin(t) - 1)/2 + sin(t)
sage: integral(det(U2)/det(W),t)
-cos(t)

Exercises:

1. Find the general solution to y′′ + 4y = 2
cos (2x) using variation of parameters.

2. Use Sage to solve y′′ + y = cot(x).

2.5 Applications of DEs: Spring problems

Ut tensio, sic vis2.
- Robert Hooke, 1678

2.5.1 Part 1

One of the ways DEs arise is by means of modeling physical phenomenon, such as spring
equations. For these problems, consider a spring suspended from a ceiling. We shall consider
three cases: (1) no mass is attached at the end of the spring, (2) a mass is attached and
the system is in the rest position, (3) a mass is attached and the mass has been displaced
from the rest position.

2“As the extension, so the force.”

74 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Figure 2.5: A spring at
rest, without mass at-
tached.

Figure 2.6: A spring
at rest, with mass at-
tached.

Figure 2.7: A spring in
motion.

One can also align the springs left-to-right instead of top-to-bottom, without changing
the discussion below.

Notation: Consider the first two situations above: (a) a spring at rest, without mass
attached and (b) a spring at rest, with mass attached. The distance the mass pulls the
spring down is sometimes called the “stretch”, and denoted s. (A formula for s will be
given later.)

Now place the mass in motion by imparting some initial velocity (tapping it upwards with
a hammer, say, and start your timer). Consider the second two situations above: (a) a
spring at rest, with mass attached and (b) a spring in motion. The difference between these
two positions at time t is called the displacement and is denoted x(t). Signs here will be
choosen so that down is positive.

Assume exactly three forces act:

1. the restoring force of the spring, Fspring,

2. an external force (driving the ceiling up and down, but may be 0), Fext,

3. a damping force (imagining the spring immersed in oil or that it is in fact a shock
absorber on a car), Fdamp.

In other words, the total force is given by

Ftotal = Fspring + Fext + Fdamp.

Physics tells us that the following are approximately true:

2.5. APPLICATIONS OF DES: SPRING PROBLEMS 75

1. (Hooke’s law [H-intro]): Fspring = −kx, for some “spring constant” k > 0,

2. Fext = F (t), for some (possibly zero) function F ,

3. Fdamp = −bv, for some “damping constant” b ≥ 0 (where v denotes velocity),

4. (Newton’s 2nd law [N-mech]): Ftotal = ma (where a denotes acceleration).

Putting this all together, we obtain mx′′ = ma = −kx + F (t)− bv = −kx + F (t) − bx′, or

mx′′ + bx′ + kx = F (t).

This is the spring equation. When b = F (t) = 0 this is also called the equation for simple
harmonic motion. The solution in the case of simple harmonic motion has the form

x(t) = c1 cos(ωt) + c2 sin(ωt),

where ω =
√

k/m. There is a more compact and useful form of the solution, A sin(ωt + φ),
useful for graphing. This compact form is obtained using the formulas

c1 cos(ωt) + c2 sin(ωt) = A sin(ωt + φ), (2.9)

where A =
√

c2
1 + c2

2 denotes the amplitude and φ = 2arctan(c1
c2+A) is the phase shift.

Consider again first two figures above: (a) a spring at rest, without mass attached and
(b) a spring at rest, with mass attached. The mass in the second figure is at rest, so
the gravitational force on the mass, mg, is balanced by the restoring force of the spring:
mg = ks, where s is the stretch.In particular, the spring constant can be computed from
the stretch:

k = mg
s .

Example 2.5.1. A spring at rest is suspended from the ceiling without mass. A 2 kg
weight is then attached to this spring, stretching it 9.8 cm. From a position 2/3 m above
equilibrium the weight is give a downward velocity of 5 m/s.

(a) Find the equation of motion.

(b) What is the amplitude and period of motion?

(c) At what time does the mass first cross equilibrium?

(d) At what time is the mass first exactly 1/2 m below equilibrium?

76 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

We shall solve this problem using Sage below. Note m = 2, b = F (t) = 0 (since no
damping or external force is even mentioned), and the stretch is s = 9.8 cm = 0.098 m.
Therefore, the spring constant is given by k = mg/s = 2 · 9.8/(0.098) = 200. Therefore,
the DE is 2x′′ + 200x = 0. This has general solution x(t) = c1 cos(10t) + c2 sin(10t). The
constants c1 and c2 can be computed from the initial conditions x(0) = −2/3 (down is
positive, up is negative), x′(0) = 5.

Using Sage , the displacement can be computed as follows:

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: m = var(’m’)
sage: b = var(’b’)
sage: k = var(’k’)
sage: F = var(’F’)
sage: de = lambda y: m * diff(y,t,t) + b * diff(y,t) + k * y - F
sage: de(x)
b* D[0](x)(t) + k * x(t) + m * D[0, 0](x)(t) - F
sage: m = 2; b = 0; k = 200; F = 0
sage: de(x)
200.000000000000 * x(t) + 2 * D[0, 0](x)(t)
sage: desolve(de(x),[x,t])
k1 * sin(10 * t)+k2 * cos(10 * t)
sage: print desolve_laplace(de(x(t)),["t","x"],[0,-2/ 3,5])
sin(10 * t)/2-2 * cos(10 * t)/3

Now we write this in the more compact and useful form A sin(ωt + φ) using formula (2.9)
and Sage .

Sage

sage: c1 = -2/3; c2 = 1/2
sage: A = sqrt(c1ˆ2 + c2ˆ2)
sage: A
5/6
sage: phi = 2 * atan(c1/(c2 + A))
sage: phi
-2 * atan(1/2)
sage: RR(phi)
-0.927295218001612
sage: sol = lambda t: c1 * cos(10 * t) + c2 * sin(10 * t)
sage: sol2 = lambda t: A * sin(10 * t + phi)
sage: P = plot(sol(t),0,2)
sage: show(P)

This plot is displayed in Figure 2.8.

2.5. APPLICATIONS OF DES: SPRING PROBLEMS 77

Figure 2.8: Plot of 2x′′ + 200x = 0, x(0) = −2/3, x′(0) = 5, for 0 < t < 2.

(You can also, if you want, type show(plot(sol2(t),0,2)) to check that these two func-
tions are indeed the same.) Of course, the period is 2π/10 = π/5 ≈ 0.628.

To answer (c) and (d), we solve x(t) = 0 and x(t) = 1/2:

Sage

sage: solve(A * sin(10 * t + phi) == 0,t)
[t == atan(1/2)/5]
sage: RR(atan(1/2)/5)
0.0927295218001612
sage: solve(A * sin(10 * t + phi) == 1/2,t)
[t == (asin(3/5) + 2 * atan(1/2))/10]
sage: RR((asin(3/5) + 2 * atan(1/2))/10)
0.157079632679490

In other words, x(0.0927...) ≈ 0, x(0.157...) ≈ 1/2.

Exercise: Using the problem above and Sage , answer the following questions.

(a) At what time does the weight pass through the equilibrium position heading down for
the 2nd time?

(b) At what time is the weight exactly 5/12 m below equilibrium and heading up?

78 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

2.5.2 Part 2

Recall from the previos subsection, the spring equation

mx′′ + bx′ + kx = F (t)

where x(t) denotes the displacement at time t.

Until otherwise stated, we assume there is no external force: F (t) = 0.

The roots of the characteristic polynomial mD2 + bD = k = 0 are

−b ±
√

b2 − 4mk

2m
,

by the quadratic formula. There are three cases:

(a) real distinct roots: in this case the discriminant b2 − 4mk is positive, so b2 > 4mk. In
other words, b is “large”. This case is referred to as overdamped. In this case, the
roots are negative,

r1 =
−b −

√
b2 − 4mk

2m
< 0, and r1 =

−b +
√

b2 − 4mk

2m
< 0,

so the solution x(t) = c1e
r1t + c2e

r2t is exponentially decreasing.

(b) real repeated roots: in this case the discriminant b2−4mk is zero, so b =
√

4mk. This
case is referred to as critically damped. This case is said to model new suspension
systems in cars [D-spr].

(c) Complex roots: in this case the discriminant b2 − 4mk is negative, so b2 < 4mk.
In other words, b is “small”. This case is referred to as underdamped (or simple
harmonic when b = 0).

Example 2.5.2. An 8 lb weight stretches a spring 2 ft. Assume a damping force numerically
equal to 2 times the instantaneous velocity acts. Find the displacement at time t, provided
that it is released from the equilibrium position with an upward velocity of 3 ft/s. Find the
equation of motion and classify the behaviour.

We know m = 8/32 = 1/4, b = 2, k = mg/s = 8/2 = 4, x(0) = 0, and x′(0) = −3. This
means we must solve

1

4
x′′ + 2x′ + 4x = 0, x(0) = 0, x′(0) = −3.

2.5. APPLICATIONS OF DES: SPRING PROBLEMS 79

The roots of the characteristic polynomial are −4 and −4 (so we are in the repeated real
roots case), so the general solution is x(t) = c1e

−4t + c2te
−4t. The initial conditions imply

c1 = 0, c2 = −3, so

x(t) = −3te−4t.

Using Sage , we can compute this as well:

Sage

sage: t = var(‘‘t’’)
sage: x = function(‘‘x’’)
sage: de = lambda y: (1/4) * diff(y,t,t) + 2 * diff(y,t) + 4 * y
sage: de(x(t))
diff(x(t), t, 2)/4 + 2 * diff(x(t), t, 1) + 4 * x(t)
sage: desolve(de(x(t)),[x,t])
’(%k2 * t+%k1) * %eˆ-(4 * t)’
sage: desolve_laplace(de(x(t)),[‘‘t’’,’’x’’],[0,0,-3])
’-3 * t * %eˆ-(4 * t)’
sage: f = lambda t : -3 * t * eˆ(-4 * t)
sage: P = plot(f,0,2)
sage: show(P)

The graph is shown in Figure 2.9.

Figure 2.9: Plot of (1/4)x′′ + 2x′ + 4x = 0, x(0) = 0, x′(0) = −3, for 0 < t < 2.

Example 2.5.3. An 2 kg weight is attached to a spring having spring constant 10. Assume
a damping force numerically equal to 4 times the instantaneous velocity acts. Find the

80 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

displacement at time t, provided that it is released from 1 m below equilibrium with an
upward velocity of 1 ft/s. Find the equation of motion and classify the behaviour.

Using Sage , we can compute this as well:

Sage

sage: t = var(‘‘t’’)
sage: x = function(‘‘x’’)
sage: de = lambda y: 2 * diff(y,t,t) + 4 * diff(y,t) + 10 * y
sage: desolve_laplace(de(x(t)),["t","x"],[0,1,1])
’%eˆ-t * (sin(2 * t)+cos(2 * t))’
sage: desolve_laplace(de(x(t)),["t","x"],[0,1,-1])
’%eˆ-t * cos(2 * t)’
sage: sol = lambda t: eˆ(-t) * cos(2 * t)
sage: P = plot(sol(t),0,2)
sage: show(P)
sage: P = plot(sol(t),0,4)
sage: show(P)

The graph is shown in Figure 2.10.

Figure 2.10: Plot of 2x′′ + 4x′ + 10x = 0, x(0) = 1, x′(0) = −1, for 0 < t < 4.

Exercise: Refer to Example 2.5.3 above. Use Sage to find what time the weight passes
through the equilibrium position heading down for the 2nd time.

Exercise: An 2 kg weight is attached to a spring having spring constant 10. Assume a
damping force numerically equal to 4 times the instantaneous velocity acts. Use Sage to
find the displacement at time t, provided that it is released from 1 m below equilibrium
(with no initial velocity).

2.5. APPLICATIONS OF DES: SPRING PROBLEMS 81

2.5.3 Part 3

If the frequency of the driving force of the spring matches the frequency of the homogeneous
part xh(t), in other words if

x′′ + ω2x = F0 cos(γt),

satisfies ω = γ then we say that the spring-mass system is in (pure or mechanical)
resonance and γ is called the resonance frequency. This notion models a mechanical
system when the frequency of its oscillations matches the system’s natural frequency of
vibration. It may cause violent vibrations in certain structures, such as small airplanes (a
phenomenon known as resonance “disaster”).

Example 2.5.4. Solve

x′′ + ω2x = F0 cos(γt), x(0) = 0, x′(0) = 0,

where ω = γ = 2 (ie, mechanical resonance). We use Sage for this:

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: (m,b,k,w,F0) = var("m,b,k,w,F0")
sage: de = lambda y: diff(y,t,t) + wˆ2 * y - F0 * cos(w * t)
sage: m = 1; b = 0; k = 4; F0 = 1; w = 2
sage: desolve(de(x),[x,t])
k1 * sin(2 * t) + k2 * cos(2 * t) + 1/4 * t * sin(2 * t) + 1/8 * cos(2 * t)
sage: soln = lambda t : t * sin(2 * t)/4 # this is the soln satisfying the ICs
sage: P = plot(soln(t),0,10)
sage: show(P)

This is displayed in Figure 2.5.4.

Example 2.5.5. Solve

x′′ + ω2x = F0 cos(γt), x(0) = 0, x′(0) = 0,

where ω = 2 and γ = 3 (ie, mechanical resonance). We use Sage for this:

Sage

sage: t = var(’t’)
sage: x = function(’x’, t)
sage: (m,b,k,w,g,F0) = var("m,b,k,w,g,F0")
sage: de = lambda y: diff(y,t,t) + wˆ2 * y - F0 * cos(g * t)
sage: m = 1; b = 0; k = 4; F0 = 1; w = 2; g = 3

82 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Figure 2.11: A forced undamped spring, with resonance.

sage: desolve(de(x),[x,t])
k1 * sin(2 * t) + k2 * cos(2 * t) - 1/5 * cos(3 * t)
sage: soln = lambda t : cos(2 * t)/5-cos(3 * t)/5 # this is the soln satisfying the ICs
sage: P = plot(soln(t),0,10)
sage: show(P)

This is displayed in Figure 2.5.5.

Figure 2.12: A forced undamped spring, no resonance.

2.6. APPLICATIONS TO SIMPLE LRC CIRCUITS 83

EE object term in DE units symbol
(the voltage drop)

charge q =
∫

i(t) dt coulombs
current i = q′ amps

emf e = e(t) volts V

resistor Rq′ = Ri ohms Ω

capacitor C−1q farads

inductor Lq′′ = Li′ henries

Figure 2.13: Dictionary for electrical circuits

2.6 Applications to simple LRC circuits

An LRC circuit is a closed loop containing an inductor of L henries, a resistor of R ohms,
a capacitor of C farads, and an EMF (electro-motive force), or battery, of E(t) volts, all
connected in series.

They arise in several engineering applications. For example, AM/FM radios with analog
tuners typically use an LRC circuit to tune a radio frequency. Most commonly a variable
capacitor is attached to the tuning knob, which allows you to change the value of C in the
circuit and tune to stations on different frequencies [R-cir].

We use the following “dictionary” to translate between the diagram and the DEs.
Next, we recall the circuit laws of Gustav Kirchoff (also spelled Kirchhoff), a German

physicist who lived from 1824 to 1887. He was born in Königsberg, which was part of
Germany but is now part of the Kaliningrad Oblast, which is an an exclave of Russia
surrounded by Lithuania, Poland, and the Baltic Sea.

Kirchoff’s First Law: The algebraic sum of the currents travelling into any node is zero.

Kirchoff’s Second Law: The algebraic sum of the voltage drops around any closed loop
is zero.

Generally, the charge at time t on the capacitor, q(t), satisfies the DE

Lq′′ + Rq′ +
1

C
q = E(t). (2.10)

Example 2.6.1. In this example, we model a very simple type of radio tuner, using a
variable capacitor to represent the tuning dial. Consider the simple LC circuit given by the
diagram in Figure 2.14.

According to Kirchoff’s 2nd Law and the above “dictionary”, this circuit corresponds to
the DE

84 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Figure 2.14: A simple LC circuit.

q′′ +
1

C
q = sin(2t) + sin(11t).

The homogeneous part of the solution is

qh(t) = c1 cos(t/
√

C) + c1 sin(t/
√

C).

If C 6= 1/4 and C 6= 1/121 then

qp(t) =
1

C−1 − 4
sin(2t) +

1

C−1 − 121
sin(11t).

When C = 1/4 and the initial charge and current are both zero, the solution is

q(t) = − 1

117
sin(11t) +

161

936
sin(2t) − 1

4
t cos(2t).

Sage

sage: t = var("t")
sage: q = function("q",t)
sage: L,R,C = var("L,R,C")
sage: E = lambda t:sin(2 * t)+sin(11 * t)
sage: de = lambda y: L * diff(y,t,t) + R * diff(y,t) + (1/C) * y-E(t)
sage: L,R,C=1,0,1/4
sage: de(q)
-sin(2 * t) - sin(11 * t) + 4 * q(t) + D[0, 0](q)(t)
sage: print desolve_laplace(de(q(t)),["t","q"],[0,0,0])
-sin(11 * t)/117+161 * sin(2 * t)/936-t * cos(2 * t)/4
sage: soln = lambda t: -sin(11 * t)/117+161 * sin(2 * t)/936-t * cos(2 * t)/4
sage: P = plot(soln,0,10)
sage: show(P)

This is displayed in Figure 2.6.1.

2.6. APPLICATIONS TO SIMPLE LRC CIRCUITS 85

Figure 2.15: A LC circuit, with resonance.

You can see how the frequency ω = 2 dominates the other terms.

When 0 < R < 2
√

L/C the homogeneous form of the charge in (2.10) has the form

qh(t) = c1e
αt cos(βt) + c2e

αt sin(βt),

where α = −R/2L < 0 and β =
√

4L/C − R2/(2L). This is sometimes called the transient
part of the solution. The remaining terms in the charge are called the steady state terms.

Example 2.6.2. An LRC circuit has a 1 henry inductor, a 2 ohm resistor, 1/5 farad
capacitor, and an EMF of 50 cos(t). If the initial charge and current is 0, since the charge
at time t.

The IVP describing the charge q(t) is

q′′ + 2q′ + 5q = 50 cos(t), q(0) = q′(0) = 0.

The homogeneous part of the solution is

qh(t) = c1e
−t cos(2t) + c2e

−t sin(2t).

The general form of the particular solution using the method of undetermined coefficients
is

qp(t) = A1 cos(t) + A2 sin(t).

Solving for A1 and A2 gives

qp(t) = −10e−t cos(2t) − 15

2
e−t sin(2t).

86 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Sage

sage: t = var("t")
sage: q = function("q",t)
sage: L,R,C = var("L,R,C")
sage: E = lambda t: 50 * cos(t)
sage: de = lambda y: L * diff(y,t,t) + R * diff(y,t) + (1/C) * y-E(t)
sage: L,R,C = 1,2,1/5
sage: desolve(de(q),[q,t])
(k1 * sin(2 * t) + k2 * cos(2 * t)) * eˆ(-t) + 5 * sin(t) + 10 * cos(t)
sage: soln = lambda t: eˆ(-t) * (-15 * sin(2 * t)/2-10 * cos(2 * t))\

+5* sin(t)+10 * cos(t) # the soln to the above ODE+ICs
sage: P = plot(soln,0,10)
sage: soln_ss = lambda t: 5 * sin(t)+10 * cos(t)
sage: P_ss = plot(soln_ss,0,10,linestyle=":")
sage: soln_tr = lambda t: eˆ(-t) * (-15 * sin(2 * t)/2-10 * cos(2 * t))
sage: P_tr = plot(soln_tr,0,10,linestyle="--")
sage: show(P+P_ss+P_tr)

This plot (the solution superimposed with the transient part of the solution) is displayed
in Figure 2.6.2.

Figure 2.16: A LRC circuit, with damping, and the transient part (dashed) of the solution.

Exercise: Use Sage to solve

q′′ +
1

C
q = sin(2t) + sin(11t), q(0) = q′(0) = 0,

in the case C = 1/121.

2.7. THE POWER SERIES METHOD 87

2.7 The power series method

2.7.1 Part 1

In this part, we recall some basic facts about power series and Taylor series. We will turn
to solving ODEs in part 2.

Roughly speaking, power series are simply infinite degree polynomials

f(x) = a0 + a1x + a2x
2 + ... =

∞
∑

k=0

akx
k, (2.11)

for some real or complex numbers a0, a1, A power series is a way of expressing a
“complicated” function f(x) as a sum of “simple” functions like x, x2, The number
ak is called the coefficient of xk, for k = 0, 1, Let us ignore for the moment the precise
meaning of this infinite sum. (How do you associate a value to an infinite sum? Does the
sum converge for some values of x? If so, for which values? ...) We will return to that issue
later.

First, some motivation. Why study these? This type of function is convenient for several
reasons

• it is easy to differentiate a power series (term-by-term):

f ′(x) = a1 + 2a2x + 3a3x
2 + ... =

∞
∑

k=0

kakx
k−1 =

∞
∑

k=0

(k + 1)ak+1x
k,

• it is easy to integrate such a series (term-by-term):

∫

f(x) dx = a0x +
1

2
a1x

2 +
1

3
a2x

3 + ... =
∞
∑

k=0

1

k + 1
akx

k+1 =
∞
∑

k=1

1

k
ak+1x

k,

• if (as is often the case) the summands akx
k’s tend to zero very quickly, then the sum

of the first few terms of the series are often a good numerical approximation for the
function itself,

• power series enable one to reduce the solution of certain differential equations down
to (often the much easier problem of) solving certain recurrence relations.

• Power series expansions arise naturally in Taylor’s theorem from differential calculus.

Theorem 2.7.1. (Taylor’s Theorem) If f(x) is n + 1 times continuously differen-
tiable in (a, x) then there exists a point ξ ∈ (a, x) such that

88 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

f(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · ·

+
(x − a)n

n!
f (n)(a) +

(x − a)n+1

(n + 1)!
f (n+1)(ξ). (2.12)

The sum

Tn(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · · + (x − a)n

n!
f (n)(a),

is called the n-th degree Taylor polynomial of f centered at a. For the case
n = 0, the formula is

f(x) = f(a) + (x − a)f ′(ξ),

which is just a rearrangement of the terms in the mean value theorem from differ-
ential calculus,

f ′(ξ) =
f(x) − f(a)

x − a
.

The Taylor series of f centered at a is the series

f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · · .

When this series converges to f(x) at each point x in some inverval centered about a then
we say f has a Taylor series expansion (or Taylor series representation) at a. A Taylor
series is basically just a power series but using powers of x − a instead of powers of x.

As the examples below indicate, many of the functions you are used to seeing from calculus
have a Taylor series representation.

• Geometric series:

1

1 − x
= 1 + x + x2 + x3 + x4 + · · ·

=

∞
∑

n=0

xn (2.13)

To see this, assume |x| < 1 and let n → ∞ in the polynomial identity

1 + x + x2 + · · · + xn−1 =
1 − xn+1

1 − x
.

For x ≥ 1, the series does not converge.

2.7. THE POWER SERIES METHOD 89

• The exponential function:

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ · · ·

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

=

∞
∑

n=0

xn

n!
(2.14)

To see this, take f(x) = ex and a = 0 in Taylor’s theorem (2.12), using the fact that
d
dxex = ex and e0 = 1:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
+

ξn+1

(n + 1)!
,

for some ξ between 0 and x. Perhaps it is not clear to everyone that as n becomes
larger and larger (x fixed), the last (“remainder”) term in this sum goes to 0. However,
Stirling’s formula tells us how large the factorial function grows,

n! ∼
√

2πn
(n

e

)n
(1 + O(

1

n
)),

so we may indeed take the limit as n → ∞ to get (2.14).

Wikipedia’s entry on “Power series” [P1-ps] has a nice animation showing how more
and more terms in the Taylor polynomials approximate ex better and better. This ani-
mation can also be constructed using Sage (http://wiki.sagemath.org/interact/calculus#TaylorSeries

• The cosine function:

cos x = 1 − x2

2
+

x4

24
− x6

720
+ · · ·

= 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

=
∞
∑

n=0

(−1)n
x2n

(2n)!
(2.15)

This too follows from Taylor’s theorem (take f(x) = cos x and a = 0). However, there
is another trick: Replace x in (2.14) by ix and use the fact (“Euler’s formula”) that
eix = cos(x) + i sin(x). Taking real parts gives (2.15). Taking imaginary parts gives
(2.16), below.

