
 

3 

MATHEMATICS
STRAIGHT LINE 
The general form of the equation is 

Ax + By + C = 0 
The standard form of the equation is 

y = mx + b, 
which is also known as the slope-intercept form. 
The point-slope form is  y – y1 = m(x – x1) 
Given two points: slope,  m = (y2 – y1)/(x2 – x1) 
The angle between lines with slopes m1 and m2 is 

 α = arctan [(m2 – m1)/(1 + m2·m1)] 
Two lines are perpendicular if  m1 = –1/m2 
The distance between two points is 

 ( ) ( )2
12

2
12 xxyyd −+−=  

QUADRATIC EQUATION 
ax2 + bx + c = 0 

a
acbbRoots

2
42 −±−

=  

CONIC SECTIONS 
 
 
 
 
 
 
 
 

 
e = eccentricity = cos θ/(cos φ) 

[Note: X′ and Y′, in the following cases, are translated 
axes.] 
Case 1. Parabola e = 1: 
♦ 
 
 
 
 
 
 
 

(y – k)2 = 2p(x – h); Center at (h, k) 
is the standard form of the equation. When h = k = 0, 
Focus: (p/2,0); Directrix: x = –p/2 

Case 2. Ellipse  e < 1: 
♦ 
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Case 3. Hyperbola e > 1: 
♦ 

 
 
 
 
 
 
 
 

( ) ( ) ( )
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x h y k
1; Center at h,k

a b
is the standard form of the equation. When h k 0,

Eccentricity: e 1 b a c / a

b a e 1;
Focus: ae,0 ; Directrix: x a / e
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♦ Brink, R.W., A First Year of College Mathematics, D. Appleton-Century Co., Inc., 1937.



MATHEMATICS (continued) 

4 

Case 4. Circle  e = 0: 
(x – h)2 + (y – k)2 = r2;  Center at (h, k) 

is the general form of the equation with radius 

( ) ( )22 kyhxr −+−=  

♦ 
 
 
 
 
 
 
 
Length of the tangent from a point. Using the general form 
of the equation of a circle, the length of the tangent is found 
from 

t2 = (x′ – h)2 + (y′ – k)2 – r2 
by substituting the coordinates of a point P(x′,y′) and the 
coordinates of the center of the circle into the equation and 
computing. 
 
♦ 
 
 
 
 
 
 
 
 
Conic Section Equation 
The general form of the conic section equation is 

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 
where not both A and C are zero. 
If B2 – AC < 0, an ellipse is defined. 
If B2 – AC > 0, a hyperbola is defined. 
If B2 – AC = 0, the conic is a parabola. 
If A = C and B = 0, a circle is defined. 
If A = B = C = 0, a straight line is defined. 

x2 + y2 + 2ax + 2by + c = 0 
is the normal form of the conic section equation, if that 
conic section has a principal axis parallel to a coordinate 
axis. 

h = –a; k = –b 

cbar −+= 22  

If a2 + b2 – c is positive, a circle, center (–a, –b). 
If a2 + b2 – c equals zero, a point at (–a, –b). 
If a2 + b2 – c is negative, locus is imaginary. 

QUADRIC SURFACE (SPHERE) 
The general form of the equation is 

(x – h)2 + (y – k)2 + (z – m)2 = r2 
with center at (h, k, m). 
In a three-dimensional space, the distance between two  
points is 

( ) ( ) ( )2
12

2
12

2
12 zzyyxxd −+−+−=  

LOGARITHMS 
The logarithm of x to the Base b is defined by 

logb (x) = c, where bc = x 
Special definitions for b = e or b = 10 are: 

ln x, Base = e 
log x, Base = 10 

To change from one Base to another: 
logb x = (loga x)/(loga b) 

e.g., ln x = (log10 x)/(log10 e) = 2.302585 (log10 x) 
Identities  
 logb bn = n 

log xc = c log x; xc = antilog (c log x) 
log xy = log x + log y 
logb b = 1; log 1 = 0 
log x/y  = log x – log y 

 
♦ Brink, R.W., A First Year of College Mathematics, D. Appleton-Century Co., Inc., 

Englewood Cliffs, NJ, 1937. 
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TRIGONOMETRY 
Trigonometric functions are defined using a right triangle. 
sin θ = y/r, cos θ = x/r 
tan θ = y/x, cot θ = x/y 
csc θ = r/y, sec θ = r/x 
 
 

