Differential Equations - SM212
Final Exam Review Notes

1. Classification

e Order

e Linearity: a,(2)y™ 4+ a,_1(2)y™ Y +.. +ai(2)y +ao(z)y = f(x),
where dependent variable y and its derivatives have no nonlinear
operations (e.g., squaring) performed on them,

e Separable

e Autonomous
2. Graphical approximations to the solution to a first order ODE

e Direction fields and isoclines
e Autonomous DEs
- y, = f(y)7
— Find critical points and sketch phase portrait
— Types of equilibria
(a) stable - attractor
(b) unstable - repellor

3. Numerical methods for ¢/ = f(z,y)

e Fuler’s method

Ynew = Yold + hf<xold7 yold>7 Tnew = Told T h

or
Yn+1l = Yn T hf(xnv yn)a Tpt1l = Tn + h

— successive “tangent line” /linear approximation using slope =
y' = flz,y)

e Improved Euler’s method

— If Yoo = Yoid + R f (Zo1d; Yoia) then

h .
Ynew = Yold + E[f(xoldv yold) + f(xnewa ynew)]7 Tnew = Told + h



— successive averaged “tangent line” /linear approximation using
slope =y’ = f(z,y)

4. First Order Methods of Solution
e Separation of Variablesy = f(z)/g(y) = [g(y)dy = [ f(z)dx
e Integrating Factor

-y +p@)y = q()
— = el p(z)dz

=y +p(x)py = (ny) = puf(x)

: y— Jpf@)detC
1

5. Applications

e Exponential Growth/Decay

— General ¥ = Ay, y(0) =y = y = yoet

— Radioactive Decay m(t) = mo(%)t/t1/2
e Heating/Cooling

T =k - (T — Tyoom), where T = T(t) is the temperature of the
object and Ty (which can depend on t) is temperature of the
room (or environment or medium)

e Mixing A" = F;,,C;, — Fautﬁk(ﬂ, where Fjy, o, is the flow rate of

the solution flowing in/out, Cj, is the concentration of the solution
pouring in, Tank(t) is the volume of solution in the tank and time

t, and A = A(t) is the amount (mass) of solute.

e Falling Body mv' + kv = mg, where k > 0 is the coefficient of air
resistance.

o Circuits
— RL L% + Ri = e(t), solve for i = i(t)
— RC R% + &q = e(t), solve for g = q(t)

6. Higher Order DE Underlying Theory



e n'" Order Differential Equation
Initial Value Problem, subject to n initial conditions

()Y ™ + a1 (2)y" VY + L a(2)y 4 ao(x)y = f(x),

Initial Conditions: y(zo) = yo, ¥ (z0) = v1, - .., ¥ D (20) = Yn_1.

e n'" Order Homogeneous Differential Equation
an(2)y™ + a1 (2)y™ Y 4+ L+ ar(2)y + a(z)y = 0.

— There are exactly n fundamental solutions, y)1, ya, ... Yn
— Fundamental solutions are linearly independent

— General solution: y = c1y1 + ... ¢ yn, for arbitrary constants
(sometimes called “parameters”) ¢y, ..., ¢,

e n'" order non-homogencous differential equation

an ()™ + a1 ()Y + L+ ar(2)y + ao2)y = f(a),

General solution: y = yj + yp, where

— yp, is a solution to
an(@)y™ + ap 1 (2)y" D + o+ (@)Y + ag(x)y =0,
— ¥, 1s any solution to
an(2)y"™ + ap 1 (2)y" Y + o+ ar(@)y + ao(x)y = f(2).
7. Methods of Solution for Second Order Linear Differential Equations

e Homogeneous with Constant Coefficients

— Factor characteristic polynomial (sometimes called the auwil-
iary equation)

— Roots, r; , yield members of Fundamental Set g, = e™**

— For roots repeated k times, y; = €', yp = xe'®, y3 = 2™,
_ k-1 rx
Y = e,



— For complex conjugate roots, r = a + i3, y1 = e** cos(fx),
Yo = € sin(fz).
e Non-homogeneous with Constant Coefficients (undetermined co-
efficients and annihilators)

These methods only applies to the non-homogeneous constant co-
efficient ODEs

any™ + a1y 4+ 4 ary + agy = f(z)

where the “forcing function” f(x) is “elementary”. More precisely,
f(z) must be a sum of terms which are a product of polynomials,
exponentials, sin’s and /or cos’s.

Undetermined coefficients:

— First find yy,, the solution to the homogeneous equation

— Next find the repeated derivatives of the forcing f(x), writing
down all the individual terms separately, removing constant
factors which might be multiplying such terms. By the hy-
pothesis on f(x), only a finite number of such functions can
arise.