90 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

• The sine function:

sin x = x − x3

6
+

x5

120
− x7

5040
+ · · ·

= 1 − x3

3!
+

x5

5!
− x7

7!
+ · · ·

=
∞
∑

n=0

(−1)n
x2n+1

(2n + 1)!
(2.16)

Indeed, you can formally check (using formal term-by-term differentiation) that

− d

dx
cos(x) = sin(x).

(Alternatively, you can use this fact to deduce (2.16) from (2.15).)

• The logarithm function:

log(1 − x) = −x − 1

2
x2 − 1

3
x3 − 1

4
x4 + · · ·

= −
∞
∑

n=0

1

n
xn (2.17)

This follows from (2.13) since (using formal term-by-term integration)

∫ x

0

1

1 − t
= − log(1 − x).

Sage

sage: taylor(sin(x), x, 0, 5)
x - xˆ3/6 + xˆ5/120

sage: P1 = plot(sin(x),0,pi)
sage: P2 = plot(x,0,pi,linestyle="--")
sage: P3 = plot(x-xˆ3/6,0,pi,linestyle="-.")
sage: P4 = plot(x-xˆ3/6+xˆ5/120,0,pi,linestyle=":")
sage: T1 = text("x",(3,2.5))
sage: T2 = text("x-xˆ3/3!",(3.5,-1))
sage: T3 = text("x-xˆ3/3!+xˆ5/5!",(3.7,0.8))
sage: T4 = text("sin(x)",(3.4,0.1))
sage: show(P1+P2+P3+P4+T1+T2+T3+T4)

This is displayed in Figure 2.17.

Exercise: Use Sage to plot successive Taylor polynomial approximations for cos(x).

2.7. THE POWER SERIES METHOD 91

Figure 2.17: Taylor polynomial approximations for sin(x).

Finally, we turn to the meaning of these sums. How do you associate a value to an infinite
sum? Does the sum converge for some values of x? If so, for which values? . We will (for
the most part) answer all of these.

First, consider our infinite power series f(x) in (2.11), where the ak are all given and x is
fixed for the momemnt. The partial sums of this series are

f0(x) = a0, f1(x) = a0 + a1x, f2(x) = a0 + a1x + a2x
2, · · · .

We say that the series in (2.11) converges at x if the limit of partial sums

lim
n→∞

fn(x)

exists. There are several tests for determining whether or not a series converges. One of
the most commonly used tests is the

Root test: Assume

L = lim
k→∞

|akx
k|1/k = |x| lim

k→∞
|ak|1/k

exists. If L < 1 then the infinite power series f(x) in (2.11) converges at x. In general,
(2.11) converges for all x satisfying

− lim
k→∞

|ak|−1/k < x < lim
k→∞

|ak|−1/k.

The number limk→∞ |ak|−1/k (if it exists, though it can be ∞) is called the radius of
convergence.

Example 2.7.1. The radius of convergence of ex (and cos(x) and sin(x)) is ∞. The radius
of convergence of 1/(1 − x) (and log(1 + x)) is 1.

92 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Example 2.7.2. The radius of convergence of

f(x) =

∞
∑

k=0

k7 + k + 1

2k + k2
xk

can be determined with the help of Sage . We want to compute

lim
k→∞

|k
7 + k + 1

2k + k2
|−1/k.

Sage

sage: k = var(’k’)
sage: limit(((kˆ7+k+1)/(2ˆk+kˆ2))ˆ(-1/k),k=infinity)
2

In other words, the series converges for all x satisfying −2 < x < 2.

Exercise: Use Sage to find the radius of convergence of

f(x) =

∞
∑

k=0

k3 + 1

3k + 1
x2k

2.7.2 Part 2

In this part, we solve some DEs using power series.

We want to solve a problem of the form

y′′(x) + p(x)y′(x) + y(x) = f(x), (2.18)

in the case where p(x), q(x) and f(x) have a power series expansion. We will call a power
series solution a series expansion for y(x) where we have produced some algorithm or rule
which enables us to compute as many of its coefficients as we like.

Solution strategy: Write y(x) = a0 + a1x + a2x
2 + ... =

∑∞
k=0 akx

k, for some real or
complex numbers a0, a1,

• Plug the power series expansions for y, p, q, and f into the DE (2.18).

2.7. THE POWER SERIES METHOD 93

• Comparing coefficients of like powers of x, derive relations between the aj’s.

• Using these recurrence relations [R-ps] and the ICs, solve for the coefficients of the
power series of y(x).

Example 2.7.3. Solve y′ − y = 5, y(0) = −4, using the power series method.

This is easy to solve by undetermined coefficients: yh(x) = c1e
x and yp(x) = A1. Solving

for A1 gives A1 = −5 and then solving for c1 gives −4 = y(0) = −5 + c1e
0 so c1 = 1 so

y = ex − 5.

Solving this using power series, we compute

y′(x) = a1 + 2a2x + 3a3x
2 + ... =

∑∞
k=0(k + 1)ak+1x

k

−y(x) = −a0 − a1x − a2x
2 − ... =

∑∞
k=0 −akx

k

−−−− −− −−−−−−−−−−−−−−−−−−−−−−−−
5 = (−a0 + a1) + (−a1 + 2a2)x + ... =

∑∞
k=0(−ak + (k + 1)ak+1)x

k

Comparing coefficients,

• for k = 0: 5 = −a0 + a1,

• for k = 1: 0 = −a1 + 2a2,

• for general k: 0 = −ak + (k + 1)ak+1 for k > 0.

The IC gives us −4 = y(0) = a0, so

a0 = −4, a1 = 1, a2 = 1/2, a3 = 1/6, · · · , ak = 1/k!.

This implies

y(x) = −4 + x + x/2 + · · · + xk/k! + · · · = −5 + ex,

which is in agreement from the previous discussion.

Example 2.7.4. Solve Bessel’s equation [B-ps] of the 0-th order,

x2y′′ + xy′ + x2y = 0, y(0) = 1, y′(0) = 0,

using the power series method.

This DE is so well-known (it has important applications to physics and engineering)
that the series expansion has already been worked out (most texts on special functions or
differential equations have this but an online reference is [B-ps]). Its Taylor series expansion
around 0 is:

94 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

J0(x) =
∞
∑

m=0

(−1)m

m!2

(x

2

)2m

for all x. We shall see below that y(x) = J0(x).
Let us try solving this ourselves using the power series method. We compute

x2y′′(x) = 0 + 0 · x + 2a2x
2 + 6a3x

3 + 12a4x
4 + ... =

∑∞
k=0(k + 2)(k + 1)ak+2x

k

xy′(x) = 0 + a1x + 2a2x
2 + 3a3x

3 + ... =
∑∞

k=0 kakx
k

x2y(x) = 0 + 0 · x + a0x
2 + a1x

3 + ... =
∑∞

k=2 ak−2x
k

−−−− −− −−−−−−−−−−−−−−−−−−−−−−−−
0 = 0 + a1x + (a0 + 4a2)x

2 + = a1x +
∑∞

k=2(ak−2 + k2ak)x
k.

By the ICs, a0 = 1, a1 = 0. Comparing coefficients,

k2ak = −ak−2, k ≥ 2,

which implies

a2 = −(
1

2
)2, a3 = 0, a4 = (

1

2
· 1

4
)2, a5 = 0, a6 = −(

1

2
· 1

4
· 1

6
)2, · · · .

In general,

a2k = (−1)k2−2k 1

k!2
, a2k+1 = 0,

for k ≥ 1. This is in agreement with the series above for J0.
Some of this computation can be formally done in Sage using power series rings.

Sage

sage: R6.<a0,a1,a2,a3,a4,a5,a6> = PolynomialRing(QQ,7)
sage: R.<x> = PowerSeriesRing(R6)
sage: y = a0 + a1 * x + a2 * xˆ2 + a3 * xˆ3 + a4 * xˆ4 + a5 * xˆ5 +\

a6* xˆ6 + O(xˆ7)
sage: y1 = y.derivative()
sage: y2 = y1.derivative()
sage: xˆ2 * y2 + x * y1 + xˆ2 * y
a1* x + (a0 + 4 * a2) * xˆ2 + (a1 + 9 * a3) * xˆ3 + (a2 + 16 * a4) * xˆ4 +\

(a3 + 25 * a5) * xˆ5 + (a4 + 36 * a6) * xˆ6 + O(xˆ7)

This is consistent with our “paper and pencil” computations above.

Sage knows quite a few special functions, such as the various types of Bessel functions.

Sage

sage: b = lambda x:bessel_J(x,0)

2.7. THE POWER SERIES METHOD 95

sage: P = plot(b,0,20,thickness=1)
sage: show(P)
sage: y = lambda x: 1 - (1/2)ˆ2 * xˆ2 + (1/8)ˆ2 * xˆ4 - (1/48)ˆ2 * xˆ6
sage: P1 = plot(y,0,4,thickness=1)
sage: P2 = plot(b,0,4,linestyle="--")
sage: show(P1+P2)

This is displayed in Figure 2.18-2.19.

Figure 2.18: The Bessel function J0(x), for
0 < x < 20.

Figure 2.19: A Taylor polynomial approxi-
mation for J0(x).

Exercises:

1. Using a power series around t = 0 of the form y(t) =
∑∞

n=0 cntn, find the recurrence
relation for the ci if y satisfies y′′ + ty′ + y = 0.

2. (a) Find the recurrence relation of the coefficients of the power series solution to the
ODE x′ = 4x3x around x = 0, i.e. for solutions of the form x =

∑∞
n=0 cntn.

(b) Find an explicit formula for cn in terms of n.

3. Use Sage to find the first 5 terms in the power series solution to x′′ + x = 0, x(0) = 1,
x′(0) = 0. Plot this Taylor polynomial approximation over −π < t < π.

4. Find two linearly independent solutions of Airy’s equation x′′ − tx = 0 using power
series.

96 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

2.8 The Laplace transform method

What we know is not much. What we do not know is immense.
- Pierre Simon Laplace

2.8.1 Part 1

Pierre Simon Laplace (1749 1827) was a French mathematician and astronomer who is
regarded as one of the greatest scientists of all time. His work was pivotal to the development
of both celestial mechanics and probability, [L-lt], [LT-lt].

The Laplace transform (abbreviated LT) of a function f(t), defined for all real numbers
t ≥ 0, is the function F (s), defined by:

F (s) = L [f(t)] =

∫ ∞

0
e−stf(t) dt.

The LT sends “nice” functions of t (we will be more precise later) to functions of another
variable s. It has the wonderful property that it transforms constant-coefficient differential
equations in t to algebraic equations in s.

The LT has two very familiar properties: Just as the integral of a sum is the sum of the
integrals, the Laplace transform of a sum is the sum of Laplace transforms:

L [f(t) + g(t)] = L [f(t)] + L [g(t)]

Just as constant factor can be taken outside of an integral, the LT of a constant times a
function is that constant times the LT of that function:

L [af(t)] = aL [f(t)]

In other words, the LT is linear.
For which functions f is the LT actually defined on? We want the indefinite integral to

converge, of course. A function f(t) is of exponential order α if there exist constants t0
and M such that

|f(t)| < Meαt, for all t > t0.

If
∫ t0
0 f(t) dt exists and f(t) is of exponential order α then the Laplace transform L [f] (s)

exists for s > α.

Example 2.8.1. Consider the Laplace transform of f(t) = 1. The LT integral converges
for s > 0.

L [f] (s) =

∫ ∞

0
e−st dt

=

[

−1

s
e−st

]∞

0

=
1

s

2.8. THE LAPLACE TRANSFORM METHOD 97

Example 2.8.2. Consider the Laplace transform of f(t) = eat. The LT integral converges
for s > a.

L [f] (s) =

∫ ∞

0
e(a−s)t dt

=

[

− 1

s − a
e(a−s)t

]∞

0

=
1

s − a

Example 2.8.3. Consider the Laplace transform of the translated unit step (or Heaviside)
function,

u(t − c) =

{

0 for t < c

1 for t > c,

where c > 0. (this is sometimes also denoted H(t − c).) This function is “off” (i.e., equal
to 0) until you get to t = c, at which time it turns “on”. The LT of it is

L[u(t − c)] =

∫ ∞

0
e−stH(t − c) dt

=

∫ ∞

c
e−st dt

=

[

e−st

−s

]∞

c

=
e−cs

s
for s > 0

The inverse Laplace transform in denoted

f(t) = L−1[F (s)](t),

where F (s) = L [f(t)] (s).

Example 2.8.4. Consider

f(t) =

{

1, for t < 2,

0, on t ≥ 2.

(Incidently, this can also be written 1−u(t−2).) We show how Sage can be used to compute
the LT of this.

Sage

sage: t = var(’t’)
sage: s = var(’s’)
sage: f = Piecewise([[(0,2),1],[(2,infinity),0]])

98 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

sage: f.laplace(t, s)
1/s - eˆ(-(2 * s))/s
sage: f1 = lambda t: 1
sage: f2 = lambda t: 0
sage: f = Piecewise([[(0,2),f1],[(2,10),f2]])
sage: P = f.plot(rgbcolor=(0.7,0.1,0.5),thickness=3)
sage: show(P)

According to Sage , L [f] (s) = 1/s− e−2s/s. Note the function f was redefined for plotting
purposes only (the fact that it was redefined over 0 < t < 10 means that Sage will plot it
over that range.) The plot of this function is displayed in Figure 2.20.

Figure 2.20: The piecewise constant function 1 − u(t − 2).

Next, some properties of the LT.

• Differentiate the definition of the LT with respect to s:

F ′(s) = −
∫ ∞

0
e−sttf(t) dt.

Repeating this:

dn

dsn
F (s) = (−1)n

∫ ∞

0
e−sttnf(t) dt. (2.19)

• In the definition of the LT, replace f(t) by it’s derivative f ′(t):

L
[

f ′(t)
]

(s) =

∫ ∞

0
e−stf ′(t) dt.

2.8. THE LAPLACE TRANSFORM METHOD 99

Now integrate by parts (u = e−st, dv = f ′(t) dt):

∫ ∞

0
e−stf ′(t) dt = f(t)e−st|∞0 −

∫ ∞

0
f(t) · (−s) · e−st dt = −f(0) + sL [f(t)] (s).

Therefore, if F (s) is the LT of f(t) then sF (s) − f(0) is the LT of f ′(t):

L
[

f ′(t)
]

(s) = sL [f(t)] (s) − f(0). (2.20)

• Replace f by f ′ in (2.20),

L
[

f ′′(t)
]

(s) = sL
[

f ′(t)
]

(s) − f ′(0), (2.21)

and apply (2.20) again:

L
[

f ′′(t)
]

(s) = s2L [f(t)] (s) − sf(0) − f ′(0), (2.22)

• Using (2.20) and (2.22), the LT of any constant coefficient ODE

ax′′(t) + bx′(t) + cx(t) = f(t)

is

a(s2L [x(t)] (s) − sx(0) − x′(0)) + b(sL [x(t)] (s) − x(0)) + cL [x(t)] (s) = F (s),

where F (s) = L [f(t)] (s). In particular, the LT of the solution, X(s) = L [x(t)] (s),
satisfies

X(s) = (F (s) + asx(0) + ax′(0) + bx(0))/(as2 + bs + c).

Note that the denominator is the characteristic polynomial of the DE.

Moral of the story: it is generally very easy to compute the Laplace transform X(s)
of the solution to any constant coefficient non-homogeneous linear ODE. Computing
the actual solution x(t) is usually much more work.

Example 2.8.5. We know now how to compute not only the LT of f(t) = eat (it’s F (s) =
(s − a)−1) but also the LT of any function of the form tneat by differentiating it:

L
[

teat
]

= −F ′(s) = (s−a)−2, L
[

t2eat
]

= F ′′(s) = 2·(s−a)−3, L
[

t3eat
]

= −F ′(s) = 2·3·(s−a)−4, ... ,

and in general

L
[

tneat
]

= −F ′(s) = n! · (s − a)−n−1. (2.23)

100 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Let us now solve a first order ODE using Laplace transforms.

Example 2.8.6. Let us solve the DE

x′ + x = t100e−t, x(0) = 0.

using LTs. Note this would be highly impractical to solve using undetermined coefficients.
(You would have 101 undetermined coefficients to solve for!)

First, we compute the LT of the solution to the DE. The LT of the LHS: by (2.23),

L
[

x′ + x
]

= sX(s) + X(s),

where F (s) = L [f(t)] (s). For the LT of the RHS, let

F (s) = L
[

e−t
]

=
1

s + 1
.

By (2.19),

d100

ds100
F (s) = L

[

t100e−t
]

=
d100

ds100

1

s + 1
.

The first several derivatives of 1
s+1 are as follows:

d

ds

1

s + 1
= − 1

(s + 1)2
,

d2

ds2

1

s + 1
= 2

1

(s + 1)3
,

d3

ds3

1

s + 1
= −62

1

(s + 1)4
,

and so on. Therefore, the LT of the RHS is:

d100

ds100

1

s + 1
= 100!

1

(s + 1)101
.

Consequently,

X(s) = 100!
1

(s + 1)102
.

Using (2.23), we can compute the ILT of this:

x(t) = L−1 [X(s)] = L−1

[

100!
1

(s + 1)102

]

=
1

101
L−1

[

101!
1

(s + 1)102

]

=
1

101
t101e−t.

Let us now solve a second order ODE using Laplace transforms.

Example 2.8.7. Let us solve the DE

x′′ + 2x′ + 2x = e−2t, x(0) = x′(0) = 0,

using LTs.

The LT of the LHS: by (2.23) and (2.21),

2.8. THE LAPLACE TRANSFORM METHOD 101

L
[

x′′ + 2x′ + 2x
]

= (s2 + 2s + 2)X(s),

as in the previous example. The LT of the RHS is:

L
[

e−2t
]

=
1

s + 2
.

Solving for the LT of the solution algebraically:

X(s) =
1

(s + 2)((s + 1)2 + 1)
.

The inverse LT of this can be obtained from LT tables after rewriting this using partial
fractions:

X(s) =
1

2
· 1

s + 2
− 1

2

s

(s + 1)2 + 1
=

1

2
· 1

s + 2
− 1

2

s + 1

(s + 1)2 + 1
+

1

2

1

(s + 1)2 + 1
.

The inverse LT is:

x(t) = L−1 [X(s)] =
1

2
· e−2t − 1

2
· e−t cos(t) +

1

2
· e−t sin(t).

We show how Sage can be used to do some of this. We break the Sage solution into steps.

Step 1: First, we type in the ODE and take its Laplace transform.

Sage

sage: s,t,X = var(’s,t,X’)
sage: x = function("x",t)
sage: de = diff(x,t,t)+2 * diff(x,t)+2 * x==eˆ(-2 * t)
sage: laplace(de,t,s)
sˆ2 * laplace(x(t), t, s) + 2 * s* laplace(x(t), t, s) - s * x(0) + 2 * laplace(x(t), t, s) - 2 * x(0) - D[0](x)(0)
sage: LTde = laplace(de,t,s)

Step 2: Now we solve this equation for X = laplace(x(t), t, s). For this, we use
Python to do some string replacements. Python is the underlying language for Sage and
has very powerful string manipulation functions.

Sage

sage: strLTde = str(LTde).replace("laplace(x(t), t, s)", "X")
sage: strLTde0 = strLTde.replace("x(0)","0")
sage: strLTde00 = strLTde0.replace("D[0](x)(0)","0")
sage: LTde00 = sage_eval(strLTde00,locals={"s":s,"X":X })
sage: soln = solve(LTde00,X)
sage: Xs = soln[0].rhs(); Xs
1/(sˆ3 + 4 * sˆ2 + 6 * s + 4)

102 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

Step 3: Now that we have solved for the Laplace transform of the solution, we take inverse
Laplace transforms to get the solution to the original ODE. There are various ways to do
this. One way which is convenient if you also want to check the answer using tables, if to
compute the partial fraction decomposition then take inverse Laplace transforms.

Sage

sage: factor(sˆ3 + 4 * sˆ2 + 6 * s + 4)
(s + 2) * (sˆ2 + 2 * s + 2)
sage: f = 1/((s+2) * ((s+1)ˆ2+1))
sage: f.partial_fraction()

1/(2 * (s + 2)) - s/(2 * (sˆ2 + 2 * s + 2))
sage: f.inverse_laplace(s,t)

eˆ(-t) * (sin(t)/2 - cos(t)/2) + eˆ(-(2 * t))/2

Exercise: Use Sage to solve the DE

x′′ + 2x′ + 5x = e−t, x(0) = x′(0) = 0.

2.8.2 Part 2

In this part, we shall focus on two other aspects of Laplace transforms:

• solving differential equations involving unit step (Heaviside) functions,

• convolutions and applications.

It follows from the definition of the Laplace transform that if

f(t)
L7−→ F (s) = L[f(t)](s),

then

f(t)u(t − c)
L7−→ e−csL[f(t + c)](s), (2.24)

and

f(t − c)u(t − c)
L7−→ e−csF (s). (2.25)

These two properties are called translation theorems.

2.8. THE LAPLACE TRANSFORM METHOD 103

Example 2.8.8. First, consider the Laplace transform of the piecewise-defined function
f(t) = (t − 1)2u(t − 1). Using (2.25), this is

L[f(t)] = e−sL[t2](s) = 2
1

s3
e−s.

Second, consider the Laplace transform of the piecewise-constant function

f(t) =











0 for t < 0,

−1 for 0 ≤ t ≤ 2,

1 for t > 2.

This can be expressed as f(t) = −u(t) + 2u(t − 2), so

L[f(t)] = −L[u(t)] + 2L[u(t − 2)]

= −1

s
+ 2

1

s
e−2s.

Finally, consider the Laplace transform of f(t) = sin(t)u(t − π). Using (2.24), this is

L[f(t)] = e−πsL[sin(t + π)](s) = e−πsL[− sin(t)](s) = −e−πs 1

s2 + 1
.

The plot of this function f(t) = sin(t)u(t − π) is displayed in Figure 2.21.

Figure 2.21: The piecewise continuous function u(t − π) sin(t).

We show how Sage can be used to compute these Laplace transforms.

Sage

sage: t = var(’t’)
sage: s = var(’s’)
sage: assume(s>0)

104 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

sage: f = Piecewise([[(0,1),0],[(1,infinity),(t-1)ˆ2]])
sage: f.laplace(t, s)
2* eˆ(-s)/sˆ3
sage: f = Piecewise([[(0,2),-1],[(2,infinity),2]])
sage: f.laplace(t, s)
3* eˆ(-(2 * s))/s - 1/s
sage: f = Piecewise([[(0,pi),0],[(pi,infinity),sin(t)]])
sage: f.laplace(t, s)
-eˆ(-(pi * s))/(sˆ2 + 1)
sage: f1 = lambda t: 0
sage: f2 = lambda t: sin(t)
sage: f = Piecewise([[(0,pi),f1],[(pi,10),f2]])
sage: P = f.plot(rgbcolor=(0.7,0.1,0.5),thickness=3)
sage: show(P)

The plot given by these last few commands is displayed in Figure 2.21.

Before turning to differential equations, let us introduce convolutions.
Let f(t) and g(t) be continuous (for t ≥ 0 - for t < 0, we assume f(t) = g(t) = 0). The

convolution of f(t) and g(t) is defined by

(f ∗ g) =

∫ t

0
f(u)g(t − u) du =

∫ t

0
f(t − u)g(u) du.

The convolution theorem states

L[f ∗ g(t)](s) = F (s)G(s) = L[f](s)L[g](s).

The Laplace transform of the convolution is the product of the Laplace transforms. (Or,
equivalently, the inverse Laplace transform of the product is the convolution of the inverse
Laplace transforms.)