   Law of Sines
C

c
B

b
A

a
sinsinsin

==  

 Law of Cosines 
 a2 = b2 + c2 – 2bc cos A 
 b2 = a2 + c2 – 2ac cos B 
 c2 = a2 + b2 – 2ab cos C 

Identities 
csc θ = 1/sin θ 
sec θ = 1/cos θ 
tan θ = sin θ/cos θ 
cot θ = 1/tan θ 
sin2θ + cos2θ = 1 
tan2θ + 1 = sec2θ 
cot2θ + 1 = csc2θ 
sin (α + β) = sin α cos β + cos α sin β 
cos (α + β) = cos α cos β – sin α sin β 
sin 2α = 2 sin α cos α 
cos 2α = cos2α – sin2α = 1 – 2 sin2α = 2 cos2α – 1 
tan 2α = (2 tan α)/(1 – tan2α) 
cot 2α = (cot2α – 1)/(2 cot α) 
tan (α + β) = (tan α + tan β)/(1 – tan α tan β) 
cot (α + β) = (cot α cot β – 1)/(cot α + cot β) 
sin (α – β) = sin α cos β – cos α sin β 
cos (α – β) = cos α cos β + sin α sin β 
tan (α – β) = (tan α – tan β)/(1 + tan α tan β) 
cot (α – β) = (cot α cot β + 1)/(cot β – cot α) 

sin (α/2) = ( ) 2cos1 α−±  

cos (α/2) = ( ) 2cos1 α+±  

tan (α/2) = ( ) ( )α+α−± cos1cos1  

cot (α/2) = ( ) ( )α−α+± cos1cos1  

 

sin α sin β  = (1/2)[cos (α – β) – cos (α + β)] 
cos α cos β  = (1/2)[cos (α – β) + cos (α + β)] 
sin α cos β  = (1/2)[sin (α + β) + sin (α – β)] 
sin α + sin β  = 2 sin (1/2)(α + β) cos (1/2)(α – β) 
sin α – sin β = 2 cos (1/2)(α + β) sin (1/2)(α – β) 
cos α + cos β = 2 cos (1/2)(α + β) cos (1/2)(α – β) 
cos α – cos β = – 2 sin (1/2)(α + β) sin (1/2)(α – β) 

COMPLEX NUMBERS 

Definition i = 1−  
(a + ib) + (c + id) = (a + c) + i (b + d) 
(a + ib) – (c + id) = (a – c) + i (b – d) 
(a + ib)(c + id) = (ac – bd) + i (ad + bc) 

( )( )
( )( )

( ) ( )
22 dc

adbcibdac
idcidc
idciba

idc
iba

+
−++

=
−+
−+

=
+
+  

(a + ib) + (a – ib) = 2a 
(a + ib) – (a – ib) = 2ib 
(a + ib)(a – ib) = a2 + b2 
Polar Coordinates 
x = r cos θ; y = r sin θ; θ = arctan (y/x) 

r = ⏐x + iy⏐ = 22 yx +  

x + iy = r (cos θ + i sin θ) = reiθ 
[r1(cos θ1 + i sin θ1)][r2(cos θ2 + i sin θ2)] = 
 r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)] 
(x + iy)n = [r (cos θ + i sin θ)]n 

= r n(cos nθ + i sin nθ) 
( )

( ) ( ) ( )[ ]2121
2

1

222

11 sincos
sincos
sincos

θ−θ+θ−θ=
θ+θ
θ+θ i

r
r

ir
ir  

Euler's Identity 
eiθ = cos θ + i sin θ 
e−iθ = cos θ – i sin θ 

i
eeee iiii

2
sin,

2
cos

θ−θθ−θ −
=θ

+
=θ  

Roots 
If k is any positive integer, any complex number (other than 
zero) has k distinct roots. The k roots of r (cos θ + i sin θ) 
can be found by substituting successively n = 0, 1, 2, …,  
(k – 1) in the formula 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

θ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

θ
=

k
n

k
i

k
n

k
rw k 360sin360cos  
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MATRICES 
A matrix is an ordered rectangular array of numbers with m 
rows and n columns. The element aij refers to row i and 
column j. 
Multiplication 
If A = (aik) is an m × n matrix and B = (bkj) is an n × s 
matrix, the matrix product AB is an m × s matrix 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∑==

=

n

l
ljilji bac

1
C  

where n is the common integer representing the number of 
columns of A and the number of rows of B (l and k = 1, 2, 
…, n). 
Addition 
If A = (aij) and B = (bij) are two matrices of the same size   
m × n, the sum A + B is the m × n matrix C = (cij) where  
cij = aij + bij. 
Identity 
The matrix I = (aij) is a square n × n identity matrix where 
aii = 1 for i = 1, 2, …, n and aij = 0 for i ≠ j. 
Transpose 
The matrix B is the transpose of the matrix A if each entry 
bji in B is the same as the entry aij in A and conversely. In 
equation form, the transpose is B = AT. 
Inverse 
The inverse B of a square n × n matrix A is 

( ) where1 ,adj
A

AAB == −  

adj(A) = adjoint of A (obtained by replacing AT elements 
with their cofactors, see DETERMINANTS) and 
⏐A⏐ =  determinant of A. 