— “Guess” for y, a linear combination of such functions. The
coefficients in this linear combination are the “undetermined
coefficients”. Multiply by = those terms which “agree” with
any terms in yp.

— Plug y, into the ODE and solve for the undetermined coeffi-
cients

—Y=Yn+ Yp
— Solve for the “parameters” ¢y, ..., ¢, if you are given ICs.

Annihilator method: Write
any™ + a1y + L+ @y + agy = f(x)

symbolically as L(y) = f(z).

— Find the Annihilator of f(z) - the differential operator Lg of
smallest degree such that Lo(f(z)) = 0.

— Multiply annihilators for sums of functions

— Find yp, - the solution to L(y) = 0.
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— Find solutions of Ly(L(y)) = 0.
* identify terms which comprise yy,
* remaining terms comprise y,
* Yy =yp+ Yp
— Use L(y) = f(z) to solve for coefficients in y,
— Solve for “parameters” of y;, using initial conditions, if given.

8. Applications

e Free Undamped Motion
mx” + kx =0

if w=+4/k/m then

z(t) = ¢1 cos(wt) + casin(wt) = Asin(wt + ¢)
— w =angular speed
— P =27 /w = period
— f =1/P= frequency

— ¢ = 2tan'(;%5) = phase angle

— A =/c + 3 = amplitude
e Free Damped Motion
mx” 4+ bx’ + kx =0
Roots 11, 7y of mD? +bD + k = 0:
— real, distinct = over-damped, x = c1e"? + cye™?,
— repeated root r = ry = r = critically damped, * =
cre™ + cote™,
— complex conjugate roots r| = a + i, ro = a —if =
under-damped z = ¢;e* cos(wt) + c2e® sin(wt)
e Forced Motion
ma” + bx' + kx = f(t), where f(t) is the external force acting on
the spring-mass system.
Roots 71, 79 of mD? +bD + k =0

— Solve as other non-homogeneous equations: write solution as
x = x5, + xp, Where



*x xp, is transient term

* x, 1s steady state term
Undamped forced motion will resonate if “forced natural fre-
quency” equals “natural frequency”. In other words, if f(t) =

fosin(yt) or f(t) = focos(yt), for some =, the resonance oc-
curs if and only if v = \/k/m (assuming b = 0).

e RLC Electric Circuit

1
L¢"+ Rq + a1= e(t)

where e(t) is the battery or EMF.

Solve using same method as Forced Damped Motion
Dont forget that i = ¢
If you write solution as ¢ = gp, + ¢p, where

x qp is the transient charge

* @y is the steady state charge

9. Laplace transforms

e The Laplace Transform converts a constant-coefficient linear dif-
ferential equation in the independent variable ¢ to an algebraic
equation in independent variable s.

e The Laplace Transform is an integral transform.

Know the definition and be familiar with the Laplace Transforms
of the common functions (polynomials, sines, cosines, exponen-
tials).

e Properties of the Laplace Transform:

Translation theorem 1: L[e® f(t)](s) = F(s — a)

Translation theorem 2: L[f(t — a)u(t — a)](s) = e”*F(s)
Think of u(t — a) as a mathematical switch, which turns ON
att =a

Derivative theorem 1: L[f'(t)](s) = sF(s) — f(0), and similar
formulas for f"(t), f"(t), ...

Derivative theorem 2: L[tf(t)](s) = —F'(s), and similar for-
mulas for t2f(t), t3f(t), ...
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— DO NOT get confused and take the products of the Laplace
Transforms!

— Use Laplace transforms to solve initial value problems
x Take Laplace Transform of entire problem
x . Solve for Laplace Transform of dependent variable
x Take Inverse Laplace Transform for solution to IVP

— Convolution theorem (the Laplace transform of the convolu-
tion is the product of the Laplace transforms)

* Know the definition of the convolution

% Can use the convolution theorem to solve second order
linear ODEs with constant coefficients

ay +by +cy = f(t), y(0)=1y'(0)=0,

y(t) = (hx f)(),
where f(t) is the forcing function and

1

ht) =L [———
(t) =L [a82+b3+c

J(t)
is called the impulse response function.

10. Matrix operations

e Basics

— Augmented Matrix represents a system of equations. For ex-
ample, the 2 x 2 linear system in standard form (with all
the unknowns on the left hand side and the remaining known
quantities on the right hand side)

ar + by =r
cx +dy =1y

can be represented as its “2 x 3 matrix of coefficients”



— In row reduced echelon form (rref), the above is reduced to a
much “sparser” matrix, rref(A), which represents the matrix
of coefficients of a much simpler linear system.