To show this, do a change-of-variables in the following double integral:

L[f ∗ g(t)](s) =

∫ ∞

0
e−st

∫ t

0
f(u)g(t − u) du dt

=

∫ ∞

0

∫ ∞

u
e−stf(u)g(t − u) dt du

=

∫ ∞

0
e−suf(u)

∫ ∞

u
e−s(t−u)g(t − u) dt du

=

∫ ∞

0
e−suf(u) du

∫ ∞

0
e−svg(v) dv

= L[f](s)L[g](s).

Example 2.8.9. Consider the inverse Laplace transform of 1
s3−s2 . This can be computed

using partial fractions and Laplace transform tables. However, it can also be computed
using convolutions.

2.8. THE LAPLACE TRANSFORM METHOD 105

First we factor the denominator, as follows

1

s3 − s2
=

1

s2

1

s − 1
.

We know the inverse Laplace transforms of each term:

L−1

[

1

s2

]

= t, L−1

[

1

s − 1

]

= et

We apply the convolution theorem:

L−1

[

1

s2

1

s − 1

]

=

∫ t

0
uet−u du

= et
[

−ue−u
]t

0
− et

∫ t

0
−e−u du

= −t − 1 + et

Therefore,

L−1

[

1

s2

1

s − 1

]

(t) = et − t − 1.

Example 2.8.10. Here is a neat application of the convolution theorem. Consider the
convolution

f(t) = 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1.

What is it? First, take the Laplace transform. Since the Laplace transform of the convolu-
tion is the product of the Laplace transforms:

L[1 ∗ 1 ∗ 1 ∗ 1 ∗ 1](s) = (1/s)5 =
1

s5
= F (s).

We know from Laplace transform tables that L−1
[

4!
s5

]

(t) = t4, so

f(t) = L−1 [F (s)] (t) =
1

4!
L−1

[

4!

s5

]

(t) =
1

4!
t4.

You can also compute 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 directly in Sage :

Sage

sage: t,z = var("t,z")
sage: f(t) = 1
sage: ff = integral(f(t-z) * f(z),z,0,t); ff
t
sage: fff = integral(f(t-z) * ff(z),z,0,t); fff
1/2 * tˆ2
sage: ffff = integral(f(t-z) * fff(z),z,0,t); ffff

106 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

1/6 * tˆ3
sage: fffff = integral(f(t-z) * ffff(z),z,0,t); fffff
1/24 * tˆ4
sage: s = var("s")
sage: (1/sˆ5).inverse_laplace(s,t)
1/24 * tˆ4

Now let us turn to solving a DE of the form

ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y1. (2.26)

First, take Laplace transforms of both sides:

as2Y (s) − asy0 − ay1 + bsY (s) − by0 + cY (s) = F (s),

so

Y (s) =
1

as2 + bs + c
F (s) +

asy0 + ay1 + by0

as2 + bs + c
. (2.27)

The function 1
as2+bs+c

is sometimes called the transfer function (this is an engineering
term) and its inverse Laplace transform,

w(t) = L−1

[

1

as2 + bs + c

]

(t),

the weight function for the DE.

Lemma 2.8.1. If a 6= 0 then w(t) = 0.

(The only proof we have of this is a case-by-case proof using Laplace transform tables.
Case 1 is when the roots of as2 + bs + c = 0 are real and distinct, case 2 is when the roots
are real and repeated, and case 3 is when the roots are complex. In each case, w(0) = 0.
The verification of this is left to the reader, if he or she is interested.)

By the above lemma and the first derivative theorem,

w′(t) = L−1

[

s

as2 + bs + c

]

(t).

Using this and the convolution theorem, the inverse Laplace transform of (2.27) is

y(t) = (w ∗ f)(t) + ay0 · w′(t) + (ay1 + by0) · w(t). (2.28)

This proves the following fact.

Theorem 2.8.1. The unique solution to the DE (2.26) is (2.28).

2.8. THE LAPLACE TRANSFORM METHOD 107

Example 2.8.11. Consider the DE y′′ + y = 1, y(0) = y′(0) = 1.
The weight function is the inverse Laplace transform of 1

s2+1
, so w(t) = sin(t). By (2.28),

y(t) = 1 ∗ sin(t) =

∫ t

0
sin(u) du = − cos(u)|t0 = 1 − cos(t).

(Yes, it is just that easy!)

If the “impulse” f(t) is piecewise-defined, sometimes the convolution term in the formula
(2.28) is awkward to compute.

Example 2.8.12. Consider the DE y′′ − y′ = u(t − 1), y(0) = y′(0) = 0.
Taking Laplace transforms gives s2Y (s) − sY (s) = 1

se−s, so

Y (s) =
1

s3 − s2
e−s.

We know from a previous example that

L−1

[

1

s3 − s2

]

(t) = et − t − 1,

so by the translation theorem (2.25), we have

y(t) = L−1

[

1

s3 − s2
e−s

]

(t) = (et−1 − (t − 1) − 1) · u(t − 1) = (et−1 − t) · u(t − 1).

At this stage, Sage lacks the functionality to solve this differential equation as easily as
others but we can still use Sage to help witht he solution.

First, we initialize some variables and take the Laplace transform of f(t) = u(t − 1).

Sage

sage: s,t,X = var(’s,t,X’)
sage: x = function("x",t)
sage: f1 = 0
sage: f2 = 1
sage: f = Piecewise([[(0,1),f1],[(1,Infinity),f2]])
sage: F = f.laplace(t,s); F
eˆ(-s)/s

Next, we take the Laplace transform of the differential equation with an arbitrary function
in place of u(t − 1).

Sage

sage: ft = function("ft",t)
sage: de = diff(x,t,t) - x==ft
sage: LTde = laplace(de,t,s); LTde
sˆ2 * laplace(x(t), t, s) - s * x(0) - laplace(x(t), t, s) - D[0](x)(0) ==

108 CHAPTER 2. SECOND ORDER DIFFERENTIAL EQUATIONS

laplace(ft(t), t, s)

Next,we take this equation and solve it for X(s) using Python’s string manipulation
functionality:

Sage

sage: strLTde = str(LTde).replace("laplace(x(t), t, s)", "X")
sage: strLTde0 = strLTde.replace("x(0)","0")
sage: strLTde00 = strLTde0.replace("D[0](x)(0)","0")
sage: strLTde00F = strLTde00.replace("laplace(ft(t), t, s)", "F")
sage: strLTde00F
’sˆ2 * X - s * 0 - X - 0 == F’
sage: LTde00F = sage_eval(strLTde00F,locals={"s":s,"X" :X,"F":F})
sage: LTde00F
X* sˆ2 - X == eˆ(-s)/s
sage: soln = solve(LTde00F,X)
sage: Xs = soln[0].rhs(); Xs
eˆ(-s)/(sˆ3 - s)
sage: Xs.partial_fraction()
1/2 * eˆ(-s)/(s - 1) + 1/2 * eˆ(-s)/(s + 1) - eˆ(-s)/s

Unfortunately, at this time, Sage cannot take the inverse Laplace transform of this.

Exercise: Use Sage to solve the following problems.

(a) Find the Laplace transform of u(t − π/4) cos(t).

(b) Compute the convolution sin(t) ∗ cos(t). Do this directly and using the convolution
theorem.

Chapter 3

Matrix theory and systems of DEs

...there is no study in the world which brings into more harmonious action
all the faculties of the mind than [mathematics] ...

- James Joseph Sylvester

In order to handle systems of differential equations, in which there is more than one
dependent variable, it is necessary to learn some linear algebra. It is best to take a full
course in that subject, but for those cases where that is not possible we aim to provide the
required background in this chapter. In contrast to a linear algebra textbook per se we will
omit many proofs. Linear algebra is a tremendously useful subject to understand, and we
encourage the reader to take a more complete course in it if at all possible. An excellent
free reference for linear algebra is the text by Robert Beezer [B-rref].

3.1 Row reduction and solving systems of equations

Row reduction is the engine that drives a lot of the machinary of matrix theory. What
we call row reduction others call computing the reduced row echelon form or Gauss-Jordan
reduction or Gauss elimination.

3.1.1 The Gauss elimination game

This is actually a discussion of solving systems of equations using the method of row reduc-
tion, but it’s more fun to formulate it in terms of a game.

To be specific, let’s focus on a 2 × 2 system (by “2 × 2” I mean 2 equations in the 2
unknowns x, y):

{

ax + by = r1

cx + dy = r2
(3.1)

Here a, b, c, d, r1, r2 are given constants. Putting these two equations down together means
to solve them simultaneously, not individually. In geometric terms, you may think of each

109

110 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

equation above as a line the the plane. To solve them simultaneously, you are to find the
point of intersection (if it exists) of these two lines. Since a, b, c, d, r1, r2 have not been
specified, it is conceivable that there are

• no solutions (the lines are parallel but distinct),

• infinitely many solutions (the lines are the same),

• exactly one solution (the lines are distinct and not parallel).

“Usually” there is exactly one solution. Of course, you can solve this by simply manipulating
equations since it is such a low-dimensional system but the object of this lecture is to show
you a method of solution which is “scalable” to “industrial-sized” problems (say 1000×1000
or larger).

Strategy:
Step 1: Write down the augmented matrix of (3.1):

A =

(

a b r1

c d r2

)

This is simply a matter of stripping off the unknowns and recording the coefficients in an
array. Of course, the system must be written in “standard form” (all the terms with “x”
get aligned together, ...) to do this correctly.
Step 2: Play the Gauss elimination game (described below) to computing the row reduced
echelon form of A, call it B say.
Step 3: Read off the solution from the right-most column of B.

The Gauss Elimination Game
Legal moves: These actually apply to any m × n matrix A with m < n.

1. Ri ↔ Rj: You can swap row i with row j.

2. cRi → Ri (c 6= 0): You can replace row i with row i multiplied by any non-zero
constant c. (Don’t confuse this c with the c in (3.1)).

3. cRi + Rj → Ri (c 6= 0): You can replace row i with row i multiplied by any non-zero
constant c plus row j, j 6= i.

Note that move 1 simply corresponds to reordering the system of equations (3.1)). Like-
wise, move 2 simply corresponds to scaling equation i in (3.1)). In general, these “legal
moves” correspond to algebraic operations you would perform on (3.1)) to solve it. How-
ever, there are fewer symbols to push around when the augmented matrix is used.

Goal: You win the game when you can achieve the following situation. Your goal is to
find a sequence of legal moves leading to a matrix B satisfying the following criteria:

1. all rows of B have leaading non-zero term equal to 1 (the position where this leading
term in B occurs is called a pivot position),

3.1. ROW REDUCTION AND SOLVING SYSTEMS OF EQUATIONS 111

2. B contains as many 0’s as possible

3. all entries above and below a pivot position must be 0,

4. the pivot position of the ith row is to the left and above the pivot position of the
(i + 1)st row (therefore, all entries below the diagonal of B are 0).

This matrix B is unique (this is a theorem which you can find in any text on elementary
matrix theory or linear algebra1) and is called the row reduced echelon form of A, sometimes
written rref(A).

Two comments: (1) If you are your friend both start out playing this game, it is likely
your choice of legal moves will differ. That is to be expected. However, you must get the
same result in the end. (2) Often if someone is to get “stuck” it is becuase they forget that
one of the goals is to “kill as many terms as possible (i.e., you need B to have as many 0’s
as possible). If you forget this you might create non-zero terms in the matrix while killing
others. You should try to think of each move as being made in order to to kill a term. The
exception is at the very end where you can’t kill any more terms but you want to do row
swaps to put it in diagonal form.

Now it’s time for an example.

Example 3.1.1. Solve

{

x + 2y = 3
4x + 5y = 6

(3.2)

using row reduction.

Figure 3.1: lines x + 2y = 3, 4x + 5y = 6 in the plane.

The augmented matrix is

1For example, [B-rref] or [H-rref].

112 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

A =

(

1 2 3
4 5 6

)

One sequence of legal moves is the following:

−4R1 + R2 → R2, which leads to

(

1 2 3
0 −3 −6

)

−(1/3)R2 → R2, which leads to

(

1 2 3
0 1 2

)

−2R2 + R1 → R1, which leads to

(

1 0 −1
0 1 2

)

Now we are done (we won!) since this matrix satisfies all the goals for a row reduced
echelon form.

The latter matrix corresponds to the system of equations

{

x + 0y = −1
0x + y = 2

(3.3)

Since the “legal moves” were simply matrix analogs of algebraic manipulations you’d appy
to the system (3.2), the solution to (3.2) is the same as the solution to (3.3), whihc is
obviously x = −1, y = 2. You can visually check this from the graph given above.

To find the row reduced echelon form of

(

1 2 3
4 5 6

)

using Sage , just type the following:

Sage

sage: MS = MatrixSpace(QQ,2,3)
sage: A = MS([[1,2,3],[4,5,6]])
sage: A
[1 2 3]
[4 5 6]
sage: A.echelon_form()
[1 0 -1]
[0 1 2]

3.1.2 Solving systems using inverses

There is another method of solving “square” systems of linear equations which we discuss
next.

One can rewrite the system (3.1) as a single matrix equation

(

a b
c d

)(

x
y

)

=

(

r1

r2

)

,

3.1. ROW REDUCTION AND SOLVING SYSTEMS OF EQUATIONS 113

or more compactly as

A ~X = ~r, (3.4)

where ~X =

(

x
y

)

and ~r =

(

r1

r2

)

. How do you solve (3.4)? The obvious this to do

(“divide by A”) is the right idea:

(

x
y

)

= ~X = A−1~r.

Here A−1 is a matrix with the property that A−1A = I, the identity matrix (which satisfies
I ~X = ~X).

If A−1 exists (and it usually does), how do we compute it? There are a few ways. One, if
using a formula. In the 2 × 2 case, the inverse is given by

(

a b
c d

)−1

=
1

ad − bc

(

d −b
−c a

)

.

There is a similar formula for larger sized matrices but it is so unwieldy that is is usually
not used to compute the inverse.

Example 3.1.2. In the 2× 2 case, the formula above for the inverse is easy to use and we
see for example,

(

1 2
4 5

)−1

=
1

−3

(

5 −2
−4 1

)

=

(

−5/3 2/3
4/3 −1/3

)

.

To find the inverse of

(

1 2
4 5

)

using Sage , just type the following:

Sage

sage: MS = MatrixSpace(QQ,2,2)
sage: A = MS([[1,2],[4,5]])
sage: A
[1 2]
[4 5]
sage: Aˆ(-1)
[-5/3 2/3]
[4/3 -1/3]

A better way to compute A−1 is the following. Compute the row reduced echelon form of
the matrix (A, I), where I is the identity matrix of the same size as A. This new matrix
will be (if the inverse exists) (I,A−1). You can read off the inverse matrix from this.

In other words, the following result holds.

114 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

Lemma 3.1.1. Let A be an invertible n× n matrix. The row reduced echelon form of the
n × 2n matrix (A, I), where I is the identity matrix of the same size as A, is the n × 2n
matrix (I,A−1).

Here is an example.

Example 3.1.3. Solve

{

x + 2y = 3
4x + 5y = 6

using (a) row reduction, (b) matrix inverses.
In fact, this system was solved using row-reduction in Example 3.1.1 above. The idea was

that the result of the Sage commands

Sage

sage: MS = MatrixSpace(QQ,2,3)
sage: A = MS([[1,2,3],[4,5,6]])
sage: A
[1 2 3]
[4 5 6]
sage: A.echelon_form()
[1 0 -1]
[0 1 2]

told us that x = −1 and y = 2. You just read off the last column of the row-reduced echelon
form of the matrix.

This is
(

1 2
4 5

)(

x
y

)

=

(

3
6

)

,

so

(

x
y

)

=

(

1 2
4 5

)−1(
3
6

)

.

To compute the inverse matrix, apply the Gauss elimination game to

(

1 2 1 0
4 5 0 1

)

Using the same sequence of legal moves as in the previous example, we get

−4R1 + R2 → R2, which leads to

(

1 2 1 0
0 −3 −4 1

)

−(1/3)R2 → R2, which leads to

(

1 2 1 0
0 1 4/3 −1/3

)

−2R2 + R1 → R1, which leads to

(

1 0 −5/3 2/3
0 1 4/3 −1/3

)

.

3.1. ROW REDUCTION AND SOLVING SYSTEMS OF EQUATIONS 115

Therefore the inverse is

A−1 =

(

−5/3 2/3
4/3 −1/3

)

.

Now, to solve the system, compute

(

x
y

)

=

(

1 2
4 5

)−1(
3
6

)

=

(

−5/3 2/3
4/3 −1/3

)(

3
6

)

=

(

−1
2

)

.

To make Sage do the above computation, just type the following:

Sage

sage: MS = MatrixSpace(QQ,2,2)
sage: A = MS([[1,2],[4,5]])
sage: V = VectorSpace(QQ,2)
sage: v = V([3,6])
sage: Aˆ(-1) * v

(-1, 2)

Of course, this again tells us that x = −1 and y = 2 is the solution to the original system.

Exercise: Using Sage , solve







x + 2y + z = 1
−x + 2y − z = 2

y + 2z = 3

using (a) row reduction, (b) matrix inverses.

3.1.3 Solving higher-dimensional linear systems

Gauss-Jordan reduction, revisited.

Example 3.1.4. Solve the linear system

x + 2y + 3z = 0,
4x + 5y + 6z = 3,
7x + 8y + 9z = 6

We form the augmented coefficient matrix and row-reduce until we obtain the reduced
row-echelon form:





1 2 3 0
4 5 6 3
7 8 9 6





−4R1+R2−−−−−−→





1 2 3 0
0 −3 −6 3
7 8 9 6





−7R1+R3−−−−−−→





1 2 3 0
0 −3 −6 3
0 −6 −12 6





−R2/3−−−−→





1 2 3 0
0 1 2 −1
0 −6 −12 6





116 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

−R3/6−−−−→





1 2 3 0
0 1 2 −1
0 1 2 −1





−R2+R3−−−−−→





1 2 3 0
0 1 2 −1
0 0 0 0





−2R2+R1−−−−−−→





1 0 −1 2
0 1 2 −1
0 0 0 0





Reinterpreting these rows as equations we have x − z = 2 and y + 2z = −1. The pivot
variables are x and y, and z is the only free variable. Finally, we write the solutions in
parametric vector form:





x(t)
y(t)
z(t)



 =





2 + t
−1 − 2t

t



 .

Exercises:

1. Write the following system as a matrix equation, and find all the solutions.

3x + 2y + z = 2

x − y + 2z = 2

3x + 7y − 4z = −2

3.2 Quick survey of linear algebra

3.2.1 Matrix arithmetic

Matrix multiplication. Noncommutativity. Failure of cancellation. Zero and identity ma-
trices. Matrix inverses.

Lemma 3.2.1. If A and B are invertible n×n matrices, then AB is invertible with inverse
B−1A−1.

We can use row-reduction to compute a matrix inverse if it exists.

Example 3.2.1. To invert

A =





1 2 3
1 2 2

−1 −1 1





we first augment it with the 3 × 3 identity matrix, and then row-reduce the lefthand block
until we obtain the identity matrix:





1 2 3 1 0 0
1 2 2 0 1 0

−1 −1 1 0 0 1





−R1+R2−−−−−→





1 2 3 1 0 0
0 0 −1 −1 1 0

−1 −1 1 0 0 1





3.2. QUICK SURVEY OF LINEAR ALGEBRA 117

R1+R3−−−−→





1 2 3 1 0 0
0 0 −1 −1 1 0
0 1 4 1 0 1





Swap(R2,R3)−−−−−−−−→





1 0 0 4 −5 −2
0 1 0 −3 4 1
0 0 1 1 −1 0



 .

So A−1 =





4 −5 −2
−3 4 1

1 −1 0



.

Exercises:

1. For A =

[

a b
c d

]

, compute the product A ∗ A.

2. Find as many 2 by 2 matrices A such that A ∗ A = I as you can. Do you think you
have found all of them?

3. Find the inverse A−1 of the matrix A =





0 0 1
2 0 0
0 1 2



 by using row operations (multi-

plying rows, adding a multiple of one row to another, and interchanging rows) on the
matrix A adjoined to the 3 × 3 identity matrix.

4. For the previous exercise, write down the elementary matrices that perform each of
the row operations used.

3.2.2 Determinants

Definition 3.2.1. The (i, j)-th minor of a matrix A is the determinant of the of the
submatrix obtained by deleting row i and column j from A.

Example 3.2.2. The 2,2 minor of





1 2 −1
0 0 0
2 3 4



 is equal to det

(

1 −1
2 4

)

= 6.

Exercises:

1. Find a three by three matrix with strictly positive entries (aij > 0 for each entry aij)
whose determinant is equal to 1. Try to find such a matrix with the smallest sum of
entries, that is, such that

∑i=3,j=3
i=1,j=1 aij = a11 + a12 + . . . + a33 is as low as possible.

2. The n × n Vandermonde determinant is defined as:

V (x1, x2, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

Show that the 2 × 2 Vandermonde determinant V (a, b) = b − a. Then show that the
3 × 3 Vandermonde determinant V (1, a, b) can be factored into (a − 1)(b − 1)(b − a).

118 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

3.2.3 Vector spaces

So far we have worked with vectors which are n-tuples of numbers. But the essential
operations we perform on such tuples can be generalized to a much wider class of objects,
which we also call vectors. A collection of vectors that are compatible in the sense that
they can be added together and multiplied by some sort of scalar is called a vector space.
Here is a more formal definition.

Definition 3.2.2. A vector space V is a set S on which there is an operation of addition
which take pairs of elements of S to elements of S, together with a field of numbers K
for which there is an operation ∗ of scalar multiplication. These operations must have the
following properties:

1. There exists a unique 0 ∈ S such that 0 + v = v for all v ∈ S.

2. v + w = w + v for all v,w ∈ S.

3. v + (w + x) = (v + w) + x for all v,w, x ∈ S.

4. (−1) ∗ v + v = 0 for all v ∈ S.

5. 0 ∗ v = 0.

6. 1 ∗ v = v for all v ∈ S.

7. (s + t) ∗ (v + w) = s ∗ v + t ∗ v + s ∗ w + t ∗ w for all s, t ∈ K and all v,w ∈ S.

8. s ∗ (t ∗ v) = (s ∗ t) ∗ v for all s, t ∈ K and all v ∈ S.

For convenience we do not usually explicitly indicate scalar multiplication with a ∗, so we
write 5 ∗ v simply as 5v.

For our purposes the field K will always be either the field of real numbers, denoted R,
or the field of complex numbers, denoted by C. There are many other fields of numbers
used in mathematics but they will not be addressed here so we will not formally define the
concept of a field. Unless indicated otherwise, we will use R as the field in all of our vector
spaces.

Here are some vector space examples:

1. For each positive integer n, the set of lists of n real numbers, R
n, is a vector space.

For n = 2 and n = 3 these are the familiar real planar vectors and real spatial vectors.

2. The set of continuous real-valued functions on an interval [a, b] forms a vector space,
denoted C([a, b]). The addition is the usual addition of functions.

3. For each positive integer n, the set of polynomials of degree at most n forms a vector
space. We will denote this space by Pn.

Definition 3.2.3. A subspace of a vector space V is a subset of elements of V that is
itself a vector space.

3.2. QUICK SURVEY OF LINEAR ALGEBRA 119

The important thing to understand about subspaces is that they must be closed under the
operations of scalar multiplication and vector addition - not every subset of a vector space
is a subspace. In particular, every subspace W must contain the 0 vector since if w ∈ W ,
then −w ∈ W , and then so is w + −w = 0.

Here are some vector subspace examples:

1. The set W = {(x, x)|x ∈ R} is a subspace of R
2. If we think of R

2 as the x, y plane,
then W is simply the line y = x.

2. The set W = {(x,−2x)|x ∈ R} is a subspace of R
2. If we think of R

2 as the x, y
plane, then W is simply the line y = −2x. In fact every line through the origin is a
subspace.