DETERMINANTS 
A determinant of order n consists of n2 numbers, called the 
elements of the determinant, arranged in n rows and n 
columns and enclosed by two vertical lines.  
In any determinant, the minor of a given element is the 
determinant that remains after all of the elements are struck 
out that lie in the same row and in the same column as the 
given element. Consider an element which lies in the jth 
column and the ith row. The cofactor of this element is  
the value of the minor of the element (if i + j is even), and  
it is the negative of the value of the minor of the element  
(if i + j is odd). 
If n is greater than 1, the value of a determinant of order n is 
the sum of the n products formed by multiplying each 
element of some specified row (or column) by its cofactor. 
This sum is called the expansion of the determinant 
[according to the elements of the specified row (or 
column)]. For a second-order determinant: 

1221
21

21 baba
bb

aa
−=  

 

For a third-order determinant: 

231312123213132321

321

321

321

cbacbacbacbacbacba

ccc

bbb

aaa

−−−++=

 

VECTORS 
 
 
 
 
 
 
 
 
 
 
 
 

 
A = axi + ayj + azk 

Addition and subtraction: 
A + B = (ax + bx)i + (ay + by)j + (az + bz)k 
A – B = (ax – bx)i + (ay – by)j + (az – bz)k 

The dot product is a scalar product and represents the 
projection of B onto A times ⏐A⏐. It is given by 

A•B = axbx + ayby + azbz 
  = ⏐A⏐⏐B⏐ cos θ = B•A 
The cross product is a vector product of magnitude 
⏐B⏐⏐A⏐ sin θ which is perpendicular to the plane 
containing A and B. The product is 

AB

kji

BA ×−==×

zyx

zyx

bbb

aaa  

 
 
 
 
 

j 

i 
k 
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The sense of A × B is determined by the right-hand rule. 
A × B = ⏐A⏐⏐B⏐ n sin θ, where 

n = unit vector perpendicular to the plane of A and B. 
Gradient, Divergence, and Curl 

( )

( )

1

1

2 3

2 3

z

z

z

x y

V V V
x y

V V V
x y

⎛ ⎞∂ ∂ ∂
φ = + + φ⎜ ⎟⎝ ∂ ∂ ∂ ⎠

⎛ ⎞∂ ∂ ∂
• = + + • + +⎜ ⎟⎝ ∂ ∂ ∂ ⎠

⎛ ⎞∂ ∂ ∂
× = + + × + +⎜ ⎟⎝ ∂ ∂ ∂ ⎠

i j k

V i j k i j k

V i j k i j k

∇

∇

∇

 

The Laplacian of a scalar function φ is 

2

2

2

2

2

2
2

zyx ∂
φ∂

+
∂

φ∂
+

∂
φ∂

=φ∇  

Identities 
A • B = B • A; A • (B + C) = A • B + A • C 
A • A = ⏐A⏐2 
i • i = j • j = k • k = 1 
i • j = j • k = k • i = 0 
If A • B = 0, then either A = 0, B = 0, or A is perpendicular 
to B. 
A × B = –B × A 
A × (B + C) = (A × B) + (A × C) 
(B + C) × A = (B × A) + (C × A) 
i × i = j × j = k × k = 0 
i × j = k = –j × i; j × k = i = –k × j 
k × i = j = –i × k 
If A × B = 0, then either A = 0, B = 0, or A is parallel to B. 

( ) ( )

( )

( ) ( )

2

2

0

0

φ = • φ = • φ

× φ =

• × =

× × = • −

∇ ∇ ∇ ∇ ∇

∇ ∇

∇ ∇

∇ ∇ ∇ ∇ ∇

A

A A A

 

PROGRESSIONS AND SERIES 
Arithmetic Progression 
To determine whether a given finite sequence of numbers is 
an arithmetic progression, subtract each number from the 
following number. If the differences are equal, the series is 
arithmetic. 
1. The first term is a. 
2. The common difference is d. 
3. The number of terms is n. 
4. The last or nth term is l. 