Exercises:

1. Are the following sets subspaces of R
3 or not? If not, explain why.

(a) {(x1, x2, x3)| x1 ∗ x2 ∗ x3 = 0}
(b) {(x1, x2, 0)| x1 = 5 ∗ x2}
(c) The span of the vectors (1, 2, 3), (4, 5, 6) and (7, 8, 9).

3.2.4 Bases, dimension, linear independence and span

This section briefly recalls some basic notions of linear algebra.

Definition 3.2.4. A set of vectors {v1, . . . , vm} is linearly dependent if there are con-
stants c1, . . . , cm which are not all zero for which c1v1 + . . . + cmvm = 0.

An expression of the form c1v1 + . . . + cmvm, for constants c1, . . . , cm, is called a span or
linear combination of the vectors in {v1, . . . , vm}.

Example 3.2.3. The vectors v1 =





1
2
3



, v2 =





4
5
6



, and v3 =





7
8
9



 are linearly

dependent. To see this, we can write the linear dependence condition c1v1 + c2v2 + c3v3 = 0
as a matrix-vector equation:





1 4 7
2 5 8
3 6 9









c1

c2

c3



 =





0
0
0





and solve the system with row-reduction. Since it is a homogeneous system (i.e. the left-
hand side is the zero vector), we only need to reduce the coefficient matrix:





1 4 7
2 5 8
3 6 9





−2R1+R2−−−−−−→





1 4 7
0 −3 −6
3 6 9





−3R1+R3−−−−−−→





1 4 7
0 −3 −6
0 −6 −12





120 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

−2R2+R3−−−−−−→





1 4 7
0 −3 −6
0 0 0





−R2/3−−−−→





1 4 7
0 1 3
0 0 0





−4R2+R1−−−−−−→





1 0 −5
0 1 3
0 0 0





which tells us that c3 is a free variable, so it can be chosen to be nonzero, and the vectors
are linearly dependent. As a particular example, we could choose c3 = 1, and then c1 = 5
and c2 = −3, so 5v1 − 3v2 + v3 = 0.

Definition 3.2.5. A basis of a vector space V is a set of linearly independent vectors that
span V .

Example 3.2.4.

Theorem 3.2.1. Every basis of a vector space has the same number of elements, if finite.

Example 3.2.5.

Definition 3.2.6. The dimension of a vector space V is the number of elements in a basis
of V . If the bases of V are not finite, we say V is infinite-dimensional.

Example 3.2.6. Compute the dimension of the subspace W of R
4 spanned by the vectors

v1 = (1, 1, 1, 1)T , v2 = (1, 2, 1, 2)T , and v3 = (1, 3, 1, 3)T .
To compute the dimension, we need to know if v1, v2, and v3 form a basis of W . Since

W is defined as their span, we only need to check if they are linearly dependent or not. As
before, we do this by row-reducing a matrix whose columns consist of the vi:









1 1 1
1 2 3
1 1 1
1 2 3









−R1+R2−−−−−→









1 1 1
0 1 2
1 1 1
1 2 3









−R1+R3−−−−−→









1 1 1
0 1 2
0 0 0
1 2 3









−R1+R4−−−−−→









1 1 1
0 1 2
0 0 0
0 1 2









−R2+R4−−−−−→









1 1 1
0 1 2
0 0 0
0 0 0









This shows that only two of the three vectors are linearly independent, so the dimension of
W is equal to two.

Exercises:

1. Find a basis for the subspace defined by the following equations for (x1, x2, x3, x4, x5) ∈
R

5:

2x1 + x3 − 2x4 − 2x5 = 0

x1 + 2x3 − x4 + 2x5 = 0

−3x1 − 4x3 + 3x4 − 2x5 = 0

3.2. QUICK SURVEY OF LINEAR ALGEBRA 121

2. Consider the triple of vectors v1 = (0, 2, 3,−2), v2 = (3,−1, 4, 1), and v3 = (6,−8,−1, 8).

(a) Is the set {v1, v2, v3} linearly independent or dependent?

(b) What is the dimension of their span?

(c) If the vectors are linearly independent, find an additional vector v4 that makes
{v1, v2, v3, v4} a basis for R

4. If they are linearly dependent, write v1 as a linear
combination of v2 and v3.

3.2.5 The Wronskian

We have run into the Wronskian already in connection with the definition of the fundamental
solution of a linear second order DE. This section introduces a clever formula for computing
the Wronskian (up to a constant factor) which avoids determinants.

Definition 3.2.7. If F = (f1, f2, . . . , fn) is a list of functions then the Wronskian of F is

W (F) = det











f1 f2 . . . fn

f ′
1 f ′

2 . . . f ′
n

...
...

...
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n











.

It is somewhat surprising that the Wronskian of two solutions of a linear, homogeneous
second-order ODE can be computed without knowing the solutions, a result known as
Abel’s theorem.

Theorem 3.2.2. (Abel’s Theorem) If y1 and y2 are two linearly independent solutions of
y′′ + py′ + qy = 0, then W (y1, y2) = Ce−

R

p dx.

Proof. W (y1, y2) = Ce−
R

pdx if and only if W (y1, y2) satisfies the differential equation W ′ =
−pW . Since W = y1y

′
2 − y′1y2, W ′ = y1y

′′
2 − y′′1y2. We also know that since the yi satisfy

y′′ +py′ + qy = 0, yi = −py′i− qyi for i = 1 and i = 2. If we use those relations to substitute
for y′′2 and y′′1 , we find that

W ′ = y1(−py′2 − qy2) − y2(−py′1 − qy1) = p(y′1y2 − y1y
′
2) = −pW.

�

Exercises:

1. Compute the Wronskian of the set of functions {1, ex, e−x}.

2. Compute the dimension of the vector space spanned by the set of functions {1, ex, e−x}.

122 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

3.3 Application: Solving systems of DEs

Suppose we have a system of DEs in “standard form”

{

x′ = ax + by + f(t), x(0) = x0,
y′ = cx + dy + g(t), y(0) = y0,

(3.5)

where a, b, c, d, x0, y0 are given constants and f(t), g(t) are given “nice” functions. (Here
“nice” will be left vague but basically we don’t want these functions to annoy us with any
bad behaviour while trying to solve the DEs by the method of Laplace transforms.)

One way to solve this system if to take Laplace transforms of both sides. If we let

X(s) = L[x(t)](s), Y (s) = L[y(t)](s), F (s) = L[f(t)](s), G(s) = L[g(t)](s),

then (3.5) becomes

{

sX(s) − x0 = aX(s) + bY (s) + F (s),
sY (s) − y0 = cX(s) + dY (s) + G(s).

(3.6)

This is now a 2× 2 system of linear equations in the unknowns X(s), Y (s) with augmented
matrix

A =

(

s − a −b F (s) + x0

−c s − d G(s) + y0

)

.

Example 3.3.1. Solve

{

x′ = −y + 1, x(0) = 0,
y′ = −x + t, y(0) = 0,

The augmented matrix is

A =

(

s 1 1/s
1 s 1/s2

)

.

The row reduced echelon form of this is
(

1 0 1/s2

0 1 0

)

.

Therefore, X(s) = 1/s2 and Y (s) = 0. Taking inverse Laplace transforms, we see that the
solution to the system is x(t) = t and y(t) = 0. It is easy to check that this is indeed the
solution.

To make Sage compute the row reduced echelon form, just type the following:

Sage

sage: R = PolynomialRing(QQ,"s")
sage: F = FractionField(R)
sage: s = F.gen()

3.3. APPLICATION: SOLVING SYSTEMS OF DES 123

sage: MS = MatrixSpace(F,2,3)
sage: A = MS([[s,1,1/s],[1,s,1/sˆ2]])
sage: A.echelon_form()
[1 0 1/sˆ2]
[0 1 0]

To make Sage compute the Laplace transform, just type the following:

Sage

sage: s,t = var(’s,t’)
sage: f(t) = 1
sage: laplace(f(t),t,s)
1/s
sage: f(t) = t
sage: laplace(f(t),t,s)
sˆ(-2)

To make Sage compute the inverse Laplace transform, just type the following:

Sage

sage: s,t = var(’s,t’)
sage: F(s) = 1/sˆ2
sage: inverse_laplace(F(s),s,t)
t
sage: F(s) = 1/(sˆ2+1)
sage: inverse_laplace(F(s),s,t)
sin(t)

Example 3.3.2. The displacement from equilibrium (respectively) for coupled springs at-
tached to a wall on the left

coupled springs

|------\/\/\/\/\---|mass1|----\/\/\/\/\/----|mass2|
spring1 spring2

is modeled by the system of 2nd order ODEs

m1x
′′
1 + (k1 + k2)x1 − k2x2 = 0, m2x

′′
2 + k2(x2 − x1) = 0,

where x1 denotes the displacement from equilibrium of mass 1, denoted m1, x2 denotes the
displacement from equilibrium of mass 2, denoted m2, and k1, k2 are the respective spring
constants [CS-rref].

124 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

As another illustration of solving linear systems of equations to solving systems of linear
1st order DEs, we use Sage to solve the above problem with m1 = 2, m2 = 1, k1 = 4,
k2 = 2, x1(0) = 3, x′

1(0) = 0, x2(0) = 3, x′
2(0) = 0.

Soln: Take Laplace transforms of the first DE, 2 ∗ x′′
1(t) + 6 ∗ x1(t) − 2 ∗ x2(t) = 0. This

says −2x′
1(0) + 2s2 ∗X1(s)− 2sx1(0) − 2X2(s) + 2X1(s) = 0 (where the Laplace transform

of a lower case function is the upper case function). Take Laplace transforms of the second
DE, 2 ∗ x′′

2(t) + 2 ∗ x2(t) − 2 ∗ x1(t) = 0. This says s2X2(s) + 2X2(s) − 2X1(s) − 3s = 0.
Solve these two equations:

Sage

sage: s,X,Y = var(’s X Y’)
sage: eqns = [(2 * sˆ2+6) * X-2 * Y == 6* s, -2 * X +(sˆ2+2) * Y == 3* s]
sage: solve(eqns, X,Y)
[[X == (3 * sˆ3 + 9 * s)/(sˆ4 + 5 * sˆ2 + 4),

Y == (3 * sˆ3 + 15 * s)/(sˆ4 + 5 * sˆ2 + 4)]]

This says X1(s) = (3s3 +9s)/(s4 +5s2 +4), X2(s) = (3s3 +15s)/(s4 +5s2 +4). Take inverse
Laplace transforms to get the answer:

Sage

sage: s,t = var(’s t’)
sage: inverse_laplace((3 * sˆ3 + 9 * s)/(sˆ4 + 5 * sˆ2 + 4),s,t)
cos(2 * t) + 2 * cos(t)
sage: inverse_laplace((3 * sˆ3 + 15 * s)/(sˆ4 + 5 * sˆ2 + 4),s,t)
4* cos(t) - cos(2 * t)

Therefore, x1(t) = cos(2t) + 2 cos(t), x2(t) = 4 cos(t) − cos(2t). Using Sage , this can be
plotted parametrically using

Sage

sage: P = parametric_plot([cos(2 * t) + 2 * cos(t),4 * cos(t) - cos(2 * t)],0,3)
sage: show(P)

3.3.1 Modeling battles using Lanchester’s equations

The goal of military analysis is a means of reliably predicting the outcome of military en-
counters, given some basic information about the forces’ status. The case of two combatants
in an “aimed fire” battle was solved during World War I by Frederick William Lanchester,
a British engineer in the Royal Air Force, who discovered a way to model battle-field ca-
sualties using systems of differential equations. He assumed that if two armies fight, with

3.3. APPLICATION: SOLVING SYSTEMS OF DES 125

Figure 3.2: curves x(t) = cos(2t) + 2 cos(t), y(t) = 4 cos(t) − cos(2t) along the t-axis.

x(t) troops on one side and y(t) on the other, the rate at which soldiers in one army are
put out of action is proportional to the troop strength of their enemy. This give rise to the
system of differential equations

{

x′(t) = −Ay(t), x(0) = x0,
y′(t) = −Bx(t), y(0) = y0,

where A > 0 and B > 0 are constants (called their fighting effectiveness coefficients)
and x0 and y0 are the intial troop strengths. For some historical examples of actual bat-
tles modeled using Lanchester’s equations, please see references in the paper by McKay
[M-intro].

We show here how to solve these using Laplace transforms.

Example 3.3.3. Solve

{

x′ = −4y, x(0) = 400,
y′ = −x, y(0) = 100,

This models a battle between “x-men” and “y-men”, where the “x-men” die off at a higher
rate than the “y-men” (but there are more of them to begin with too).

126 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

The augmented matrix is

A =

(

s 4 400
1 s 100

)

.

The row reduced echelon form of this is
(

1 0 400(s−1)
s2−4

0 1 100(s−4)
s2−4

)

.

Therefore,

X(s) = 400
s

s2 − 4
− 200

2

s2 − 4
, Y (s) = 100

s

s2 − 4
− 200

2

s2 − 4
.

Taking inverse Laplace transforms, we see that the solution to the system is x(t) = 400 cosh(2t)−
200 sinh(2t) and y(t) = 100 cosh(2t) − 200 sinh(2t). The “x-men” win and, in fact,

x(0.275) = 346.4102..., y(0.275) = −0.1201... .

Question: What is x(t)2 − 4y(t)2? (Hint: It’s a constant. Can you explain this?)

To make Sage plot this just type the following:

Sage

sage: f = lambda x: 400 * cosh(2 * x)-200 * sinh(2 * x)
sage: g = lambda x: 100 * cosh(2 * x)-200 * sinh(2 * x)
sage: P = plot(f,0,1)
sage: Q = plot(g,0,1)
sage: show(P+Q)
sage: g(0.275)

-0.12017933629675781
sage: f(0.275)

346.41024490088557

Here is a similar battle but with different initial conditions.

Example 3.3.4. A battle is modeled by

{

x′ = −4y, x(0) = 150,
y′ = −x, y(0) = 90.

(a) Write the solutions in parameteric form. (b) Who wins? When? State the losses for
each side.

Solution: Take Laplace transforms of both sides:

sL [x (t)] (s) − x (0) = −4L [y (t)] (s),

3.3. APPLICATION: SOLVING SYSTEMS OF DES 127

Figure 3.3: curves x(t) = 400 cosh(2t)−200 sinh(2t), y(t) = 100 cosh(2t)−200 sinh(2t) along
the t-axis.

sL [x (t)] (s) − x (0) = −4L [y (t)] (s).

Solving these equations gives

L [x (t)] (s) =
sx (0) − 4 y (0)

s2 − 4
=

150 s − 360

s2 − 4
,

L [y (t)] (s) = −−sy (0) + x (0)

s2 − 4
= −−90 s + 150

s2 − 4
.

Inverting using Laplace transform tables gives:

x(t) = −15 e2 t + 165 e−2 t

y(t) = 90 cosh (2 t) − 75 sinh (2 t)

Their graph is given in Figure 3.4.

The “y-army” wins. Solving for x(t) = 0 gives twin = log(11)/4 = .5994738182..., so the
number of survivors is y(twin) = 49.7493718, so 49 survive.

128 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

Figure 3.4: Lanchester’s model for the x vs. y battle.

Lanchester’s square law: Suppose that if you are more interested in y as a function of
x, instead of x and y as functions of t. One can use the chain rule form calculus to derive
from the system x′(t) = −Ay(t), y′(t) = −Bx(t) the single equation

dy

dx
=

B

A

x

y
.

This differential equation can be solved by the method of separation of variables: Aydy =
Bxdx, so

Ay2 = Bx2 + C,

where C is an unknown constant. (To solve for C you must be given some initial conditions.)
The quantity Bx2 is called the fighting strength of the X-men and the quantity Ay2

is called the fighting strength of the Y -men (“fighting strength” is not to be confused
with “troop strength”). This relationship between the troop strengths is sometimes called
Lanchester’s square law and is sometimes expressed as saying the relative fight strength
is a constant:

Ay2 − Bx2 = constant.

3.3. APPLICATION: SOLVING SYSTEMS OF DES 129

Suppose your total number of troops is some number T , where x(0) are initially placed in
a fighting capacity and T −x(0) are in a support role. If your troops outnumber the enemy
then you want to choose the number of support units to be the smallest number such that
the fighting effectiveness is not decreasing (therefore is roughly constant). The remainder
should be engaged with the enemy in battle [M-intro].

A battle between three forces gives rise to the differential equations







x′(t) = −A1y(t) − A2z(t), x(0) = x0,
y′(t) = −B1x(t) − B2z(t), y(0) = y0,
z′(t) = −C1x(t) − C2y(t), z(0) = z0,

where Ai > 0, Bi > 0, and Ci > 0 are constants and x0, y0 and z0 are the intial troop
strengths.

Example 3.3.5. Consider the battle modeled by







x′(t) = −y(t) − z(t), x(0) = 100,
y′(t) = −2x(t) − 3z(t), y(0) = 100,
z′(t) = −2x(t) − 3y(t), z(0) = 100.

The Y-men and Z-men are better fighters than the X-men, in the sense that the coefficient
of z in 2nd DE (describing their battle with y) is higher than that coefficient of x, and the
coefficient of y in 3rd DE is also higher than that coefficient of x. However, as we will see,
the worst fighter wins! (The X-men do have the best defensive abilities, in the sense that
A1 and A2 are small.)

Taking Laplace transforms, we obtain the system







sX(s) + Y (s) + Z(s) = 100
2X(s) + sY (s) + 3Z(s) = 100,
2X(s) + 3Y (s) + sZ(s) = 100,

which we solve by row reduction using the augmented matrix





s 1 1 100
2 s 3 100
2 3 s 100





This has row-reduced echelon form





1 0 0 100s+100
s2+3s−4

0 1 0 100s−200
s2+3s−4

0 0 1 100s−200
s2+3s−4





This means X(s) = 100s+100
s2+3s−4

and Y (s) = Z(s) = 100s−200
s2+3s−4

. Taking inverse LTs, we get the

solution: x(t) = 40et +60e−4t and y(t) = z(t) = −20et +120e−4t. In other words, the worst
fighter wins!

130 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

In fact, the battle is over at t = log(6)/5 = 0.35... and at this time, x(t) = 71.54....
Therefore, the worst fighters, the X-men, not only won but have lost less than 30% of their
men!

Figure 3.5: Lanchester’s model for the x vs. y vs z battle.

Exercise: Use Sage to solve this: A battle is modeled by

{

x′ = −4y, x(0) = 150,
y′ = −x, y(0) = 40.

(a) Write the solutions in parameteric form. (b) Who wins? When? State the losses for
each side.

3.3.2 Romeo and Juliet

Romeo: If I profane with my unworthiest hand This holy shrine, the gentle
sin is this: My lips, two blushing pilgrims, ready stand To smooth that rough
touch with a tender kiss.

3.3. APPLICATION: SOLVING SYSTEMS OF DES 131

Juliet: Good pilgrim, you do wrong your hand too much, Which mannerly
devotion shows in this; For saints have hands that pilgrims’ hands do touch,
And palm to palm is holy palmers’ kiss.

- Romeo and Juliet, Act I, Scene V

After solving these equations involving battles, we can’t resist ending this section with
the Romeo and Juliet system of equations.

William Shakespeare’s play Romeo and Juliet about two young “star-cross’d lovers” was
one of his most popular. Though written in the late 1590’s, its ideas resonate even today,
as the characters Romeo and Juliet have become emblematic of doomed young lovers.

Let r = r(t) denote the love Romeo has for Juliet at time t and let j = j(t) denote the
love Juliet has for Romeo at time t.

{

r′ = Aj, r(0) = r0,
j′ = −Br + Cj, j(0) = j0,

(3.7)

where A > 0, B > 0, C > 0, r0, j0 are given constants. This indicates how Romeo is madly
in love with Juliet. Pure and simple. The more she loves him, the more he loves her. Juliet
is more of a complex character. She has eyes for Romeo and her love for him makes her feel
good about herself, which makes her love him even more. However, if she senses Romeo
seems to love her too much, she reacts negatively and her love wanes.

A few examples illustrate the cyclical nature of the relationship that can arise.

Example 3.3.6. Solve

{

r′ = 5j, r(0) =,
j′ = −r + 2j, j(0) = .

Sage

sage: t = var("t")
sage: r = function("r",t)
sage: j = function("j",t)
sage: de1 = diff(r,t) == 5 * j
sage: de2 = diff(j,t) == -r+2 * j
sage: soln = desolve_system([de1, de2], [r,j],ics=[0,4,6])
sage: rt = soln[0].rhs(); rt
(13 * sin(2 * t) + 4 * cos(2 * t)) * eˆt
sage: jt = soln[1].rhs(); jt
(sin(2 * t) + 6 * cos(2 * t)) * eˆt

To solve this using Laplace transforms, take Laplace transforms of both sides, to obtain

sR(s) − 4 = 5J(s), sJ(s) − 6 = −R(s) + 2J(s),

where R(s) = L[r(t)](s), J(s) = L[j(t)](s). This gives rise to the augmented matrix

132 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

(

s −5 4
1 s − 2 6

)

.

Computing the row-reduced echelon form gives

R(s) = −10
2 − 3s

s(s2 − 2s + 5)
+

4

s
, J(s) = −2

2 − 3s

(s2 − 2s + 5
.

Taking inverse Laplace transforms gives

r(t) = (13 sin (2 t) + 4 cos (2 t))et, , j(t) = (sin (2 t) + 6 cos (2 t))et.

The parametric plot of x = r(t), y = j(t) is given in Figure 3.6.

Figure 3.6: Romeo and Juliet plots.

Example 3.3.7. Solve

{

r′ = 10j, r(0) = 4,
j′ = −r + j/10, j(0) = 6.

To solve this using Laplace transforms, take Laplace transforms of both sides, to obtain

3.3. APPLICATION: SOLVING SYSTEMS OF DES 133

sR(s)− 4 = 10J(s), sJ(s) − 6 = −R(s) +
1

10
J(s),

where R(s) = L[r(t)](s), J(s) = L[j(t)](s). Solving this as above gives

r(t) = (13 sin(2t) + 4 cos(2t))et, j(t) = (sin(2t) + 6 cos(2t))et.

Sage

sage: t = var("t")
sage: r = function("r",t)
sage: j = function("j",t)
sage: de1 = diff(r,t) == 10 * j
sage: de2 = diff(j,t) == -r+(1/10) * j
sage: soln = desolve_system([de1, de2], [r,j],ics=[0,4,6])
sage: rt = soln[0].rhs(); rt
(13 * sin(2 * t) + 4 * cos(2 * t)) * eˆt
sage: jt = soln[1].rhs(); jt
(sin(2 * t) + 6 * cos(2 * t)) * eˆt

The parametric plot of x = r(t), y = j(t) is given in Figure 3.7.

Exercise: Use Sage to analyze the problem

{

r′ = 2j, r(0) = 4,
j′ = −r + 3j, j(0) = 6.

Exercise: (Much harder) Use Sage to analyze the Lotka-Volterra/Predator-Prey model

{

x′ = x(−1 + 2y), x(0) = 4,
y′ = y(−3x + 4y), y(0) = 6.

Use Euler’s method and separation of variables applied to dy/dx = y(−3x+4y)
x(−1+2y) .

3.3.3 Electrical networks using Laplace transforms

Suppose we have an electrical network (i.e., a series of electrical circuits) involving emfs
(electromotive forces or batteries), resistors, capacitors and inductors. We use the “dictio-
nary” from §2.6 to translate between the network diagram and the DEs.

134 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

Figure 3.7: Romeo and Juliet plots.

EE object term in DE units symbol
(the voltage drop)

charge q =
∫

i(t) dt coulombs
current i = q′ amps

emf e = e(t) volts V

resistor Rq′ = Ri ohms Ω

capacitor C−1q farads

inductor Lq′′ = Li′ henries

Also, recall §from §2.6 Kirchoff’s Laws.