5. The sum of n terms is S. 
l = a + (n – 1)d 
S = n(a + l)/2 = n [2a + (n – 1) d]/2 

Geometric Progression 
To determine whether a given finite sequence is a geometric 
progression (G.P.), divide each number after the first by the 
preceding number. If the quotients are equal, the series is 
geometric. 
1. The first term is a. 
2. The common ratio is r. 
3. The number of terms is n. 
4. The last or nth term is l. 
5. The sum of n terms is S. 

l = arn−1 
S = a (1 – rn)/(1 – r); r ≠ 1 
S = (a – rl)/(1 – r); r ≠ 1 

( ) 1;1limit <−=
∞→

rraSnn
 

A G.P. converges if ⏐r⏐ < 1 and it diverges if ⏐r⏐ ≥ 1. 
Properties of Series 

( )

( ) 2

constant

2

1

1 111

11

1

nnx

zyxzyx
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n
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1. A power series in x, or in x – a, which is convergent in 
the interval –1 < x < 1 (or –1 < x – a < 1), defines a 
function of x which is continuous for all values of x 
within the interval and is said to represent the function 
in that interval. 

2. A power series may be differentiated term by term, and 
the resulting series has the same interval of convergence 
as the original series (except possibly at the end points 
of the interval). 

3. A power series may be integrated term by term provided 
the limits of integration are within the interval of 
convergence of the series. 

4. Two power series may be added, subtracted, or 
multiplied, and the resulting series in each case is 
convergent, at least, in the interval common to the two 
series. 

5. Using the process of long division (as for polynomials), 
two power series may be divided one by the other. 
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Taylor's Series 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) …… +−++

−
′′

+−
′

+=

n
n

ax
n

af

axafaxafafxf

!

!2!1
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is called Taylor's series, and the function f (x) is said to be 
expanded about the point a in a Taylor's series. 
If a = 0, the Taylor's series equation becomes a Maclaurin's 
series. 
DIFFERENTIAL CALCULUS 
The Derivative 
For any function y = f (x), 
the derivative = Dx y = dy/dx = y′ 

( ) ( )[ ]

( ) ( ) ( ){ }xxfxxf

xyy

x

x

∆−∆+=

∆∆=′

→∆

→∆

][
0

0

limit

limit
 

y′  = the slope of the curve f(x). 
Test for a Maximum 

y = f (x) is a maximum for 
x = a, if f ′(a) = 0 and f ″(a) < 0. 

Test for a Minimum 
y = f (x) is a minimum for 
x = a, if f ′(a) = 0 and f ″(a) > 0. 

Test for a Point of Inflection 
y = f (x) has a point of inflection at x = a, 

if f ″(a) = 0, and 
if f ″(x) changes sign as x increases through 

x = a. 
The Partial Derivative 
In a function of two independent variables x and y, a 
derivative with respect to one of the variables may be found 
if the other variable is assumed to remain constant. If y is 
kept fixed, the function 

z = f (x, y) 
becomes a function of the single variable x, and its 
derivative (if it exists) can be found. This derivative is 
called the partial derivative of z with respect to x. The 
partial derivative with respect to x is denoted as follows: 

( )
x

y,xf
x
z

∂
∂

=
∂
∂  

The Curvature of Any Curve 
♦ 
 
 
 
 
♦ Wade, Thomas L., Calculus, Ginn & Company/Simon & Schuster Publishers, 1953. 

The curvature K of a curve at P is the limit of its average 
curvature for the arc PQ as Q approaches P. This is also 
expressed as: the curvature of a curve at a given point is the 
rate-of-change of its inclination with respect to its arc 
length. 

ds
d

s
K α

=
∆
α∆

=
→∆ 0s

limit  

Curvature in Rectangular Coordinates 

( )[ ] 2321 y

yK
′+

′′
=  

When it may be easier to differentiate the function with 
respect to y rather than x, the notation x′ will be used for the 
derivative. 

x′ = dx/dy 

( )[ ] 2321 x

xK
′+

′′−
=  

The Radius of Curvature  
The radius of curvature R at any point on a curve is defined 
as the absolute value of the reciprocal of the curvature K at 
that point. 