Example 3.3.8. Consider the simple RC circuit given by the diagram in Figuer 3.8.

According to Kirchoff’s 2nd Law and the above “dictionary”, this circuit corresponds to
the DE

q′ + 5q = 2.

3.3. APPLICATION: SOLVING SYSTEMS OF DES 135

Figure 3.8: A simple circuit.

The general solution to this is q(t) = 1 + ce−2t, where c is a constant which depends on
the initial charge on the capacitor.

Aside: The convention of assuming that electricity flows from positive to negative on
the terminals of a battery is referred to as “conventional flow”. The physically-correct but
opposite assumption is referred to as “electron flow”. We shall assume the “electron flow”
convention.

Example 3.3.9. Consider the network given by the following diagram.

Figure 3.9: A network.

Assume the initial charges are 0.

One difference between this circuit and the one above is that the charges on the three
paths between the two nodes (labeled node 1 and node 2 for convenience) must be labeled.
The charge passing through the 5 ohm resistor we label q1, the charge on the capacitor we
denote by q2, and the charge passing through the 1 ohm resistor we label q3.

There are three closed loops in the above diagram: the “top loop”, the “bottom loop”,
and the “big loop”. The loops will be traversed in the “clockwise” direction. Note the

136 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

“top loop” looks like the simple circuit given in Example 1 but it cannot be solved in the
same way, since the current passing through the 5 ohm resistor will affect the charge on the
capacitor. This current is not present in the circuit of Example 1 but it does occur in the
network above.

Kirchoff’s Laws and the above “dictionary” give







q′3 + 5q2 = 2, q1(0) = 0,
5q′1 − 5q2 = 0, q2(0) = 0,
5q′1 + q′3 = 2, q3(0) = 0.

Notice the minus sign in front of the term associated to the capacitor (−5q2). This is
because we are going clockwise, against the “direction of the current”. Kirchoff’s 1st law
says q′3 = q′1 + q′2. Since q1(0) = q2(0) = q3(0) = 0, this implies q3 = q1 + q2. After taking
Laplace transforms of the 3 differential equations above, we get

sQ3(s) + 5Q2(s) = 2/s, 5sQ1(s) − 5Q2(s) = 0.

Note you don’t need to take th eLT of the 3rd equation since it is the sum of the first two
equations. The LT of the above q1+q2 = q3 (Kirchoff’s law) gives Q1(s)+Q2(s)−Q3(s) = 0.
We therefore have this matrix equation





0 5 s
5s 0 s
1 1 −1









Q1(s)
Q2(s)
Q3(s)



 =





2/s
2/s
0



 .

The augmented matrix describing this system is





0 5 s 2/s
5s 0 s 2/s
1 1 −1 0





The row-reduced echelon form is





1 0 0 2/(s3 + 6s2)
0 1 0 2/(s2 + 6s)
0 0 1 2(s + 1)/(s3 + 6s2)





Therefore

Q1(s) =
2

s3 + 6s2
, Q2(s) =

2

s2 + 6s
, Q3(s) =

2(s + 1)

s2(s + 6)
.

This implies

q1(t) = −1/18 + e−6t/18 + t/3, q2(t) = 1/3 − e−6t/3, q3(t) = q2(t) + q1(t).

This computation can be done in Sage as well:

3.3. APPLICATION: SOLVING SYSTEMS OF DES 137

Sage

sage: s = var("s")
sage: MS = MatrixSpace(SymbolicExpressionRing(), 3, 4)
sage: A = MS([[0,5,s,2/s],[5 * s,0,s,2/s],[1,1,-1,0]])
sage: B = A.echelon_form(); B

[1 0 0 2/(5 * sˆ2) - (-2/(5 * s) - 2/(5 * sˆ2))/(5 * (-s/5 - 6/5))]
[0 1 0 2/(5 * s) - (-2/(5 * s) - 2/(5 * sˆ2)) * s/(5 * (-s/5 - 6/5))]
[0 0 1 (-2/(5 * s) - 2/(5 * sˆ2))/(-s/5 - 6/5)]

sage: Q1 = B[0,3]
sage: t = var("t")
sage: Q1.inverse_laplace(s,t)
eˆ(-(6 * t))/18 + t/3 - 1/18
sage: Q2 = B[1,3]
sage: Q2.inverse_laplace(s,t)
1/3 - eˆ(-(6 * t))/3
sage: Q3 = B[2,3]
sage: Q3.inverse_laplace(s,t)
-5 * eˆ(-(6 * t))/18 + t/3 + 5/18

Example 3.3.10. Consider the network given by the following diagram.

Figure 3.10: Another network.

Assume the initial charges are 0.

Using Kirchoff’s Laws, you get a system

138 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES







i1 − i2 − i3 = 0,
2i1 + i2 + (0.2)i′1 = 6,

(0.1)i′3 − i2 = 0.

Take LTs of these three DEs. You get a 3× 3 system in the unknowns I1(s) = L[i1(t)](s),
I2(s) = L[i2(t)](s), and I3(s) = L[i3(t)](s). The augmented matrix of this system is





1 −1 −1 0
2 + s/5 1 0 6/s

0 −1 s/10 0





(Check this yourself!) The row-reduced echelon form is







1 0 0 30(s+10)
s(s2+25s+100)

0 1 0 30
s2+25s+100

0 0 1 300
s(s2+25s+100)







Therefore

I1(s) = − 1

s + 20
− 2

s + 5
+

3

s
, I2(s) = − 2

s + 20
+

2

s + 5
, I3(s) =

1

s + 20
− 4

s + 5
+

3

s
.

This implies

i1(t) = 3 − 2e−5t − e−20t, i2(t) = 2e−5t − 2e−20t, i3(t) = 3 − 4e−5t + e−20t.

Exercise: Use Sage to solve for i1(t), i2(t), and i3(t) in the above problem.

3.4 Eigenvalue method for systems of DEs

Motivation

First, we shall try to motivate the study of eigenvalues and eigenvectors. This section
hopefully will convince you that

• if our goal in life is to discover the “simplest” matrices, then diagonal matrices are
wonderful,

• if our goal in lifeis to find the “best” coordinate system to work with, then conjugation
is very natural,

• if our goal in life is to conjugate a given square matrix matrix into a diagonal one,
then eigenvalues and eigenvectors are also natural.

3.4. EIGENVALUE METHOD FOR SYSTEMS OF DES 139

Diagonal matrices are wonderful: We’ll focus for simplicity on the 2×2 case, but everything
applies to the general case.

• Addition is easy:

(

a1 0
0 a2

)

+

(

b1 0
0 b2

)

=

(

a1 + b1 0
0 a2 + b2

)

.

• Multiplication is easy:

(

a1 0
0 a2

)

·
(

b1 0
0 b2

)

=

(

a1 · b1 0
0 a2 · b2

)

.

• Powers are easy:

(

a1 0
0 a2

)n

=

(

an
1 0
0 an

2

)

.

• You can even exponentiate them:

exp(t

(

a1 0
0 a2

)

) =

(

1 0
0 1

)

+ t

(

a1 0
0 a2

)

+ 1
2! t

2

(

a1 0
0 a2

)2

+ 1
3! t

3

(

a1 0
0 a2

)3

+ ...

=

(

1 0
0 1

)

+

(

ta1 0
0 ta2

)

+

(

1
2! t

2a2
1 0

0 1
2! t

2a2
2

)

+

(

1
3! t

3a3
1 0

0 1
3! t

3a3
2

)

+ ...

=

(

exp(ta1) 0
0 exp(ta2)

)

.

So, diagonal matrices are wonderful.

Conjugation is natural. You and your friend are piloting a rocket in space. You handle the
controls, your friend handles the map. To communicate, you have to “change coordinates”.
Your coordinates are those of the rocketship (straight ahead is one direction, to the right is
another). Your friends coordinates are those of the map (north and east are map directions).
Changing coordinates corresponds algebraically to conjugating by a suitable matrix. Using
an example, we’ll see how this arises in a specific case.

Your basis vectors are

v1 = (1, 0), v2 = (0, 1),

140 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

which we call the “v-space coordinates”, and the map’s basis vectors are

w1 = (1, 1), w2 = (1,−1),

which we call the “w-space coordinates”.

Figure 3.11: basis vectors v1, v2 and w1, w2.

For example, the point (7, 3) is, in v-space coordinates of course (7, 3) but in the w-space

coordinates, (5, 2) since 5w1 + 2w2 = 7v1 + 3v2. Indeed, the matrix A =

(

1 1
1 −1

)

sends
(

5
2

)

to

(

7
3

)

.

Suppose we flip about the 45o line (the “diagonal”) in each coordinate system. In the
v-space:

av1 + bv2 7−→ bv1 + av2,
(

a
b

)

7−→
(

0 1
1 0

)(

a
b

)

.

In other words, in v-space, the “flip map” is

(

0 1
1 0

)

.

3.4. EIGENVALUE METHOD FOR SYSTEMS OF DES 141

In the w-space:

wv1 + wv2 7−→ aw1 − bw2,
(

a
b

)

7−→
(

1 0
0 −1

)(

a
b

)

.

In other words, in w-space, the “flip map” is

(

1 0
0 −1

)

.

Conjugating by the matrix A converts the “flip map” in w-space to the the “flip map” in
v-space:

A ·
(

1 0
0 −1

)

· A−1 =

(

0 1
1 0

)

.

Eigenvalues are natural too
At first glance, matrices can seem to be complicated objects. The eigenvalues of a matrix

are

• relatively easy to compute,

• tell us something about the “behavior” of the corresponding matrix.

This is a bit vague since we really don’t need to know about matrices in detail (take a course
in matrix theory for that), just enough to help us solve equations. For us, as you will see,
eigenvalues are very useful for solving equations associated to a matrix.

Each n×n matrix A has exactly n (counted according to multiplicity) eigenvalues λ1, λ2,
. . . , λn. These numbers are the roots of the characteristic polynomial

p(λ) = pA(λ) = det(A − λI). (3.8)

The corresponding eigenvectors are non-zero vectors ~v which satisfy the eigenvector
equation

A~v = λ~v, (3.9)

where λ is one of the eigenvalues. In this case, we say ~v corresponds to λ.

Example 3.4.1. Consider an n × n diagonal matrix. The standard basis elements (e1 =
(1, 0, ..., 0), . . . , en = (0,, 0, 1)) are the eigenvectors and the diagonal elements are the
eigenvalues.

Example 3.4.2. Find the eigenvalues and eigenvectors of

A =





0 −1 1
−4 0 2
0 0 3





142 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

We compute

p(λ) = det





0 − λ −1 1
−4 −λ 2
0 0 3 − λ



 = −(λ − 2)(λ + 2)(λ − 3).

Therefore, λ1 = −2, λ2 = 2, λ3 = 3. We solve for the corresponding eigenvectors, ~v1, ~v2,
~v3. For example, let

~v3 =





x
y
z



 .

We solve for x, y, z in the eigenvector equation





0 − λ −1 1
−4 −λ 2
0 0 3 − λ









x
y
z



 = 3





x
y
z



 .

This gives rise to the system of linear equations

−y +z = 3x
−4x +2z = 3y

3z = 3z.

You can find some non-zero solvution to these using row-reduction/Gauss elimination, for
example. The row-reduced echelon form of





−3 −1 1 0
−4 −3 2 0
0 0 0 0





is

A =





1 0 −1/5 0
0 1 −2/5 0
0 0 0 0



 ,

so z is anything (non-zero, that is), y = 2z/5, and x = z/5. One non-zero solution is x = 1,
y = 2, z = 5, so

~v3 =





1
2
5



 .

However, any other scalar multiply of this will also satisfy the eigenvector equation. The
other eigenvectors can be computed similarly. We obtain in this way,

~v1 =





1
2
0



 , ~v2 =





1
−2
0



 .

3.4. EIGENVALUE METHOD FOR SYSTEMS OF DES 143

Since this section is only intended to be motivation, we shall not prove this here (see any
text on linear algebra, for example [B-rref] or [H-rref]).

Sage

sage: MS = MatrixSpace(CC,2,2)
sage: A = MS([[0,1],[1,0]])
sage: A.eigenspaces()

[
(1.00000000000000, [
(1.00000000000000, 1.00000000000000)
]),
(-1.00000000000000, [
(1.00000000000000, -1.00000000000000)
])
]

Solution strategy

PROBLEM: Solve
{

x′ = ax + by, x(0) = x0,
y′ = cx + dy, y(0) = y0.

Solution: Let

A =

(

a b
c d

)

In matrix notation, the system of DEs becomes

~X ′ = A ~X, ~X(0) =

(

x0

y0

)

,

where ~X = ~X(t) =

(

x(t)
y(t)

)

. In a similar manner to how we solved homogeneous constant

coefficient 2nd order ODEs ax′′ + bx′ + cx = 0 by using “Euler’s guess” x = Cert, we try to
guess an exponential: ~X(t) = ~ceλt (λ is used instead of r to stick with notational convention;
~c in place of C since we need a constant vector). Plugging this guess into the matrix DE
~X ′ = A ~X gives λ~ceλt = A~ceλt, or (cancelling eλt)

A~c = λ~c.

This means that λ is an eigenvalue of A with eigenvector ~c.

• Find the eigenvalues. These are the roots of the characteristic polynomial

p(λ) = det

(

a − λ b
c d − λ

)

= λ2 − (a + d)λ + (ad − bc).

144 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

Call them λ1, λ2 (in any order you like).

You can use the quadratic formula, for example to get them:

λ1 =
a + d

2
+

√

(a + d)2 − 4(ad − bc)

2
, λ2 =

a + d

2
−
√

(a + d)2 − 4(ad − bc)

2
.

• Find the eigenvectors. If b 6= 0 then you can use the formulas

~v1 =

(

b
λ1 − a

)

, ~v2 =

(

b
λ2 − a

)

.

In general, you can get them by solving the eigenvector equation A~v = λ~v.

Example 3.4.3. The eigenvalues and eigenvectors can be computed using Sage nu-
mericaly as follows.

Sage

sage: A = matrix([[1,2],[3,4]])
sage: A.eigenvalues()
[-0.3722813232690144?, 5.372281323269015?]
sage: A.eigenvectors_right()

[(-0.3722813232690144?, [(1, -0.6861406616345072?)], 1),
(5.372281323269015?, [(1, 2.186140661634508?)], 1)]

In some cases, they can be computed “exactly” or “symbolicaly”, as follows.

Sage

sage: A = matrix(QQ[I],[[1,1],[-5,-1]])
sage: A.eigenvalues()
[2 * I, -2 * I]
sage: A.eigenvectors_right()

[(2 * I, [
(1, 2 * I - 1)
], 1), (-2 * I, [
(1, -2 * I - 1)
], 1)]

• Plug these into the following formulas:

(a) λ1 6= λ2, real:
(

x(t)
y(t)

)

= c1~v1 exp(λ1t) + c2~v2 exp(λ2t).

3.4. EIGENVALUE METHOD FOR SYSTEMS OF DES 145

(b) λ1 = λ2 = λ, real:

(

x(t)
y(t)

)

= c1~v1 exp(λt) + c2(~v1t + ~p) exp(λt),

where ~p is any non-zero vector satisfying (A − λI)~p = ~v1.

(c) λ1 = α+ iβ, complex: write ~v1 = ~u1 + i~u2, where ~u1 and ~u2 are both real vectors.

(

x(t)
y(t)

)

= c1[exp(αt) cos(βt)~u1 − exp(αt) sin(βt)~u2]

+c2[− exp(αt) cos(βt)~u2 − exp(αt) sin(βt)~u1].
(3.10)

Examples

Example 3.4.4. Solve

x′(t)) = x(t) − y(t), y′(t) = 4x(t) + y(t), x(0) = −1, y(0) = 1.

Let

A =

(

1 −1
4 1

)

and so the characteristc polynomial is

p(x) = det(A − xI) = x2 − 2x + 5.

The eigenvalues are
λ1 = 1 + 2i, λ2 = 1 − 2i,

so α = 1 and β = 2. Eigenvectors ~v1, ~v2 are given by

~v1 =

(

−1
2i

)

, ~v2 =

(

−1
−2i

)

,

though we actually only need to know ~v1. The real and imaginary parts of ~v1 are

~u1 =

(

−1
0

)

, ~u2 =

(

0
2

)

.

The solution is then
(

x(t)
y(t)

)

=

(

−c1 exp(t) cos(2t) + c2 exp(t) sin(2t)
−2c1 exp(t) sin(2t) − 2c2 exp(t) cos(2t),

)

so x(t) = −c1 exp(t) cos(2t)+c2 exp(t) sin(2t) and y(t) = −2c1 exp(t) sin(2t)−2c2 exp(t) cos(2t).
Since x(0) = −1, we solve to get c1 = 1. Since y(0) = 1, we get c2 = −1/2. The solution

is: x(t) = − exp(t) cos(2t) − 1
2 exp(t) sin(2t) and y(t) = −2 exp(t) sin(2t) + exp(t) cos(2t).

146 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

Example 3.4.5. Solve

x′(t) = −2x(t) + 3y(t), y′(t) = −3x(t) + 4y(t).

Let

A =

(

−2 3
−3 4

)

and so the characteristc polynomial is

p(x) = det(A − xI) = x2 − 2x + 1.

The eigenvalues are
λ1 = λ2 = 1.

An eigenvector ~v1 is given by

~v1 =

(

3
3

)

.

Since we can multiply any eigenvector by a non-zero scalar and get another eigenvector, we
shall use instead

~v1 =

(

1
1

)

.

Let ~p =

(

r
s

)

be any non-zero vector satisfying (A − λI)~p = ~v1. This means

(

−2 − 1 3
−3 4 − 1

)(

r
s

)

=

(

1
1

)

There are infinitely many possibly solutions but we simply take r = 0 and s = 1/3, so

~p =

(

0
1/3

)

.

The solution is
(

x(t)
y(t)

)

= c1

(

1
1

)

exp(t) + c2(

(

1
1

)

t +

(

0
1/3

)

) exp(t),

or x(t) = c1 exp(t) + c2t exp(t) and y(t) = c1 exp(t) + 1
3c2 exp(t) + c2t exp(t).

Exercises: Use Sage to find eigenvalues and eigenvectors of the following matrices

(

1 −1
4 1

)

,

(

−2 3
−3 4

)

,

3.5. INTRODUCTION TO VARIATION OF PARAMETERS FOR SYSTEMS 147

and





1 −1 0
4 1 0
0 0 −13



 .

3.5 Introduction to variation of parameters for systems

The method called variation of parameters for systems of ordinary differential equations
has no relation to the method variation of parameters for 2nd order ordinary differential
equations discussed in an earlier lecture except for their name.

3.5.1 Motivation

Recall that when we solved the 1st order ordinary differential equation

y′ = ay, y(0) = y0, (3.11)

for y = y(t) using the method of separation of variables, we got the formula

y = ceat = eatc, (3.12)

where c is a constant depending on the initial condition (in fact, c = y(0)).

Consider a 2 × 2 system of linear 1st order ordinary differential equations in the form

{

x′ = ax + by, x(0) = x0,
y′ = cx + dy, y(0) = y0.

This can be rewritten in the form

~X ′ = A ~X, (3.13)

where ~X = ~X(t) =

(

x(t)
y(t)

)

, and A is the matrix

A =

(

a b
c d

)

.

We can solve (3.13) analogously to (3.11), to obtain

~X = etA~c, (3.14)

~c =

(

x(0)
y(0)

)

is a constant depending on the initial conditions and etA is a “matrix expo-

nential” defined by

eB =
∞
∑

n=0

1

n!
Bn,

148 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

for any square matrix B.

You might be thinking to yourself: I can’t compute the matrix exponential so what good is
this formula (3.14)? Good question! The answer is that the eigenvalues and eigenvectors of
the matrix A enable you to compute etA. This is the basis for the formulas for the solution
of a system of ordinary differential equations using the eigenvalue method discussed in §3.4.

The eigenvalue method in §3.4 shows us how to write every solution to (3.13) in the form

~X = c1
~X1(t) + c2

~X2(t),

for some vector-valued solutions ~X1(t) and ~X2(t) called fundamental solutions. Fre-
quently, we call the matrix of fundamental solutions,

Φ =
(

~X1(t), ~X2(t)
)

,

the fundamental matrix. The fundamental matrix is, roughly speaking, etA. It is analo-
gous to the Wronskian of two fundamental solutions to a second order ordinary differential
equation.

See examples below for more details.

3.5.2 The method

Recall that we we solved the 1st order ordinary differential equation

y′ + p(t)y = q(t) (3.15)

for y = y(t) using the method of integrating factors, we got the formula

y = (e
R

p(t) dt)−1(

∫

e
R

p(t) dtq(t) dt + c). (3.16)

Consider a 2 × 2 system of linear 1st order ordinary differential equations in the form

{

x′ = ax + by + f(t), x(0) = x0,
y′ = cx + dy + g(t), y(0) = y0.

This can be rewritten in the form

~X ′ = A ~X + ~F , (3.17)

where ~F = ~F (t) =

(

f(t)
g(t)

)

. Equation (3.17) can be seen to be in a form analogous to

(3.15) by replacing ~X by y, A by −p and ~F by q. It turns out that (3.17) can be solved
in a way analogous to (3.15) as well. Here is the variation of parameters formula for
systems:

~X = Φ(

∫

Φ−1 ~F (t) dt + ~c), (3.18)

3.5. INTRODUCTION TO VARIATION OF PARAMETERS FOR SYSTEMS 149

where ~c =

(

c1

c2

)

is a constant vector determined by the initial conditions and Φ is the

fundamental matrix.

Example 3.5.1. A battle between X-men and Y-men is modeled by

{

x′ = −y + 1, x(0) = 100,
y′ = −4x + et, y(0) = 50.

The non-homogeneous terms 1 and et represent reinforcements. Find out who wins, when,
and the number of survivers.

Here A is the matrix

A =

(

0 −1
−4 0

)

and ~F = ~F (t) =

(

1
et

)

.

In the method of variation of parameters, you must solve the homogeneous system first.

The eigenvalues of A are λ1 = 2, λ2 = −2, with associated eigenvectors ~v1 =

(

1
−2

)

,

~v2 =

(

1
2

)

, resp.. The general solution to the homogeneous system

{

x′ = −y,
y′ = −4x,

is

~X = c1

(

1
−2

)

e2t + c2

(

1
2

)

e−2t = c1
~X1(t) + c2

~X2(t),

where

~X1(t) =

(

e2t

−2e2t

)

, ~X2(t) =

(

e−2t

2e−2t

)

.

For the solution of the non-homogeneous equation, we must compute the fundamental
matrix:

Φ =

(

e2t e−2t

−2e2t 2e−2t

)

, so Φ−1 =
1

4

(

2e−2t −e−2t

2e2t e2t

)

.

Next, we compute the product,

Φ−1 ~F =
1

4

(

2e−2t −e−2t

2e2t e2t

)(

1
et

)

=

(

1
2e−2t − 1

4e−t

1
2e2t + 1

4e3t

)

and its integral,

150 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

∫

Φ−1 ~F dt =

(

−1
4e−2t + 1

4e−t

1
4e2t + 1

12e3t

)

.

Finally, to finish (3.18), we compute

Φ(
∫

Φ−1 ~F (t) dt + ~c) =

(

e−2t e−2t

−2e2t 2e2t

)(

−1
4e−2t + 1

4e−t + c1
1
4e2t + 1

12e3t + c2

)

=

(

c1e
2t + 1

3et + c2e
−2t

1 − 1
3et − 2c1e

2t + 2c2e
−2t

)

.

This gives the general solution to the original system

x(t) = c1e
2t +

1

3
et + c2e

−2t,

and

y(t) = 1 − 1

3
et − 2c1e

2t + 2c2e
−2t.

We aren’t done! It remains to compute c1, c2 using the ICs. For this, solve

1

3
+ c1 + c2 = 100,

2

3
− 2c1 + 2c2 = 50.