( )

( )[ ] ( )01

01

232

≠′′
′′
′+

=

≠=

y
y
yR

K
K

R

 

L'Hospital's Rule (L'Hôpital's Rule) 
If the fractional function f(x)/g(x) assumes one of the 
indeterminate forms 0/0 or ∞/∞ (where α is finite or 
infinite), then 

( ) ( )xgxf
α→x

limit  

is equal to the first of the expressions 
( )
( )

( )
( )

( )
( )xg
xf,

xg
xf,

xg
xf

xxx ′′′
′′′

′′
′′

′
′

α→α→α→
limitlimitlimit  

which is not indeterminate, provided such first indicated 
limit exists. 

INTEGRAL CALCULUS 
The definite integral is defined as: 

( ) ( )∑ ∫=∆
=∞→

n

i

b
aiin

dxxfxxf
1

limit  

Also, .ixi allfor0→∆  

A table of derivatives and integrals is available on page 9. 
The integral equations can be used along with the following 
methods of integration: 
A. Integration by Parts (integral equation #6), 
B. Integration by Substitution, and 
C. Separation of Rational Fractions into Partial Fractions. 
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DERIVATIVES AND INDEFINITE INTEGRALS 
In these formulas, u, v, and w represent functions of x. Also, a, c, and n represent constants. All arguments of the trigonometric 
functions are in radians. A constant of integration should be added to the integrals. To avoid terminology difficulty, the 
following definitions are followed: arcsin u = sin–1 u, (sin u) –1 = 1/sin u. 
1. dc/dx = 0 
2. dx/dx = 1 
3. d(cu)/dx = c du/dx 
4. d(u + v – w)/dx = du/dx + dv/dx – dw/dx 
5. d(uv)/dx = u dv/dx + v du/dx 
6. d(uvw)/dx = uv dw/dx + uw dv/dx + vw du/dx 

7. 
( )

2v
dxdvudxduv

dx
vud −

=  

8. d(un)/dx = nun–1 du/dx 
9. d[f (u)]/dx = {d[f (u)]/du} du/dx 
10. du/dx = 1/(dx/du) 

11. ( ) ( )
dx
du

u
e

dx
ud a 1loglog

a=  

12. ( )
dx
du

udx
ud 1ln

=  

13. ( ) ( )
dx
duaa

dx
ad u

u
ln=   

14. d(eu)/dx = eu du/dx 
15. d(uv)/dx = vuv–1 du/dx + (ln u) uv dv/dx 
16. d(sin u)/dx = cos u du/dx 
17. d(cos u)/dx = –sin u du/dx 
18. d(tan u)/dx = sec2u du/dx 
19. d(cot u)/dx = –csc2u du/dx 
20. d(sec u)/dx = sec u tan u du/dx 
21. d(csc u)/dx = –csc u cot u du/dx 

22. ( ) ( )2sin2
1

1sin 1

2

1
π≤≤π−

−
= −

−

u
dx
du

udx
ud  

23. ( ) ( )π≤≤
−

−= −
−

u
dx
du

udx
ud 1

2

1
cos0

1

1cos  

24. ( ) ( )2tan2
1

1tan 1
2

1
π<<π−

+
= −

−

u
dx
du

udx
ud

 

25. ( ) ( )π<<
+

−= −
−

u
dx
du

udx
ud 1

2

1
cot0

1
1cot  

26. 

( )

( )( )2sec2sec0

1

1sec

11

2

1

π−<≤π−π<≤

−
=

−−

−

uu

dx
du

uudx
ud

 

27.  

( )

( )( )2csc2csc0

1

1csc

11

2

1

π−≤<π−π≤<

−
−=

−−

−

uu

dx
du

uudx
ud

 

1. ∫ d f (x) = f (x) 
2. ∫ dx = x 
3. ∫ a f(x) dx = a ∫ f(x) dx 
4. ∫ [u(x) ± v(x)] dx = ∫ u(x) dx ± ∫ v(x) dx 

5. ( )1
1

1
−≠

+
=∫

+

m
m
xdxx

m
m  

6. ∫ u(x) dv(x) = u(x) v(x) – ∫ v (x) du(x) 

7. ∫ +=
+

bax
abax

dx ln1  

8. ∫ = x
x

dx 2  

9. ∫ ax dx = 
a

a x

ln
 

10. ∫ sin x dx = – cos x 
11. ∫ cos x dx = sin x 

12.  ∫ −=
4
2sin

2
sin 2 xxxdx  

13. ∫ +=
4
2sin

2
cos2 xxxdx  

14. ∫ x sin x dx = sin x – x cos x 
15. ∫ x cos x dx = cos x + x sin x 
16. ∫ sin x cos x dx = (sin2x)/2 

17. ( )
( )

( )
( ) ( )22

2
cos

2
coscossin ba

ba
xba

ba
xbadxbxax ≠∫

+
+

−
−
−

−=  

18. ∫ tan x dx = –ln⏐cos x⏐ = ln ⏐sec x⏐ 
19. ∫ cot x dx = –ln ⏐csc x ⏐ = ln ⏐sin x⏐ 
20. ∫ tan2x dx = tan x – x 
21. ∫ cot2x dx = –cot x – x 
22. ∫ eax dx = (1/a) eax 
23. ∫ xeax dx = (eax/a2)(ax – 1) 
24. ∫ ln x dx = x [ln (x) – 1] (x > 0) 

25. ( )0tan1 1
22 ≠∫ =

+
− a

a
x

axa
dx  

26. ( )0,0,tan1 1
2

>>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+∫ − ca
c
ax

accax
dx  

27a. 

( )04

4

2tan
4

2

2

2
1

22

>−

∫
−

+

−
=

++
−

bac

bac

bax

baccbxax
dx

 

27b. 

( )04

42

42ln
4

1

2

2

2

22

>−

∫
−++

−−+

−
=

++

acb

acbbax

acbbax

acbcbxax
dx

 

27c. ( )04
2

2 2
2

=−∫
+

−=
++

acb,
baxcbxax

dx
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MENSURATION OF AREAS AND VOLUMES 
Nomenclature 
A = total surface area 
P = perimeter 
V = volume 
Parabola 
 
 
 
 
 
 
 
 
 
 
 
 
Ellipse 
♦ 
 
 
 
 
 
 
 

( )

( )
( ) ( )

( ) ( )
( )

,baP

baPapprox

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+λ××××+

λ×××+λ××+

λ×+λ+

+π=

+π=

…102
10

7
8

5
6

3
4

1
2

1

82
8

5
6

3
4

1
2

162
6

3
4

1
2

1

42
4

1
2

122
2

1

22

1

22

 

where 
λ = (a – b)/(a + b) 
 
 

Circular Segment 
♦ 

S

r

d

φ

A

 A = [r2 (φ – sin φ)]/2 
 φ = s/r = 2{arccos [(r – d)/r]} 
 
Circular Sector 
♦ 
 
 
 
 
 
 
 
 A = φr2/2 = sr/2 
 φ = s/r 
Sphere 
♦ 
 
 
 
 
 
 
 
 V = 4πr3/3 = πd 3/6 
 A = 4πr2 = πd 2 

 
 
♦ Gieck, K. & Gieck R., Engineering Formulas, 6th ed., Gieck Publishing, 1967. 

A = πab
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MENSURATION OF AREAS AND VOLUMES (continued)
 

Parallelogram 
 
 
 
 
 
 P = 2(a + b) 

( )

( )
( )

( )φ==

+=+

φ++=

φ−+=

sin

2

cos2

cos2

222
2

2
1

22
2

22
1

abahA

badd

abbad

abbad

 

If a = b, the parallelogram is a rhombus. 

Regular Polygon (n equal sides) 
♦ 
 
 
 
 
 
 
 φ= 2π /n 

 ( )
⎟
⎠
⎞

⎜
⎝
⎛ −π=⎥⎦

⎤
⎢⎣
⎡ −π

=θ
nn

n 212  

 P = ns 
 s = 2r [tan (φ/2)] 
 A = (nsr)/2 
 
Prismoid 
♦ 
 
 
 
 
 
 
 
 

 V = (h/6)( A1 + A2 + 4A) 
 

Right Circular Cone 
♦ 
 
 
 
 
 
 

V = (πr2h)/3 
A = side area + base area 

⎟
⎠
⎞⎜

⎝
⎛ ++π= 22 hrrr  

Ax: Ab = x2: h2 
 
Right Circular Cylinder 
♦ 
 
 
 
 
 
 

 

( )rhrA

hd
hrV

+π=+=

π
=π=

2areasendareaside
4

2
2

 

 
Paraboloid of Revolution 
 
 
 
 
 
 
 
 

8

2hdV π
=  

 
♦ Gieck, K. & R. Gieck, Engineering Formulas, 6th ed., Gieck Publishing, 1967. 
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CENTROIDS AND MOMENTS OF INERTIA 
The location of the centroid of an area, bounded by the 
axes and the function y = f(x), can be found by integration. 