We get

c1 = 75/2, c2 = 373/6,

so

x(t) =
75

2
e2t +

1

3
et +

373

6
e−2t,

and

y(t) = 1 − 1

3
et − 75e2t +

373

3
e−2t.

As you can see from Figure 3.12, the X-men win. The solution to y(t) = 0 is about
t0 = 0.1279774... and x(t0) = 96.9458... “survive”.

Example 3.5.2. Solve

{

x′ = −y + 1,
y′ = x + cot(t).

Here A is the matrix

A =

(

0 −1
1 0

)

and ~F = ~F (t) =

(

0
cot(t)

)

.

In the method of variation of parameters, you must solve the homogeneous system first.

3.5. INTRODUCTION TO VARIATION OF PARAMETERS FOR SYSTEMS 151

Figure 3.12: Solution to system x′ = −y + 1, x(0) = 100, y′ = −4x + et, y(0) = 50.

The eigenvalues of A are λ1 = i, λ2 = −i, with associated eigenvectors ~v1 =

(

1
−i

)

,

~v2 =

(

1
i

)

, resp.. Therefore, in the notation of (3.10), we have α = 0, β = 1, ~u1 =

(

1
0

)

,

and ~u2 =

(

0
−1

)

.

The general solution to the homogeneous system

{

x′ = −y,
y′ = x,

is

~X = c1[cos(t)

(

1
0

)

−sin(t)

(

0
−1

)

]+c2[cos(t)

(

0
−1

)

+sin(t)

(

1
0

)

] = c1
~X1(t)+c2

~X2(t),

where

~X1(t) =

(

cos(t)
sin(t)

)

, ~X2(t) =

(

sin(t)
− cos(t)

)

.

For the solution of the non-homogeneous equation, we must compute the fundamental
matrix:

Φ =

(

cos(t) sin(t)
sin(t) − cos(t)

)

, so Φ−1 =

(

cos(t) sin(t)
sin(t) − cos(t)

)

= Φ,

152 CHAPTER 3. MATRIX THEORY AND SYSTEMS OF DES

since cos(t)2 + sin(t)2 = 1. Next, we compute the product,

Φ−1 ~F =

(

cos(t) sin(t)
sin(t) − cos(t)

)(

0
cot(t)

)

=

(

cos(t)
− cos(t)2/ sin(t)

)

=

(

cos(t)
sin(t) − 1/ sin(t)

)

and its integral,

∫

Φ−1 ~F dt =

(

sin(t)

− cos(t) − 1
2

cos(t)−1
cos(t)+1

)

.

Finally, we compute

Φ(
∫

Φ−1 ~F (t) dt + ~c) =

(

cos(t) sin(t)
sin(t) − cos(t)

)

[

(

c1

c2

)

+

(

sin(t)

− cos(t) − 1
2

cos(t)−1
cos(t)+1

)

]

=

(

c1 cos (t) + c2 sin (t) − 1
2

sin(t) cos(t)
(cos(t)+1) + 1

2
sin(t)

(cos(t)+1)

c1 sin (t) − c2 cos (t) + 1 + 1
2

cos(t)2

(cos(t)+1) − 1
2

cos(t)
(cos(t)+1)

)

.

Therefore,

x(t) = c1 cos (t) + c2 sin (t) − 1

2

sin (t) cos (t)

(cos (t) + 1)
+

1

2

sin (t)

(cos (t) + 1)
,

and

y(t) = c1 sin (t) − c2 cos (t) + 1 +
1

2

cos (t)2

(cos (t) + 1)
− 1

2

cos (t)

(cos (t) + 1)
.

Chapter 4

Introduction to partial differential

equations

The deep study of nature is the most fruitful source of mathematical discov-
eries.

- Jean-Baptist-Joseph Fourier

4.1 Introduction to separation of variables

Recall, a partial differential equation (PDE) is an equation satisfied by an unknown function
(called the dependent variable) and its partial derivatives. The variables you differentiate
with respect to are called the independent variables. If there is only one independent
variable then it is called an ordinary differential equation.

Examples include

• the Laplace equation ∂2u
∂x2 + ∂2u

∂y2 = 0, where u is the dependent variable and x, y are
the independent variables,

• the heat equation ut = αuxx,

• and the wave equation utt = c2uxx.

All these PDEs are of second order (you have to differentiate twice to express the equation).
Here, we consider a first order PDE which arises in applications and use it to introduce the
method of solution called separation of variables.

The transport or advection equation

153

154 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Advection is the transport of a some conserved scalar quantity in a vector field. A good
example is the transport of pollutants or silt in a river (the motion of the water carries
these impurities downstream) or traffic flow.

The advection equation is the PDE governing the motion of a conserved quantity as it is
advected by a given velocity field. The advection equation expressed mathematically is:

∂u

∂t
+ ∇ · (ua) = 0

where ∇· is the divergence and a is the velocity field of the fluid. Frequently, it is assumed
that ∇ · a = 0 (this is expressed by saying that the velocity field is solenoidal). In this case,
the above equation reduces to

∂u

∂t
+ a · ∇u = 0.

Assume we have horizontal pipe in which water is flowing at a constant rate c in the
positive x direction. Add some salt to this water and let u(x, t) denote the concentration
(say in lbs/gallon) at time t. Note that the amount of salt in an interval I of the pipe is
∫

I u(x, t) dx. This concentration satisfies the transport (or advection) equation:

ut + cux = 0.

(For a derivation of this, see for example Strauss [S-pde], §1.3.) How do we solve this?
Solution 1: D’Alembert noticed that the directional derivative of u(x, t) in the direction

~v = 1√
1+c2

〈c, 1〉 is D~v(u) = 1√
1+c2

(cux + ut) = 0. Therefore, u(x, t) is constant along the

lines in the direction of ~v, and so u(x, t) = f(x − ct), for some function f . We will not use
this method of solution in the example below but it does help visualize the shape of the
solution. For instance, imagine the plot of z = f(x − ct) in (x, t, z) space. The contour
lying above the line x = ct + k (k fixed) is the line of constant height z = f(k). �

Solution 2: The method of separation of variables indicates that we start by assuming
that u(x, t) can be factored:

u(x, t) = X(x)T (t),

for some (unknown) functions X and T . (We shall work on removing this assumption later.
This assumption “works” because partial differentiation of functions like x2t3 is so much
simpler that partial differentiation of “mixed” functions like sin(x2 + t3).) Substituting this
into the PDE gives

X(x)T ′(t) + cX ′(x)T (t) = 0.

Now separate all the x’s on one side and the t’s on the other (divide by X(x)T (t)):

T ′(t)

T (t)
= −c

X ′(x)

X(x)
.

(This same “trick” works when you apply the separation of variables method to other linear
PDE’s, such as the heat equation or wave equation, as we will see in later lessons.) It is

4.1. INTRODUCTION TO SEPARATION OF VARIABLES 155

impossible for a function of an independent variable x to be identically equal to a function of
an independent variable t unless both are constant. (Indeed, try taking the partial derivative

of T ′(t)
T (t) with respect to x. You get 0 since it doesn’t depend on x. Therefore, the partial

derivative of −cX′(x)
X(x) is akso 0, so X′(x)

X(x) is a constant!) Therefore, T ′(t)
T (t) = −cX′(x)

X(x) = K, for

some (unknown) constant K. So, we have two ODEs:

T ′(t)

T (t)
= K,

X ′(x)

X(x)
= −K/c.

Therefore, we have converted the PDE into two ODEs. Solving, we get

T (t) = c1e
Kt, X(x) = c2e

−Kx/c,

so, u(x, t) = AeKt−Kx/c = Ae−
K
c

(x−ct), for some constants K and A (where A is shorthand

for c1c2; in terms of D’Alembert’s solution, f(y) = Ae−
K
c

(y)). The “general solution” is a
sum of these (for various A’s and K’s). �

This can also be done in Sage :

Sage

sage: t = var("t")
sage: T = function("T",t)
sage: K = var("K")
sage: T0 = var("T0")
sage: sage: desolve(diff(T,t) == K * T, [T,t], [0,T0])
T0* eˆ(K * t)
sage: x = var("x")
sage: X = function("X",x)
sage: c = var("c")
sage: X0 = var("X0")
sage: desolve(diff(X,x) == -cˆ(-1) * K* X, [X,x], [0,X0])
X0* eˆ(-K * x/c)
sage: solnX =desolve(diff(X,x) == -cˆ(-1) * K* X, [X,x], [0,X0])
sage: solnX
X0* eˆ(-K * x/c)
sage: solnT = desolve(diff(T,t) == K * T, [T,t], [0,T0])
sage: solnT
T0* eˆ(K * t)
sage: solnT * solnX
T0* X0* eˆ(K * t - K * x/c)

Example 4.1.1. Assume water is flowing along a horizontal pipe at 3 gal/min in the x
direction and that there is an initial concentration of salt distributed in the water with
concentration of u(x, 0) = e−x. Using separation of variables, find the concentration at
time t. Plot this for various values of t.

156 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Solution: The method of separation of variables gives the “separated form” of the solution
to the transport PDE as u(x, t) = AeKt−Kx/c, where c = 3. The initial condition implies

e−x = u(x, 0) = AeK·0−Kx/c = Ae−Kx/3,

so A = 1 and K = 3. Therefore, u(x, t) = e3t−x. In other words, the salt concentration
is increasing in time. This makes sense if you think about it this way: “freeze” the water
motion at time t = 0. There is a lot of salt at the beginning of the pipe and less and less
salt as you move along the pipe. Now go down the pipe in the x-direction some amount
where you can barely tell there is any salt in the water. Now “unfreeze” the water motion.
Looking along the pipe, you see the concentration is increasing since the saltier water is
now moving toward you.

Figure 4.1: Transport with velocity c = 3.

An interactive version of this plot can be produced in Sage with:

Sage

sage: t,x = var("t,x")
sage: plot3d(exp(3 * t-x),[x,0,2],[t,0,2])

�

What if the initial concentration was not u(x, 0) = e−x but instead u(x, 0) = e−x +3e−5x?
How does the solution to

ut + 3ux = 0, u(x, 0) = e−x + 3e−5x, (4.1)

differ from the method of solution used above? In this case, we must use the fact that (by
superposition) “the general solution” is of the form

u(x, t) = A1e
K1(t−x/3) + A2e

K2(t−x/3) + A3e
K3(t−x/3) + ... , (4.2)

4.2. FOURIER SERIES, SINE SERIES, COSINE SERIES 157

for some constants A1,K1, To solve this PDE (4.1), we must answer the following ques-
tions: (1) How many terms from (4.2) are needed? (2) What are the constants A1,K1, ...?
There are two terms in u(x, 0), so we can hope that we only need to use two terms and
solve

e−x + 3e−5x = u(x, 0) = A1e
K1(0−x/3) + A2e

K2(0−x/3)

for A1,K1, A2,K2. Indeed, this is possible to solve: A1 = 1, K1 = 3, A2 = 3, K1 = 15.
This gives

u(x, t) = e3(t−x/3) + 3e15(t−x/3).

Exercise: Using Sage , solve and plot the solution to the following problem. Assume water
is flowing along a horizontal pipe at 3 gal/min in the x direction and that there is an initial
concentration of salt distributed in the water with concentration of u(x, 0) = ex.

4.2 Fourier series, sine series, cosine series

History: Fourier series were discovered by J. Fourier, a Frenchman who was a mathemati-
cian among other things. In fact, Fourier was Napolean’s scientific advisor during France’s
invasion of Egypt in the late 1800’s. When Napolean returned to France, he “elected” (i.e.,
appointed) Fourier to be a Prefect - basically an important administrative post where he
oversaw some large construction projects, such as highway constructions. It was during this
time when Fourier worked on the theory of heat on the side. His solution to the heat equa-
tion is basically what undergraduates often learn in a DEs with BVPs class. The exception
being that our understanding of Fourier series now is much better than what was known in
the early 1800’s and some of these facts, like Dirichlet’s theorem, are covered as well.
Motivation: Fourier series, since series, and cosine series are all expansions for a function

f(x), much in the same way that a Taylor series a0 + a1(x − x0) + a2(x − x0)
2 + ... is an

expansion. Both Fourier and Taylor series can be used to approximate f(x). There are
at least three important differences between the two types of series. (1) For a function
to have a Taylor series it must be differentiable1, whereas for a Fourier series it does not
even have to be continuous. (2) Another difference is that the Taylor series is typically not
periodic (though it can be in some cases), whereas a Fourier series is always periodic. (3)
Finally, the Taylor series (when it converges) always converges to the function f(x), but
the Fourier series may not (see Dirichlet’s theorem below for a more precise description of
what happens).

Definition 4.2.1. Let f(x) be a function defined on an interval of the real line. We allow
f(x) to be discontinuous but the points in this interval where f(x) is discontinuous must
be finite in number and must be jump discontinuities.

1Remember the formula for the n-th Taylor series coefficient centered at x = x0 - an = f(n)(x0)
n!

?

158 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

• First, we discuss Fourier series. To have a Fourier series you must be given two things:
(1) a “period” P = 2L, (2) a function f(x) defined on an interval of length 2L, usually
we take −L < x < L (but sometimes 0 < x < 2L is used instead). The Fourier series
of f(x) with period 2L is

f(x) ∼ a0

2
+

∞
∑

n=1

[an cos(
nπx

L
) + bn sin(

nπx

L
)],

where an and bn are given by the formulas2,

an =
1

L

∫ L

−L
f(x) cos(

nπx

L
) dx, (4.3)

and

bn =
1

L

∫ L

−L
f(x) sin(

nπx

L
) dx. (4.4)

• Next, we discuss cosine series. To have a cosine series you must be given two things:
(1) a “period” P = 2L, (2) a function f(x) defined on the interval of length L,
0 < x < L. The cosine series of f(x) with period 2L is

f(x) ∼ a0

2
+

∞
∑

n=1

an cos(
nπx

L
),

where an is given by

an =
2

L

∫ L

0
cos(

nπx

L
)f(x) dx.

The cosine series of f(x) is exactly the same as the Fourier series of the even exten-
sion of f(x), defined by

feven(x) =

{

f(x), 0 < x < L,
f(−x), −L < x < 0.

• Finally, we define sine series. To have a sine series you must be given two things: (1)
a “period” P = 2L, (2) a function f(x) defined on the interval of length L, 0 < x < L.
The sine series of f(x) with period 2L is

f(x) ∼
∞
∑

n=1

bn sin(
nπx

L
),

where bn is given by

2These formulas were not known to Fourier. To compute the Fourier coefficients an, bn he used sometimes
ingenious round-about methods using large systems of equations.

4.2. FOURIER SERIES, SINE SERIES, COSINE SERIES 159

bn =
2

L

∫ L

0
sin(

nπx

L
)f(x) dx.

The sine series of f(x) is exactly the same as the Fourier series of the odd extension
of f(x), defined by

fodd(x) =

{

f(x), 0 < x < L,
−f(−x), −L < x < 0.

One last remark: the symbol ∼ is used above instead of = because of the fact that
the Fourier series may not converge to f(x) (see “Dirichlet’s theorem” below). Do you
remember right-hand and left-hand limits from calculus 1? Recall they are denoted f(x+) =
limǫ→0,ǫ>0 f(x + ǫ) and f(x−) = limǫ→0,ǫ>0 f(x − ǫ), resp.. The meaning of ∼ is that the
series does necessarily not converge to the value of f(x) at every point3. The convergence
proprties are given by the theorem below.

Theorem 4.2.1. (Dirichlet’s theorem4) Let f(x) be a function as above and let −L <
x < L. The Fourier series of f(x),

f(x) ∼ a0

2
+

∞
∑

n=1

[an cos(
nπx

L
) + bn sin(

nπx

L
)],

(where an and bn are as in the formulas (4.3), (4.4)) converges to

f(x+) + f(x−)

2
.

In other words, the Fourier series of f(x) converges to f(x) only if f(x) is continuous at x.
If f(x) is not continuous at x then then Fourier series of f(x) converges to the “midpoint
of the jump”.

Example 4.2.1. If f(x) = 2 + x, −2 < x < 2, then the definition of L implies L = 2.
Without even computing the Fourier series, we can evaluate it using Dirichlet’s theorem.

Question: Using periodicity and Dirichlet’s theorem, find the value that the Fourier series
of f(x) converges to at x = 1, 2, 3. (Ans: f(x) is continuous at 1, so the FS at x = 1 converges

to f(1) = 3 by Dirichlet’s theorem. f(x) is not defined at 2. It’s FS is periodic with period 4, so at

x = 2 the FS converges to f(2+)+f(2−)
2 = 0+4

2 = 2. f(x) is not defined at 3. It’s FS is periodic with

period 4, so at x = 3 the FS converges to f(−1)+f(−1+)
2 = 1+1

2 = 1.)

The formulas (4.3) and (4.4) enable us to compute the Fourier series coefficients a0, an

and bn. (We skip the details.) These formulas give that the Fourier series of f(x) is

3Fourier believed his series converged to the function in the early 1800’s but we now know this is not
always true.

4Pronounced “Dear-ish-lay”.

160 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

f(x) ∼ 4

2
+

∞
∑

n=1

−4
nπ cos (nπ)

n2π2
sin(

nπx

2
).

The Fourier series approximations to f(x) are

S0 = 2, S1 = 2 +
4

π
sin(

πx

2
), S2 = 2 + 4

sin
(

1
2 π x

)

π
− 2

sin (π x)

π
, ...

The graphs of each of these functions get closer and closer to the graph of f(x) on the
interval −2 < x < 2. For instance, the graph of f(x) and of S8 are given below:

0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

x

Figure 4.2: Graph of f(x) and a Fourier series approximation of f(x).

Notice that f(x) is only defined from −2 < x < 2 yet the Fourier series is not only defined
everywhere but is periodic with period P = 2L = 4. Also, notice that S8 is not a bad
approximation to f(x).

This can also be done in Sage . First, we define the function.

Sage

sage: f = lambda x:x+2

4.2. FOURIER SERIES, SINE SERIES, COSINE SERIES 161

sage: f = Piecewise([[(-2,2),f]])

This can be plotted using the command f.plot().show(). Next, we compute the Fourier
series coefficients:

Sage

sage: f.fourier_series_cosine_coefficient(0,2) # a_0
4
sage: f.fourier_series_cosine_coefficient(1,2) # a_1
0
sage: f.fourier_series_cosine_coefficient(2,2) # a_2
0
sage: f.fourier_series_cosine_coefficient(3,) # a_3
0
sage: f.fourier_series_sine_coefficient(1,2) # b_1
4/pi
sage: f.fourier_series_sine_coefficient(2,) # b_2
-2/pi
sage: f.fourier_series_sine_coefficient(3,2) # b_3
4/(3 * pi)

Finally, the partial Fourier series and it’s plot verses the function can be computed using
the following Sage commands.

Sage

sage: f.fourier_series_partial_sum(3,2)
-2 * sin(pi * x)/pi + 4 * sin(pi * x/2)/pi + 2
sage: P1 = f.plot_fourier_series_partial_sum(15,2,-5,5 ,linestyle=":")
sage: P2 = f.plot(rgbcolor=(1,1/4,1/2))
sage: (P1+P2).show()

The plot (which takes 15 terms of the Fourier series) is given below.

Example 4.2.2. This time, let’s consider an example of a cosine series. In this case, we
take the piecewise constant function f(x) defined on 0 < x < 3 by

f(x) =

{

1, 0 < x < 2,
−1, 2 ≤ x < 3.

We see therefore L = 3. The formula above for the cosine series coefficients gives that

f(x) ∼ 1

3
+

∞
∑

n=1

4
sin
(

2
3 nπ

)

nπ
cos(

nπx

3
).

The first few partial sums are

S2 = 1/3 + 2

√
3 cos

(

1
3 π x

)

π
,

162 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Figure 4.3: Graph of f(x) = x + 2 and a Fourier series approximation, L = 2.

S3 = 1/3 + 2

√
3 cos

(

1
3 π x

)

π
−

√
3 cos

(

2
3 π x

)

π
, ...

As before, the more terms in the cosine series we take, the better the approximation is,
for 0 < x < 3. Comparing the picture below with the picture above, note that even with
more terms, this approximation is not as good as the previous example. The precise reason
for this is rather technical but basically boils down to the following: roughly speaking, the
more differentiable the function is, the faster the Fourier series converges (and therefore the
better the partial sums of the Fourier series will approximate f(x)). Also, notice that the
cosine series approximation S10 is an even function but f(x) is not (it’s only defined from
0 < x < 3).

For instance, the graph of f(x) and of S10 are given below:

Example 4.2.3. Finally, let’s consider an example of a sine series. In this case, we take
the piecewise constant function f(x) defined on 0 < x < 3 by the same expression we used
in the cosine series example above.

Question: Using periodicity and Dirichlet’s theorem, find the value that the sine series of
f(x) converges to at x = 1, 2, 3. (Ans: f(x) is continuous at 1, so the FS at x = 1 converges to

f(1) = 1. f(x) is not continuous at 2, so at x = 2 the SS converges to f(2+)+f(2−)
2 = f(−2+)+f(2−)

2 =

4.2. FOURIER SERIES, SINE SERIES, COSINE SERIES 163

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6

x

Figure 4.4: Graph of f(x) and a cosine series approximation of f(x).

−1+1
2 = 0. f(x) is not defined at 3. It’s SS is periodic with period 6, so at x = 3 the SS converges

to fodd(3−)+fodd(3+)
2 = −1+1

2 = 0.)

The formula above for the sine series coefficients give that

f(x) =

∞
∑

n=1

2
cos (nπ) − 2 cos

(

2
3 nπ

)

+ 1

nπ
sin(

nπx

3
).

The partial sums are

S2 = 2
sin (1/3π x)

π
+ 3

sin
(

2
3 π x

)

π
,

S3 = 2
sin
(

1
3 π x

)

π
+ 3

sin
(

2
3 π x

)

π
− 4/3

sin (π x)

π
, ...

These partial sums Sn, as n → ∞, converge to their limit about as fast as those in the
previous example. Instead of taking only 10 terms, this time we take 40. Observe from the
graph below that the value of the sine series at x = 2 does seem to be approaching 0, as
Dirichlet’s Theorem predicts. The graph of f(x) with S40 is

164 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

–1

–0.5

0.5

1

–6 –4 –2 2 4 6

x

Figure 4.5: Graph of f(x) and a sine series approximation of f(x).

Exercise: Let f(x) = x2, −2 < x < 2 and L = 2. Use Sage to compute the first 10 terms
of the Fourier series, and plot the corresponding partial sum. Next plot the partial sum of
the first 50 terms and compare them.

Exercise: What mathematical results do the following Sage commands give you? In other
words, if you can seen someone typing these commands into a computer, explain what
problem they were trying to solve.

Sage

sage: x = var("x")
sage: f0(x) = 0
sage: f1(x) = -1
sage: f2(x) = 1
sage: f = Piecewise([[(-2,0),f1],[(0,3/2),f0],[(3/2,2) ,f2]])
sage: P1 = f.plot()
sage: a10 = [f.fourier_series_cosine_coefficient(n,2) f or n in range(10)]
sage: b10 = [f.fourier_series_sine_coefficient(n,2) for n in range(10)]
sage: fs10 = a10[0]/2 + sum([a10[i] * cos(i * pi * x/2) for i in range(1,10)]) + sum([b10[i] * sin(i * pi * x/2) for i in range(10)])
sage: P2 = fs10.plot(-4,4,linestyle=":")
sage: (P1+P2).show()
sage: ### these commands below are more time-consuming:
sage: a50 = [f.fourier_series_cosine_coefficient(n,2) f or n in range(50)]
sage: b50 = [f.fourier_series_sine_coefficient(n,2) for n in range(50)]
sage: fs50 = a50[0]/2 + sum([a50[i] * cos(i * pi * x/2) for i in range(1,50)]) + sum([b50[i] * sin(i * pi * x/2) for i in range(50)])
sage: P3 = fs50.plot(-4,4,linestyle="--")
sage: (P1+P2+P3).show()
sage: a100 = [f.fourier_series_cosine_coefficient(n,2) for n in range(100)]
sage: b100 = [f.fourier_series_sine_coefficient(n,2) fo r n in range(100)]
sage: fs100 = a100[0]/2 + sum([a100[i] * cos(i * pi * x/2) for i in range(1,100)]) + sum([b100[i] * sin(i * pi * x/2) for i in range(100)])
sage: P3 = fs100.plot(-4,4,linestyle="--")
sage: (P1+P2+P3).show()
sage:

4.3 The heat equation

The differential equations of the propagation of heat express the most general
conditions, and reduce the physical questions to problems of pure analysis, and
this is the proper object of theory.