( )
( ) ( )dyygdxxfdA

dxxfA
A
ydAy

A
xdAx

c

c

==

∫=

∫=

∫=

 

The first moment of area with respect to the y-axis and the 
x-axis, respectively, are: 

My = ∫ x dA = xc A 
Mx = ∫ y dA = yc A 

The moment of inertia (second moment of area) with 
respect to the y-axis and the x-axis, respectively, are: 

Iy = ∫ x2 dA 
Ix = ∫ y2 dA 

The moment of inertia taken with respect to an axis passing 
through the area's centroid is the centroidal moment of 
inertia. The parallel axis theorem for the moment of inertia 
with respect to another axis parallel with and located d 
units from the centroidal axis is expressed by 

Iparallel axis = Ic + Ad 2 
In a plane, J =∫ r2dA = Ix + Iy 

Values for standard shapes are presented in tables in the 
STATICS and DYNAMICS sections. 

DIFFERENTIAL EQUATIONS 
A common class of ordinary linear differential equations is 

( ) ( ) ( ) ( )xfxyb
dx

xdyb
dx

xydb n

n

n =+++ 01…  

where bn, …, bi, …, b1, b0 are constants. 
When the equation is a homogeneous differential equation, 
f(x) = 0, the solution is 
 

where rn is the nth distinct root of the characteristic 
polynomial P(x) with 

P(r) = bnr n + bn−1r n–1 + … + b1r + b0 

If the root r1 = r2, then xreC 2
2 is replaced with xrxeC 1

2 .  

Higher orders of multiplicity imply higher powers of x. The 
complete solution for the differential equation is 

y(x) = yh(x) + yp(x), 

where yp(x) is any solution with f(x) present. If f(x) has xrne  
terms, then resonance is manifested. Furthermore, specific 
f(x) forms result in specific yp(x) forms, some of which are: 

 
f(x) yp

(x) 
A B 
Aeα x Beα x, α ≠ rn 
A1 sin ω x + A2 cos ω x B1 sin ω x + B2 cos ω x 
If the independent variable is time t, then transient dynamic 
solutions are implied. 
First-Order Linear Homogeneous Differential 
Equations With Constant Coefficients 

y′ + ay = 0, where a is a real constant: 
Solution, y = Ce–at 

where C = a constant that satisfies the initial conditions. 
First-Order Linear Nonhomogeneous Differential 
Equations 

( ) ( )
( ) KAy

tB
tAtxtKxy

dt
dy

=
⎭
⎬
⎫

⎩
⎨
⎧

>
<==+τ

0
0
0

 

τ is the time constant 
K is the gain 
The solution is 

( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

τ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

τ
−

−−+=

yKB
KAKBt

tKAKBKAty

ln

orexp1
 

Second-Order Linear Homogeneous Differential 
Equations with Constant Coefficients 
An equation of the form 

y″ + 2ay′ + by = 0 
can be solved by the method of undetermined coefficients 
where a solution of the form y = Cerx is sought. Substitution 
of this solution gives 

(r2 + 2ar + b) Cerx = 0 
and since Cerx cannot be zero, the characteristic equation 
must vanish or 

r2 + 2ar + b = 0 
The roots of the characteristic equation are 

r1,2 =  

and can be real and distinct for a2 > b, real and equal for 
 a2 = b, and complex for a2 < b. 
If a2 > b, the solution is of the form (overdamped) 

xrxr eCeCy 21
21 +=  

If a2 = b, the solution is of the form (critically damped) 
( ) xrexCCy 1

21 +=  
If a2 < b, the solution is of the form (underdamped) 

y = eα x (C1 cos βx + C2 sin βx), where 
α = – a 

β = 2ab −  

baa −±− 2

( ) xr
n

xr
i

xrxr
h

nii eCeCeCeCxy +++++= ……2
21
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FOURIER TRANSFORM 
The Fourier transform pair, one form of which is 

( ) ( )
( ) ( )[ ] ( )∫ ωωπ=

∫=ω
∞
∞−

ω

∞
∞−

ω−

deFtf

dtetfF
tj

tj

21
 

can be used to characterize a broad class of signal models 
in terms of their frequency or spectral content. Some useful 
transform pairs are: 
f(t) F(ω) 
δ(t) 
u(t) 

tj

rect

oe

trtutu

ω

τ
=⎟

⎠
⎞

⎜
⎝
⎛ τ

−−⎟
⎠
⎞

⎜
⎝
⎛ τ

+
22  

1 
π δ(ω) + 1/jω 

( )

( )oω−ωπδ
ωτ

ωτ
τ

2
2

2sin
 

Some mathematical liberties are required to obtain the 
second and fourth form. Other Fourier transforms are 
derivable from the Laplace transform by replacing s with 
jω provided 

f(t) = 0, t < 0 

( ) ∞<∫
∞ dttf0  

Also refer to Fourier Series and Laplace Transforms in 
ELECTRICAL AND COMPUTER ENGINEERING 
section of this handbook. 