4.3. THE HEAT EQUATION 165

- Jean-Baptist-Joseph Fourier

The heat equation with zero ends boundary conditions models the temperature of an
(insulated) wire of length L:

{

k ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t
u(0, t) = u(L, t) = 0.

Here u(x, t) denotes the temperature at a point x on the wire at time t. The initial tem-
perature f(x) is specified by the equation

u(x, 0) = f(x).

In this model, it is assumed no heat escapes out the middle of the wire (which, say, is
coated with some kind of insulating plastic). However, due to the boundary conditions,
u(0, t) = u(L, t) = 0, heat can escape out the ends.

4.3.1 Method for zero ends

• Find the sine series of f(x):

f(x) ∼
∞
∑

n=1

bn(f) sin(
nπx

L
),

• The solution is

u(x, t) =
∞
∑

n=1

bn(f) sin(
nπx

L
) exp(−k(

nπ

L
)2t).

Example 4.3.1. Let

f(x) =

{

−1, 0 ≤ x ≤ π/2,
2, π/2 < x < π.

Then L = π and

bn(f) =
2

π

∫ π

0
f(x) sin(nx)dx = −2

2 cos(nπ) − 3 cos(1
2 nπ) + 1

nπ
.

Thus

f(x) ∼ b1(f) sin(x) + b2(f) sin(2x) + ... =
2

π
sin(x) − 6

π
sin(2x) +

2

3π
sin(3x) +

This can also be done in Sage :

166 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Sage

sage: x = var("x")
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])
sage: P1 = f.plot()
sage: b10 = [f.sine_series_coefficient(n,pi) for n in rang e(1,10)]
sage: b10
[2/pi, -6/pi, 2/(3 * pi), 0, 2/(5 * pi), -2/pi, 2/(7 * pi), 0, 2/(9 * pi)]
sage: ss10 = sum([b10[n] * sin((n+1) * x) for n in range(len(b50))])
sage: ss10
2* sin(9 * x)/(9 * pi) + 2 * sin(7 * x)/(7 * pi) - 2 * sin(6 * x)/pi
+ 2* sin(5 * x)/(5 * pi) + 2 * sin(3 * x)/(3 * pi) - 6 * sin(2 * x)/pi + 2 * sin(x)/pi
sage: b50 = [f.sine_series_coefficient(n,pi) for n in rang e(1,50)]
sage: ss50 = sum([b50[n] * sin((n+1) * x) for n in range(len(b))])
sage: P2 = ss10.plot(-5,5,linestyle="--")
sage: P3 = ss50.plot(-5,5,linestyle=":")
sage: (P1+P2+P3).show()

This illustrates how the series converges to the function. The function f(x), and some of
the partial sums of its sine series, looks like Figure 4.6.

As you can see, taking more and more terms gives functions which better and better
approximate f(x).

The solution to the heat equation, therefore, is

u(x, t) =

∞
∑

n=1

bn(f) sin(
nπx

L
) exp(−k(

nπ

L
)2t).

Next, we see how Sage can plot the solution to the heat equation (we use k = 1):

Sage

sage: t = var("t")
sage: soln50 = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * t) for n in range(len(b50))])
sage: soln50a = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * (1/10)) for n in range(len(b50))])
sage: P4 = soln50a.plot(0,pi,linestyle=":")
sage: soln50b = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * (1/2)) for n in range(len(b50))])
sage: P5 = soln50b.plot(0,pi)
sage: soln50c = sum([b[n] * sin((n+1) * x) * eˆ(-(n+1)ˆ2 * (1/1)) for n in range(len(b50))])
sage: P6 = soln50c.plot(0,pi,linestyle="--")
sage: (P1+P4+P5+P6).show()

Taking 50 terms of this series, the graph of the solution at t = 0, t = 0.5, t = 1, looks
approximately like Figure 4.7.

4.3.2 Method for insulated ends

The heat equation with insulated ends boundary conditions models the temperature of
an (insulated) wire of length L:

4.3. THE HEAT EQUATION 167

Figure 4.6: f(x) and two sine series approximations.

{

k ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t
ux(0, t) = ux(L, t) = 0.

Here ux(x, t) denotes the partial derivative of the temperature at a point x on the wire at
time t. The initial temperature f(x) is specified by the equation u(x, 0) = f(x).

• Find the cosine series of f(x):

f(x) ∼ a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
),

• The solution is

u(x, t) =
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
)) exp(−k(

nπ

L
)2t).

Example 4.3.2. Let

168 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Figure 4.7: f(x), u(x, 0.1), u(x, 0.5), u(x, 1.0) using 60 terms of the sine series.

f(x) =

{

−1, 0 ≤ x ≤ π/2,
2, π/2 < x < π.

Then L = π and

an(f) =
2

π

∫ π

0
f(x) cos(nx)dx = −6

sin
(

1
2 π n

)

π n
,

for n > 0 and a0 = 1.

Thus

f(x) ∼ a0

2
+ a1(f) cos(x) + a2(f) cos(2x) + ...

This can also be done in Sage :

Sage

sage: x = var("x")
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])

4.3. THE HEAT EQUATION 169

sage: P1 = f.plot()
sage: a10 = [f.cosine_series_coefficient(n,pi) for n in ra nge(10)]
sage: a10
[1, -6/pi, 0, 2/pi, 0, -6/(5 * pi), 0, 6/(7 * pi), 0, -2/(3 * pi)]
sage: a50 = [f.cosine_series_coefficient(n,pi) for n in ra nge(50)]
sage: cs10 = a10[0]/2 + sum([a10[n] * cos(n * x) for n in range(1,len(a10))])
sage: P2 = cs10.plot(-5,5,linestyle="--")
sage: cs50 = a50[0]/2 + sum([a50[n] * cos(n * x) for n in range(1,len(a50))])
sage: P3 = cs50.plot(-5,5,linestyle=":")
sage: (P1+P2+P3).show()

This illustrates how the series converges to the function. The piecewise constant function
f(x), and some of the partial sums of its cosine series (one using 10 terms and one using 50
terms), looks like Figure 4.8.

Figure 4.8: f(x) and two cosine series approximations.

As you can see, taking more and more terms gives functions which better and better
approximate f(x).

The solution to the heat equation, therefore, is

u(x, t) =
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
) exp(−k(

nπ

L
)2t).

Using Sage , we can plot this function:

Sage

sage: soln50a = a50[0]/2 + sum([a50[n] * cos(n * x) * eˆ(-(n+1)ˆ2 * (1/100)) for n in range(1,len(a50))])
sage: soln50b = a50[0]/2 + sum([a50[n] * cos(n * x) * eˆ(-(n+1)ˆ2 * (1/10)) for n in range(1,len(a50))])
sage: soln50c = a50[0]/2 + sum([a50[n] * cos(n * x) * eˆ(-(n+1)ˆ2 * (1/2)) for n in range(1,len(a50))])
sage: P4 = soln50a.plot(0,pi)

170 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

sage: P5 = soln50b.plot(0,pi,linestyle=":")
sage: P6 = soln50c.plot(0,pi,linestyle="--")
sage: (P1+P4+P5+P6).show()

Taking only the first 50 terms of this series, the graph of the solution at t = 0, t = 0.01,
t = 0.1,, t = 0.5, looks approximately like:

Figure 4.9: f(x) = u(x, 0), u(x, 0.01), u(x, 0.1), u(x, 0.5) using 50 terms of the cosine series.

4.3.3 Explanation

Where does this solution come from? It comes from the method of separation of variables
and the superposition principle. Here is a short explanation. We shall only discuss the
“zero ends” case (the “insulated ends” case is similar).

First, assume the solution to the PDE k ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t has the “factored” form

u(x, t) = X(x)T (t),

for some (unknown) functions X,T . If this function solves the PDE then it must satisfy
kX ′′(x)T (t) = X(x)T ′(t), or

4.3. THE HEAT EQUATION 171

X ′′(x)

X(x)
=

1

k

T ′(t)

T (t)
.

Since x, t are independent variables, these quotients must be constant. (This of it this way:

the derivative of X′′(x)
X(x) with respect to t is zero. Therefore, the derivative of 1

k
T ′(t)
T (t) with

respect to t is zero. This implies it is a constant. In other words, there must be a constant
C such that

T ′(t)

T (t)
= kC, X ′′(x) − CX(x) = 0.

Now we have reduced the problem of solving the one PDE to two ordinary differential
equations (which is good), but with the price that we have introduced a constant which we
don’t know, namely C (which maybe isn’t so good). The first ordinary differential equation
is easy to solve:

T (t) = A1e
kCt,

for some constant A1. To obtain physically meaningful solutions, we do not want the
temperature of the wire to become unbounded as time increased (otherwise, the wire would
simply melt eventually). Therefore, we may assume here that C ≤ 0. It is best to analyse
two cases now:

Case C = 0: This implies X(x) = A2 + A3x, for some constants A2, A3. Therefore

u(x, t) = A1(A2 + A3x) =
a0

2
+ b0x,

where (for reasons explained later) A1A2 has been renamed a0
2 and A1A3 has been renamed

b0.

Case C < 0: Write (for convenience) C = −r2, for some r > 0. The ordinary differential
equation for X implies X(x) = A2 cos(rx)+A3 sin(rx), for some constants A2, A3. Therefore

u(x, t) = A1e
−kr2t(A2 cos(rx) + A3 sin(rx)) = (a cos(rx) + b sin(rx))e−kr2t,

where A1A2 has been renamed a and A1A3 has been renamed b.

These are the solutions of the heat equation which can be written in factored form. By
superposition, “the general solution” is a sum of these:

u(x, t) = a0
2 + b0x +

∑∞
n=1(an cos(rnx) + bn sin(rnx))e−kr2

nt

= a0
2 + b0x + (a1 cos(r1x) + b1 sin(r1x))e−kr2

1t

+(a2 cos(r2x) + b2 sin(r2x))e−kr2
2t + ...,

(4.5)

for some ai, bi, ri. We may order the ri’s to be strictly increasing if we like.

We have not yet used the IC u(x, 0) = f(x) or the BCs u(0, t) = u(L, t) = 0. We do that
next.

What do the BCs tell us? Plugging in x = 0 into (4.5) gives

172 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

0 = u(0, t) =
a0

2
+

∞
∑

n=1

ane−kr2
nt =

a0

2
+ a1e

−kr2
1t + a2e

−kr2
2t +

These exponential functions are linearly independent, so a0 = 0, a1 = 0, a2 = 0, This
implies

u(x, t) = b0x +
∑

n=1

bn sin(rnx)e−kr2
nt = b0x + b1 sin(r1x)e−kr2

1t + b2 sin(r2x)e−kr2
2t +

Plugging in x = L into this gives

0 = u(L, t) = b0L +
∑

n=1

bn sin(rnL)e−kr2
nt.

Again, exponential functions are linearly independent, so b0 = 0, bn sin(rnL) for n = 1, 2,
In other to get a non-trivial solution to the PDE, we don’t want bn = 0, so sin(rnL) = 0.
This forces rnL to be a multiple of π, say rn = nπ/L. This gives

u(x, t) =

∞
∑

n=1

bn sin(
nπ

L
x)e−k(nπ

L
)2t = b1 sin(

π

L
x))e−k(π

L
)2t +b2 sin(

2π

L
x))e−k(2π

L
)2t + ..., (4.6)

for some bi’s. The special case t = 0 is the so-called “sine series” expansion of the initial
temperature function u(x, 0). This was discovered by Fourier. To solve the heat eqution, it
remains to solve for the “sine series coefficients” bi.

There is one remaining condition which our solution u(x, t) must satisfy.

What does the IC tell us? Plugging t = 0 into (4.6) gives

f(x) = u(x, 0) =

∞
∑

n=1

bn sin(
nπ

L
x) = b1 sin(

π

L
x)) + b2 sin(

2π

L
x)) +

In other words, if f(x) is given as a sum of these sine functions, or if we can somehow
express f(x) as a sum of sine functions, then we can solve the heat equation. In fact there
is a formula5 for these coefficients bn:

bn =
2

L

∫ L

0
f(x) cos(

nπ

L
x)dx.

It is this formula which is used in the solutions above.

Exercise: Solve the heat equation

5Fourier did not know this formula at the time; it was discovered later by Dirichlet.

4.4. THE WAVE EQUATION IN ONE DIMENSION 173







2∂2u(x,t)
∂x2 = ∂u(x,t)

∂t
ux(0, t) = ux(3, t) = 0

u(x, 0) = x,

using Sage to plot approximations as above.

4.4 The wave equation in one dimension

The theory of the vibrating string touches on musical theory and the theory of oscillating
waves, so has likely been a concern of scholars since ancient times. Nevertheless, it wasn’t
until the late 1700s that mathematical progress was made. Though the problem of describing
mathematically a vibrating string requires no calculus, the solution does. With the advent of
calculus, Jean le Rond dAlembert, Daniel Bernoulli, Leonard Euler, Joseph-Louis Lagrange
were able to arrive at solutions to the one-dimensional wave equation in the eighteenth-
century. Daniel Bernoulli’s solution dealt with an infinite series of sines and cosines (derived
from what we now call a “Fourier series”, though it predates it), his contemporaries did
not believe that he was correct. Bernoullis technique would be later used by Joseph Fourier
when he solved the thermodynamic heat equation in 1807. It is Bernoulli’s idea which we
discuss here as well. Euler was wrong: Bernoulli’s method was basically correct after all.

Now, d’Alembert was mentioned in the lecture on the transport equation and it is worth-
while very briefly discussing what his basic idea was. The theorem of dAlembert on the
solution to the wave equation is stated roughly as follows: The partial differential equation:

∂2w

∂t2
= c2 · ∂2w

∂x2

is satisfied by any function of the form w = w(x, t) = g(x+ct)+h(x−ct), where g and h are
“arbitrary” functions. (This is called “the dAlembert solution”.) Geometrically speaking,
the idea of the proof is to observe that ∂w

∂t ±c∂w
∂x is a constant times the directional derivative

D ~v±w(x, t), where ~v± is a unit vector in the direction 〈±c, 1〉. Therefore, you integrate

D ~v−D ~v+
w(x, t) = (const.)

∂2w

∂t2
− c2 · ∂2w

∂x2
= 0

twice, once in the ~v+ direction, once in the ~v−, to get the solution. Easier said than done,
but still, that’s the idea.

The wave equation with zero ends boundary conditions models the motion of a (perfectly
elastic) guitar string of length L:

{

c2 ∂2w(x,t)
∂x2 = ∂2w(x,t)

∂t2

w(0, t) = w(L, t) = 0.

Here w(x, t) denotes the displacement from rest of a point x on the string at time t. The
initial displacement f(x) and initial velocity g(x) at specified by the equations

w(x, 0) = f(x), wt(x, 0) = g(x).

174 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Method:

• Find the sine series of f(x) and g(x):

f(x) ∼
∞
∑

n=1

bn(f) sin(
nπx

L
), g(x) ∼

∞
∑

n=1

bn(g) sin(
nπx

L
).

• The solution is

w(x, t) =
∞
∑

n=1

(bn(f) cos(c
nπt

L
) +

Lbn(g)

cnπ
sin(c

nπt

L
)) sin(

nπx

L
).

Example 4.4.1. Let

f(x) =

{

−1, 0 ≤ t ≤ π/2,
2, π/2 < t < π,

and let g(x) = 0. Then L = π, bn(g) = 0, and

bn(f) =
2

π

∫ π

0
f(x) sin(nx)dx = −2

2 cos(nπ) − 3 cos(1/2nπ) + 1

n
.

Thus

f(x) ∼ b1(f) sin(x) + b2(f) sin(2x) + ... =
2

π
sin(x) − 6

π
sin(2x) +

2

3π
sin(3x) +

The function f(x), and some of the partial sums of its sine series, looks like

Figure 4.10: Using 50 terms of the sine series of f(x).

This was computed using the following Sage commands:

4.4. THE WAVE EQUATION IN ONE DIMENSION 175

Sage

sage: x = var("x")
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])
sage: P1 = f.plot(rgbcolor=(1,0,0))
sage: b50 = [f.sine_series_coefficient(n,pi) for n in rang e(1,50)]
sage: ss50 = sum([b50[i-1] * sin(i * x) for i in range(1,50)])
sage: b50[0:5]
[2/pi, -6/pi, 2/3/pi, 0, 2/5/pi]
sage: P2 = ss50.plot(-5,5,linestyle="--")
sage: (P1+P2).show()

As you can see, taking more and more terms gives functions which better and better ap-
proximate f(x).

The solution to the wave equation, therefore, is

w(x, t) =

∞
∑

n=1

(bn(f) cos(c
nπt

L
) +

Lbn(g)

cnπ
sin(c

nπt

L
)) sin(

nπx

L
).

Taking only the first 50 terms of this series, the graph of the solution at t = 0, t = 0.1,
t = 1/5, t = 1/4, looks approximately like:

Figure 4.11: Wave equation with c = 3.

This was produced using the Sage commands:

Sage

sage: t = var("t")
sage: w50t1 = sum([b50[i-1] * sin(i * x) * cos(3 * i * (1/10)) for i in range(1,50)])
sage: P3 = w50t1.plot(0,pi,linestyle=":")
sage: w50t2 = sum([b50[i-1] * sin(i * x) * cos(3 * i * (1/5)) for i in range(1,50)])

176 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

sage: P4 = w50t2.plot(0,pi,linestyle=":",rgbcolor=(0,1 ,0))
sage: w50t3 = sum([b50[i-1] * sin(i * x) * cos(3 * i * (1/4)) for i in range(1,50)])
sage: P5 = w50t3.plot(0,pi,linestyle=":",rgbcolor=(1/3 ,1/3,1/3))
sage: (P1+P2+P3+P4+P5).show()

Of course, taking terms would give a better approximation to w(x, t). Taking the first 100
terms of this series (but with different times):

Figure 4.12: Wave equation with c = 3.

4.4. THE WAVE EQUATION IN ONE DIMENSION 177

Exercise: Solve the wave equation















2∂2w(x,t)
∂x2 = ∂2w(x,t)

∂t2

w(0, t) = w(3, t) = 0
w(x, 0) = x
wt(x, 0) = 0,

using Sage to plot approximations as above.

178 CHAPTER 4. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Bibliography

[A-pde] Wikipedia articles on the Transport equation:
http://en.wikipedia.org/wiki/Advection

http://en.wikipedia.org/wiki/Advection_equation

[A-ode] Kendall Atkinson, Weimin Han, Laurent Jay, David W. Stewart, Numerical So-
lution of Ordinary Differential Equations, John Wiley and Sons, 2009.

[A-uc] Wikipedia entry for the annihilator method: http://en.wikipedia.org/wiki/Annihilator_method

[B-rref] Robert A. Beezer, A First Course in Linear Algebra, released under the GNU
Free Documentation License, available at http://linear.ups.edu/

[B-ps] Wikipedia entry for the Bessel functions:
http://en.wikipedia.org/wiki/Bessel_function

[B-fs] Wikipedia entry for Daniel Bernoulli:
http://en.wikipedia.org/wiki/Daniel_Bernoulli

[BD-intro] W. Boyce and R. DiPrima, Elementary Differential Equations and Bound-
ary Value Problems, 8th edition, John Wiley and Sons, 2005.

[BS-intro] General wikipedia introduction to the Black-Scholes model:
http://en.wikipedia.org/wiki/Black-Scholes

[C-ivp] General wikipedia introduction to the Catenary:
http://en.wikipedia.org/wiki/Catenary

[C-linear] General wikipedia introduction to RLC circuits:
http://en.wikipedia.org/wiki/RLC_circuit

[CS-rref] Wikipedia article on normal modes of coupled springs:
http://en.wikipedia.org/wiki/Normal_mode

[D-df] Wikipedia introduction to direction fields:
http://en.wikipedia.org/wiki/Slope_field

[DF-df] Direction Field Plotter of Prof Robert Israel:
http://www.math.ubc.ca/~israel/applet/dfplotter/dfplotter.html

179

http://en.wikipedia.org/wiki/Advection
http://en.wikipedia.org/wiki/Advection_equation
http://en.wikipedia.org/wiki/Annihilator_method
http://linear.ups.edu/
http://en.wikipedia.org/wiki/Bessel_function
http://en.wikipedia.org/wiki/Daniel_Bernoulli
http://en.wikipedia.org/wiki/Black-Scholes
http://en.wikipedia.org/wiki/Catenary
http://en.wikipedia.org/wiki/RLC_circuit
http://en.wikipedia.org/wiki/Normal_mode
http://en.wikipedia.org/wiki/Slope_field
http://www.math.ubc.ca/~israel/applet/dfplotter/dfplotter.html

180 BIBLIOGRAPHY

[D-spr] Wikipedia entry for damped motion: http://en.wikipedia.org/wiki/Damping

[E-num] General wikipedia introduction to Euler’s method:
http://en.wikipedia.org/wiki/Euler_integration

[Eu1-num] Wikipedia entry for Euler: http://en.wikipedia.org/wiki/Euler

[Eu2-num] MacTutor entry for Euler:
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Euler.html

[F-1st] General wikipedia introduction to First order linear differential equations:
http://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation

[F1-fs] Wikipedia Fourier series article
http://en.wikipedia.org/wiki/Fourier_series

[F2-fs] MacTutor Fourier biography:
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Fourier.html

[H-rref] Jim Hefferon, Linear Algebra, released under the GNU Free Documentation
License, available at http://joshua.smcvt.edu/linearalgebra/

[H-sde] Desmond J. Higham, An Algorithmic Introduction to Numerical Simulation
of Stochastic Differential Equations, SIAM Review Vol.43, No.3 (2001), p.525-546.

[H-ivp] General wikipedia introduction to the Hyperbolic trig function
http://en.wikipedia.org/wiki/Hyperbolic_function

[H-intro] General wikipedia introduction to Hooke’s Law:
http://en.wikipedia.org/wiki/Hookes_law

[H-fs] General wikipedia introduction to the heat equation:
http://en.wikipedia.org/wiki/Heat_equation

[H1-spr] Wikipedia entry for Robert Hooke: http://en.wikipedia.org/wiki/Robert_Hooke

[H2-spr] MacTutor entry for Hooke:
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Hooke.html

[KL-cir] Wikipedia entry for Kirchhoff’s laws: http://en.wikipedia.org/wiki/Kirchhoffs_circuit_laws

[K-cir] Wikipedia entry for Kirchhoff: http://en.wikipedia.org/wiki/Gustav_Kirchhoff

[L-var] Wikipedia article on Joseph Louis Lagrange:
http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange

[LE-sys] Everything2 entry for Lanchester’s equations:
http://www.everything2.com/index.pl?node=Lanchester%20Systems%20and%20the%20Lanchester%20Laws

[L-sys] Wikipedia entry for Lanchester: http://en.wikipedia.org/wiki/Frederick_William_Lanchester

http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/Euler_integration
http://en.wikipedia.org/wiki/Euler
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Euler.html
http://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation
http://en.wikipedia.org/wiki/Fourier_series
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Fourier.html
http://joshua.smcvt.edu/linearalgebra/
http://en.wikipedia.org/wiki/Hyperbolic_function
http://en.wikipedia.org/wiki/Hookes_law
http://en.wikipedia.org/wiki/Heat_equation
http://en.wikipedia.org/wiki/Robert_Hooke
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Hooke.html
http://en.wikipedia.org/wiki/Kirchhoffs_circuit_laws
http://en.wikipedia.org/wiki/Gustav_Kirchhoff
http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://www.everything2.com/index.pl?node=Lanchester%20Systems%20and%20the%20Lanchester%20Laws%20of%20Combat
http://en.wikipedia.org/wiki/Frederick_William_Lanchester

BIBLIOGRAPHY 181

[LA-sys] Lanchester automobile information: http://www.amwmag.com/L/Lanchester_World/lanchester_world.h

[L-intro] F. W. Lanchester, Mathematics in Warfare, in The World of Mathematics, J.
Newman ed., vol.4, 2138-2157, Simon and Schuster (New York) 1956; now Dover 2000.
(A four-volume collection of articles.)
http://en.wikipedia.org/wiki/Frederick_W._Lanchester

[La-sys] Frederick William Lanchester, Aviation in Warfare: The Dawn of the Fourth
Arm, Constable and Co., London, 1916.

[L-lt] Wikipedia entry for Laplace: http://en.wikipedia.org/wiki/Pierre-Simon_Laplace

[LT-lt] Wikipedia entry for Laplace transform: http://en.wikipedia.org/wiki/Laplace_transform

[L-linear] General wikipedia introduction to Linear Independence:
http://en.wikipedia.org/wiki/Linearly_independent

[Lo-intro] General wikipedia introduction to the logistic function model of population
growth:
http://en.wikipedia.org/wiki/Logistic_function

[M-intro] Niall J. MacKay, Lanchester combat models, May 2005.
http://arxiv.org/abs/math.HO/0606300

[M-ps] Sean Mauch, Introduction to methods of Applied Mathematics,
http://www.its.caltech.edu/~sean/book/unabridged.html

[M] Maxima, a general purpose Computer Algebra system.
http://maxima.sourceforge.net/

[M-mech] General wikipedia introduction to Newtonian mechanics
http://en.wikipedia.org/wiki/Classical_mechanics

[M-fs] Wikipedia entry for the physics of music:
http://en.wikipedia.org/wiki/Physics_of_music

[N-mech] General wikipedia introduction to Newton’s three laws of motion:
http://en.wikipedia.org/wiki/Newtons_Laws_of_Motion

[N-intro] David H. Nash, Differential equations and the Battle of Trafalgar, The College
Mathematics Journal, Vol. 16, No. 2 (Mar., 1985), pp. 98-102.

[N-cir] Wikipedia entry for Electrical Networks: http://en.wikipedia.org/wiki/Electrical_network

[NS-intro] General wikipedia introduction to Navier-Stokes equations:
http://en.wikipedia.org/wiki/Navier-Stokes_equations

Clay Math Institute prize page:
http://www.claymath.org/millennium/Navier-Stokes_Equations/

http://www.amwmag.com/L/Lanchester_World/lanchester_world.html
http://en.wikipedia.org/wiki/Frederick_W._Lanchester
http://en.wikipedia.org/wiki/Pierre-Simon_Laplace
http://en.wikipedia.org/wiki/Laplace_transform
http://en.wikipedia.org/wiki/Linearly_independent
http://en.wikipedia.org/wiki/Logistic_function
http://arxiv.org/abs/math.HO/0606300
http://www.its.caltech.edu/~sean/book/unabridged.html
http://maxima.sourceforge.net/
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Physics_of_music
http://en.wikipedia.org/wiki/Newtons_Laws_of_Motion
http://en.wikipedia.org/wiki/Electrical_network
http://en.wikipedia.org/wiki/Navier-Stokes_equations
http://www.claymath.org/millennium/Navier-Stokes_Equations/

182 BIBLIOGRAPHY

[O-ivp] General wikipedia introduction to the Harmonic oscillator
http://en.wikipedia.org/wiki/Harmonic_oscillator

[P-intro] General wikipedia introduction to the Peano existence theorem:
http://en.wikipedia.org/wiki/Peano_existence_theorem

[P-fs] Howard L. Penn, “Computer Graphics for the Vibrating String,” The College Math-
ematics Journal, Vol. 17, No. 1 (Jan., 1986), pp. 79-89

[PL-intro] General wikipedia introduction to the Picard existence theorem:
http://en.wikipedia.org/wiki/Picard-Lindelof_theorem

[P1-ps] Wikipedia entry for Power series: http://en.wikipedia.org/wiki/Power_series

[P2-ps] Wikipedia entry for the power series method:
http://en.wikipedia.org/wiki/Power_series_method

[R-ps] Wikipedia entry for the recurrence relations:
http://en.wikipedia.org/wiki/Recurrence_relations

[R-cir] General wikipedia introduction to LRC circuits:
http://en.wikipedia.org/wiki/RLC_circuit

[S-intro] The Sage Group, Sage : Mathematical software, version 2.8.
http://www.sagemath.org/

http://sage.scipy.org/

[SH-spr] Wikipedia entry for Simple harmonic motion:
http://en.wikipedia.org/wiki/Simple_harmonic_motion

[S-pde] W. Strauss, Partial differential equations, an introduction, John Wiley, 1992.

[U-uc] General wikipedia introduction to undetermined coefficients:
http://en.wikipedia.org/wiki/Method_of_undetermined_coefficients

[V-var] Wikipedia introduction to variation of parameters:
http://en.wikipedia.org/wiki/Method_of_variation_of_parameters

[W-intro] General wikipedia introduction to the Wave equation:
http://en.wikipedia.org/wiki/Wave_equation

[W-mech] General wikipedia introduction to Wile E. Coyote and the RoadRunner:
http://en.wikipedia.org/wiki/Wile_E._Coyote_and_Road_Runner

[W-linear] General wikipedia introduction to the Wronskian
http://en.wikipedia.org/wiki/Wronskian

[Wr-linear] St. Andrews MacTutor entry for Wronski
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Wronski.html

http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Peano_existence_theorem
http://en.wikipedia.org/wiki/Picard-Lindelof_theorem
http://en.wikipedia.org/wiki/Power_series
http://en.wikipedia.org/wiki/Power_series_method
http://en.wikipedia.org/wiki/Recurrence_relations
http://en.wikipedia.org/wiki/RLC_circuit
http://www.sagemath.org/
http://sage.scipy.org/
http://en.wikipedia.org/wiki/Simple_harmonic_motion
http://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
http://en.wikipedia.org/wiki/Method_of_variation_of_parameters
http://en.wikipedia.org/wiki/Wave_equation
http://en.wikipedia.org/wiki/Wile_E._Coyote_and_Road_Runner
http://en.wikipedia.org/wiki/Wronskian
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Biographies/Wronski.html

Chapter 5

Appendices

183

184 CHAPTER 5. APPENDICES

5.1 Appendix: Integral table
∫

udv = uv −
∫

vdu(integration by parts)

∫

xn dx = xn+1/n + 1 + C (n 6= −1)

∫

1

x
dx = ln x + C

∫

sin (x) dx = − cos (x) + C

∫

ex dx = ex + C

∫

1

x2 + 1
dx = arctan (x) + C

∫

1

ax + b
dx =

1

a
ln |ax + b| + C

∫

1

(x + a)2
dx = − 1

x + a
+ C

∫

(x + a)n dx =
(x + a)n+1

n + 1
+ c, n 6= −1

∫

x(x + a)n dx =
(x + a)n+1((n + 1)x − a)

(n + 1)(n + 2)
+ c

∫

1

1 + x2
dx = tan−1 x + c

∫

1

a2 + x2
dx =

1

a
tan−1 x

a
+ c

∫

x

a2 + x2
dx =

1

2
ln |a2 + x2| + c

∫

x2

a2 + x2
dx = x − a tan−1 x

a
+ c

∫

x3

a2 + x2
dx =

1

2
x2 − 1

2
a2 ln |a2 + x2| + c

∫

1

ax2 + bx + c
dx =

2√
4ac − b2

tan−1 2ax + b√
4ac − b2

+ C

∫

1

(x + a)(x + b)
dx =

1

b − a
ln

a + x

b + x
, a 6= b

∫

x

(x + a)2
dx =

a

a + x
+ ln |a + x| + C

5.1. APPENDIX: INTEGRAL TABLE 185

∫

x

ax2 + bx + c
dx =

1

2a
ln |ax2 + bx + c| − b

a
√

4ac − b2
tan−1 2ax + b√

4ac − b2
+ C

∫ √
x − a dx =

2

3
(x − a)3/2 + C

∫

x2

(a2 − x2)
dx = −1

2
a ln (−a + x) +

1

2
a ln (a + x) − x + C

∫

1√
x ± a

dx = 2
√

x ± a + C

∫

1√
a − x

dx = −2
√

a − x + C

∫

x
√

x − a dx =
2

3
a(x − a)3/2 +

2

5
(x − a)5/2 + C

∫ √
ax + b dx =

(

2b

3a
+

2x

3

)√
ax + b + C

∫

(ax + b)3/2 dx =
2

5a
(ax + b)5/2 + C

∫

x√
x ± a

dx =
2

3
(x ± 2a)

√
x ± a + C

∫
√

x

a − x
dx = −

√

x(a − x) − a tan−1

√

x(a − x)

x − a
+ C

∫
√

x

a + x
dx =

√

x(a + x) − a ln
[√

x +
√

x + a
]

+ C

∫

x
√

ax + b dx =
2

15a2
(−2b2 + abx + 3a2x2)

√
ax + b + C

∫

√

x(ax + b) dx =
1

4a3/2

[

(2ax + b)
√

ax(ax + b) − b2 ln
∣

∣

∣
a
√

x +
√

a(ax + b)
∣

∣

∣

]

+ C

∫

√

x2 ± a2 dx =
1

2
x
√

x2 ± a2 ± 1

2
a2 ln

∣

∣

∣x +
√

x2 ± a2
∣

∣

∣+ C

∫

√

a2 − x2 dx =
1

2
x
√

a2 − x2 +
1

2
a2 tan−1 x√

a2 − x2
+ C

∫

x
√

x2 ± a2 dx =
1

3

(

x2 ± a2
)3/2

+ C

∫

1√
x2 ± a2

dx = ln
∣

∣

∣
x +

√

x2 ± a2
∣

∣

∣
+ C

∫

1√
a2 − x2

dx = sin−1 x

a
+ C

186 CHAPTER 5. APPENDICES

∫

x√
x2 ± a2

dx =
√

x2 ± a2 + C

∫

x√
a2 − x2

dx = −
√

a2 − x2 + C

∫

x2

√
x2 ± a2

dx =
1

2
x
√

x2 ± a2 ∓ 1

2
a2 ln

∣

∣

∣
x +

√

x2 ± a2
∣

∣

∣
+ C

∫

√

ax2 + bx + c dx =
b + 2ax

4a

√

ax2 + bx + c+
4ac − b2

8a3/2
ln
∣

∣

∣
2ax + b + 2

√

a(ax2 + bx+c)
∣

∣

∣
+C

∫

1√
ax2 + bx + c

dx =
1√
a

ln
∣

∣

∣
2ax + b + 2

√

a(ax2 + bx + c)
∣

∣

∣
+ C

∫

x√
ax2 + bx + c

dx =
1

a

√

ax2 + bx + c +
b

2a3/2
ln
∣

∣

∣2ax + b + 2
√

a(ax2 + bx + c)
∣

∣

∣+ C

∫

ln ax dx = x ln ax − x + C

∫

ln ax

x
dx =

1

2
(ln ax)2 + C

∫

ln(ax + b) dx =

(

x +
b

a

)

ln(ax + b) − x + C, a 6= 0

∫

ln
(

a2x2 ± b2
)

dx = x ln
(

a2x2 ± b2
)

+
2b

a
tan−1 ax

b
− 2x + C

∫

ln
(

a2 − b2x2
)

dx = x ln
(

ar − b2x2
)

+
2a

b
tan−1 bx

a
− 2x + C

∫

ln
(

ax2 + bx + c
)

dx =
1

a

√

4ac − b2 tan−1 2ax + b√
4ac − b2

−2x+

(

b

2a
+ x

)

ln
(

ax2 + bx + c
)

+C

∫

x ln(ax + b) dx =
bx

2a
− 1

4
x2 +

1

2

(

x2 − b2

a2

)

ln(ax + b) + C8

∫

x ln
(

a2 − b2x2
)

dx = −1

2
x2 +

1

2

(

x2 − a2

b2

)

ln
(

a2 − b2x2
)

+ C

∫

eax dx =
1

a
eax + C

∫ √
xeax dx =

1

a

√
xeax +

i
√

π

2a3/2
erf
(

i
√

ax
)

+ C, where erf(x) =
2√
π

∫ x

0
e−t2dtet

∫

xex dx = (x − 1)ex + C

∫

xeax dx =

(

x

a
− 1

a2

)

eax + C

5.1. APPENDIX: INTEGRAL TABLE 187

∫

x2ex dx =
(

x2 − 2x + 2
)

ex + C

∫

x2eax dx =

(

x2

a
− 2x

a2
+

2

a3

)

eax + C

∫

x3ex dx =
(

x3 − 3x2 + 6x − 6
)

ex + C

∫

xneax dx =
(−1)n

an+1
Γ[1 + n,−ax], where Γ(a, x) =

∫ ∞

x
ta−1e−tdt

∫

eax2
dx = − i

√
π

2
√

a
erf
(

ix
√

a
)

∫

sin ax dx = −1

a
cos ax + C

∫

sin2 ax dx =
x

2
− sin 2ax

4a
+ C

∫

sin3 ax dx = −3 cos ax

4a
+

cos 3ax

12a
+ C

∫

cos ax dx =
1

a
sin ax + C

∫

cos2 ax dx =
x

2
+

sin 2ax

4a
+ C

∫

cos3 ax dx =
3 sin ax

4a
+

sin 3ax

12a
+ C

∫

sin x cos x dx =
1

2
sin2 x + C1 = −1

2
cos2 x + C2 = −1

4
cos 2x + C3

∫

sin2 x cos x dx =
1

3
sin3 x + C

∫

cos2 ax sin ax dx = − 1

3a
cos3 ax + C

∫

sin2 ax cos2 ax dx =
x

8
− sin 4ax

32a
+ C

∫

tan ax dx = −1

a
ln cos ax + C

∫

tan2 ax dx = −x +
1

a
tan ax + C

∫

tan3 ax dx =
1

a
ln cos ax +

1

2a
sec2 ax + C

∫

sec x dx = ln | sec x + tan x| + C = 2 tanh−1
(

tan
x

2

)

+ C

188 CHAPTER 5. APPENDICES

∫

sec2 ax dx =
1

a
tan ax + C

∫

sec3 x dx =
1

2
secx tan x +

1

2
ln | sec x tan x| + C

∫

sec x tan x dx = sec x + C

∫

sec2 x tan x dx =
1

2
sec2 x + C

∫

secn x tan x dx =
1

n
secn x + C,n 6= 0

∫

csc x dx = ln
∣

∣

∣
tan

x

2

∣

∣

∣
+ C = ln | csc x − cot x| + C

∫

csc2 ax dx = −1

a
cot ax + C

∫

csc3 x dx = −1

2
cot x csc x +

1

2
ln | csc x − cot x| + C

∫

cscn x cot x dx = − 1

n
cscn x + C,n 6= 0

∫

sec x csc x dx = ln | tan x| + C

∫

x cos x dx = cos x + x sin x + C

∫

x cos ax dx =
1

a2
cos ax +

x

a
sin ax + C

∫

x2 cos x dx = 2x cos x +
(

x2 − 2
)

sin x + C

∫

x2 cos ax dx =
2x cos ax

a2
+

a2x2 − 2

a3
sin ax + C

∫

xncosx dx = −1

2
(i)n+1 [Γ(n + 1,−ix) + (−1)nΓ(n + 1, ix)] + C

∫

xncosax dx =
1

2
(ia)1−n [(−1)nΓ(n + 1,−iax) − Γ(n + 1, ixa)] + C

∫

x sin x dx = −x cos x + sinx + C

∫

x sin ax dx = −x cos ax

a
+

sin ax

a2
+ C

∫

x2 sin x dx =
(

2 − x2
)

cos x + 2x sin x + C

5.1. APPENDIX: INTEGRAL TABLE 189

∫

x2 sin ax dx =
2 − a2x2

a3
cos ax +

2x sin ax

a2
+ C

∫

xn sin x dx = −1

2
(i)n [Γ(n + 1,−ix) − (−1)nΓ(n + 1,−ix)] + C

∫

ex sin x dx =
1

2
ex(sin x − cos x) + C

∫

ebx sin ax dx =
1

a2 + b2
ebx(b sin ax − a cos ax) + C

∫

ex cos x dx =
1

2
ex(sin x + cos x) + C

∫

ebx cos ax dx =
1

a2 + b2
ebx(a sin ax + b cos ax) + C

∫

xex sin x dx =
1

2
ex(cos x − x cos x + x sinx) + C

∫

xex cos x dx =
1

2
ex(x cos x − sinx + x sinx) + C

∫

cosh ax dx =
1

a
sinh ax + C

∫

eax cosh bx dx =











eax

a2 − b2
[a cosh bx − b sinh bx] + C a 6= b

e2ax

4a
+

x

2
+ C a = b

∫

sinh ax dx =
1

a
cosh ax + C

∫

eax sinh bx dx =











eax

a2 − b2
[−b cosh bx + a sinh bx] + C a 6= b

e2ax

4a
− x

2
+ C a = b

∫

eax tanh bx dx =











1

(a + 2b)
e(a+2b)x

2F1

[

1 +
a

2b
, 1, 2 +

a

2b
,−e2bx

]

− 1

a
eax

2F1

[a

2b
, 1, 1E,−e2bx

]

+ C a 6= b

eax − 2 tan−1[eax]

a
+ C a = b

∫

tanh bx dx =
1

a
ln cosh ax + C

∫

cos ax cosh bx dx =
1

a2 + b2
[a sin ax cosh bx + b cos ax sinh bx] + C

∫

cos ax sinh bx dx =
1

a2 + b2
[b cos ax cosh bx + a sin ax sinh bx] + C

∫

sin ax cosh bx dx =
1

a2 + b2
[−a cos ax cosh bx + b sin ax sinh bx] + C

190 CHAPTER 5. APPENDICES

∫

sin ax sinh bx dx =
1

a2 + b2
[b cosh bx sin ax − a cos ax sinh bx] + C

∫

sinh ax cosh ax dx =
1

4a
[−2ax + sinh 2ax] + C

∫

sinh ax cosh bx dx =
1

b2 − a2
[b cosh bx sinh ax − a cosh ax sinh bx] + C

Index

Abel’s identity, 20
Abel’s theorem, 121
Airy’s equation, 95
amplitude, 75
annihilator table, 68
autonomous ODE, 26

basis, 120
Bessel’s equation, 93
big-O notation, 42
binomial coefficients, 70

characteristic polynomial, 141
circuit

steady state terms, 85
transient part of solution, 85

convergent series, 91
convolution theorem

for Laplace transforms, 104
convolutions, 104
cosine series, 158
Cramer’s rule, 59
critically damped, 78

dependent variable, 5
dictionary for electrical circuits, 83
differential equation

solutions to, 54
homogeneous, 54

dimension, 120
direction field, 30
displacement, 74

eigenvalue, 141
eigenvector, 141
Euler’s Method

geometric idea, 35

Euler’s method
tabular idea, 36
using Sage , 37

exponential order, 96

falling body problem, 46
fighting effectiveness coefficients, 125
fighting strength, 128
Fourier series, 158
fourth-order Adams-Bashforth method, 43
fundamental matrix, 20, 60, 148
fundamental solutions, 19, 54, 62, 148

Gauss elimination, 109
Gauss-Jordan reduction, 109
general solution, 19, 54, 63, 66
geometric series, 88

harmonic oscillator, 11

heat equation
insulated ends, 166
zero ends, 165

Heaviside function, 97
homogeneous part of the solution, 63
Hooke’s law, 75
hyperbolic cosine function, cosh, 14
hyperbolic sine function, sinh, 14

IC, 8
independent variable, 5
initial condition, 8
initial value problem, 8
inverse Laplace transform, 97
isocline, 31
IVP, 8, 11

Kirchoff’s First Law, 83

191

192 INDEX

Kirchoff’s Second Law, 83

Lanchester’s square law, 128
Lanchester, Frederick William, 125
Laplace transform, 96

convolution theorem, 104
inverse, 97
linearity, 96
translation theorems, 102

Leibniz rule, 70
linear combination, 53, 119
linear ODE, 6
linearly dependent, 21, 61, 119
linearly independent, 21, 61
Lipschitz continuous, 16
Lotka-Volterra model, 133

matrix
inverse, 113
minor, 117

mean value theorem, 88
minor of a matrix, 117

Newton’s 2nd law, 75
non-homogeneous ODE, 6

order, 6
ordinary differential equation (ODE), 6
overdamped, 78

partial differential equation (PDE), 6
particular solution, 54

general form, 63, 66
Pascal’s triangle, 70
Peano

Giuseppe, 16
theorem of, 16

phase shift, 75
Picard

Charles Émile, 16
iteration, 18
theorem of, 16

power series, 87
coefficients, 87
radius of convergence, 91

root test, 91

power series solution, 92

Predator-Prey model, 133

radius of convergence, 91

reduced row echelon form, 109

resonance, 81

root test, 91

row reduction, 109

Runge-Kutta method, 42

separable DE, 22

simple harmonic, 78

sine series, 158

slope field, 30

span, 119

spring

critically damped, 78

differentil equation, 75

displacement, 74

mechanical resonance, 81

overdamped, 78

simple harmonic, 78
stretch, 75

underdamped, 78

steady state terms, 85

stochastic differential equation, 45

subspace, 119

Taylor polynomial, 88

Taylor series, 88

partial sums, 91

Taylor’s Theorem, 88

transfer function, 106

transient part of solution , 85

underdamped, 78

undetermined coefficients, 63, 66

unit step function, 97

variation of parameters

for ODEs, 70

for systems, 149

vector space, 118

INDEX 193

weight function, 106
Wronskian, 20, 60, 121
Wronskian test, 61

	First order differential equations
	Introduction to DEs
	Initial value problems
	Existence of solutions to ODEs
	First order ODEs
	Higher order constant coefficient linear homogeneous ODEs

	First order ODEs - separable and linear cases
	Autonomous ODEs
	Linear 1st order ODEs

	Isoclines and direction fields
	Numerical solutions - Euler's method and improved Euler's method
	Euler's Method
	Improved Euler's method
	Euler's method for systems and higher order DEs

	Numerical solutions II - Runge-Kutta and other methods
	Fourth-Order Runge Kutta method
	Multistep methods - Adams-Bashforth
	Adaptive step size

	Newtonian mechanics
	Application to mixing problems

	Second order differential equations
	Linear differential equations
	Linear differential equations, continued
	Undetermined coefficients method
	Simple case
	Non-simple case
	Annihilator method

	Variation of parameters
	The Leibniz rule
	The method

	Applications of DEs: Spring problems
	Part 1
	Part 2
	Part 3

	Applications to simple LRC circuits
	The power series method
	Part 1
	Part 2

	The Laplace transform method
	Part 1
	Part 2

	Matrix theory and systems of DEs
	Row reduction and solving systems of equations
	The Gauss elimination game
	Solving systems using inverses
	Solving higher-dimensional linear systems

	Quick survey of linear algebra
	Matrix arithmetic
	Determinants
	Vector spaces
	Bases, dimension, linear independence and span
	The Wronskian

	Application: Solving systems of DEs
	Modeling battles using Lanchester's equations
	Romeo and Juliet
	Electrical networks using Laplace transforms

	Eigenvalue method for systems of DEs
	Introduction to variation of parameters for systems
	Motivation
	The method

	Introduction to partial differential equations
	Introduction to separation of variables
	Fourier series, sine series, cosine series
	The heat equation
	Method for zero ends
	Method for insulated ends
	Explanation

	The wave equation in one dimension

	Appendices
	Appendix: Integral table