DIFFERENCE EQUATIONS 
Difference equations are used to model discrete systems. 
Systems which can be described by difference equations 
include computer program variables iteratively evaluated in 
a loop, sequential circuits, cash flows, recursive processes, 
systems with time-delay components, etc. Any system 
whose input v(t) and output y(t) are defined only at the 
equally spaced intervals t = kT can be described by a 
difference equation 
First-Order Linear Difference Equation 
The difference equation 

Pk = Pk−1(1 + i) – A 
represents the balance P of a loan after the kth payment A. 
If Pk is defined as y(k), the model becomes 

y(k) – (1 + i) y(k – 1) = – A 
Second-Order Linear Difference Equation 
The Fibonacci number sequence can be generated by 

y(k) = y(k – 1) + y(k – 2) 
where y(–1) = 1 and y(–2) = 1. An alternate form for this 
model is f (k + 2) = f (k + 1) + f (k) 

with f (0) = 1 and f (1) = 1. 

NUMERICAL METHODS 
Newton’s Method for Root Extraction 
Given a function f(x) which has a simple root of f(x) = 0 
at x = a an important computational task would be to 
find that root. If f(x) has a continuous first derivative 
then the (j +1)st estimate of the root is 

jaxdx
)x(df
)x(faa jj

=

−=+1  

The initial estimate of the root a 0 must be near enough 
to the actual root to cause the algorithm to converge to 
the root. 
Newton's Method of Minimization 
Given a scalar value function 

h(x) = h(x1, x2, …, xn) 
find a vector x*∈Rn such that 

h(x*) ≤ h(x) for all x 
Newton's algorithm is 

KK

KK x
h

x
h

xxxx
xx

=∂
∂

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

=∂
∂

−=

−

+

1

2

2

1 , where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂
∂
∂

=
∂
∂

nx
h

x
h
x
h

x
h

…
…

2

1

 

and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

=
∂
∂

2

2

2

2

1

2

2

2

2
2

2

21

2
1

2

21

2

2
1

2

2

2

nnn

n

n

x
h

xx
h

xx
h

xx
h

x
h

xx
h

xx
h

xx
h

x
h

x
h

……

……………
……………

……

……
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Numerical Integration 
Three of the more common numerical integration algorithms used to evaluate the integral 

( )∫
b
a dxxf  

are: 
Euler's or Forward Rectangular Rule 

( ) ( )∑ ∆+∆≈∫
−

=

1

0

n

k

b
a xkafxdxxf  

Trapezoidal Rule 
for n = 1 

( ) ( ) ( )
∫ ⎥⎦

⎤
⎢⎣
⎡ +

∆≈b
a

bfafxdxxf
2

 

for n > 1 

( ) ( ) ( ) ( )∫ ⎥⎦
⎤

⎢⎣
⎡ ∑ +∆++

∆
≈

−

=

b
a

n

k
bfxkafafxdxxf

1

1
2

2
 

Simpson's Rule/Parabolic Rule (n must be an even integer) 
for n = 2 

( ) ( ) ( )∫ ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ −

≈b
a bfbafafabdxxf

2
4

6
 

for n ≥ 4 

( )
( ) ( )

( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+∑ ∆++

∑ ∆++
∆

≈∫ −

=

−

=

bfxkaf

xkafaf
xdxxf

n

,,,k

n

,,,kb
a 1

531

2

642

4

2

3
…

…  

with ∆x = (b – a)/n 
 n = number of intervals between data points 
 
Numerical Solution of Ordinary Differential Equations 
Euler's Approximation 
Given a differential equation 

dx/dt = f (x, t) with x(0) = xo 
At some general time k∆t 

x[(k + 1)∆t] ≅ x(k∆t) + ∆t f [x(k∆t), k∆t] 
which can be used with starting condition xo to solve recursively for x(∆t), x(2∆t), …, x(n∆t). 
The method can be extended to nth order differential equations by recasting them as n first-order equations. 
In particular, when dx/dt = f (x) 
 x[(k + 1)∆t] ≅ x(k∆t) + ∆tf [x(k∆t)] 
which can be expressed as the recursive equation 
 xk + 1 = xk + ∆t (dxk / dt) 