— FEigenvalues and eigenvectors. The eigenvalue equation forms
the definition: Av = Av. This means ¥ is an eigenvector of
A with eigenvalue A\. An n x n matrix has n eigenvalues,
counted according to multiplicity: they are the roots of the
characteristic polynomial p(A) = det(A — AI).

e Application of rref to systems of linear ordinary differential equa-
tions with constant coefficients.

— Take the Laplace transform of all the equations and put it in
standard form.

Compute the row reduced echelon form of its augmented ma-
trix.

— Solve for the Laplace transforms of the dependent variables.
— Take inverse Laplace transforms to solve the system of ODEs.

e Application of eigenvalues and eigenvectors to systems of linear
ordinary differential equations with constant coefficients.

— Put the systems in matrix form: X’ = AX, where X = X (¢)
is the vector of n unknown functions (the dependent variables
of the system) and A is an n X n matrix of constants.

— Compute the eigenvalues A1, ..., \,, and their corresponding
eigenvectors vy, ..., U,.

— If all the eigenvalues are distinct, the solution is

—

X = theMt + .+ ¢, T,

for arbitrary constants (or “parameters”) ¢y, ..., ¢,.

— If there are initial conditions, solve for the ¢y, ..., ¢,.
e Applications

— Electrical Networks.
Determine System of independent ODEs using Kirchoffs Laws
for current Loops and nodes.

— Lanchester’s equations



If the X-men are battling the Y-men in a simple conventional
battle then

can be used to model the number z = z(t) of X-men at time
t and the number y = y(¢) of Y-men at time t.

e Numerical methods

— Eulers method for systems

v = fl(xayhyZ)a yl(a)
Yo = fol@,y1,92), 12(a)

(1,
Co.

Use
Y1new = Yt.old + L f1(Z1 01, Y1 01d> Y2.01d)

Y2.new = Y2.01d + P f2(21 01d, Y1 01d> Y2,01d)

and Tpew = Toig + h.
For a 2nd order ODE,

y' +p(@)y +q@)y = f(x), yla)=c, y(a)=cy,

do the following:

x write 2nd Order ODE as a system of two 1st order DEs.
Using y1 =y and y = ¢/,

yll = Y2, 3/1(@) = Cq,
vy = f(z) — q(x)yn — p(2)y2, Yo(a) = co.

x Apply Euler’s method for systems as above.

11. Fourier Series

Represents “any” function on an interval (—L, L) centered at the origin
as a convergent series of orthogonal functions.

~ EO z; a, cos( )+ by, sm(mgx)}



where

L nmx
a, = %/_L f(z) COS(T) dx,

L nmx
b, = %/_L f(z) sin(T) dz.

12. Half-Range Fourier Series

Represents a function defined on an interval (0, L).

e Fourier Cosine Series
Also used as Fourier series for EVEN functions.

To have a cosine series you must be given two things: (1) a “pe-
riod” P = 2L, (2) a function f(z) defined on the interval of length
L,0<z<L.

Q@ o~ nTT
f(z) ~ 5 —i—;ancos( 7 )

where

9 L
an, = Z/o cos(?)f(x) dx.

e Fourier Sine Series
Also used as Fourier series for ODD functions

To have a sine series you must be given two things: (1) a “period”
P = 2L, (2) a function f(z) defined on the interval of length L,
O0<ax<L.

f(z) ~ ; b, m?%
where

nmwx

2 [* .
b, = E/o sm(T)f(x) dx.
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13. Separation of variables for 1st and 2nd order linear homogeneous PDEs

A1 Ugg + AoUgy + azty, + asUy + asUy + agu = 0, u=u(z,y),
where the coefficients a; could depend on x or y.

Typical examples:

e advection equation

Uy, +cuy =0

e heat equation
kuxm = Uyt

e wave equation
2
A Ugy = Ut

14. Heat equation

Ox?
u(z,0) = f(x).
Here u(x,t) denotes the temperature at a point x on the wire at time
t, so f(x) is the wire’s initial temperature.

?u(x,t) _ Ou(w,t)
{ kg = 25

e zero ends

k(ﬂu(z,t) _ Ou(z,t)
Ox? ot
u(z,0) = f(x),
u(0,t) = u(L,t) = 0.

— Find the sine series of f(x):

nmwx

f(x) ~ ; b (f) Sin(T),
— The solution is

nm

ule,t) = % balf) sin(F=) exp(—k(==)%%).
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e insulated ends

k62u (z,t) __ Ou(at)

a2 ot
u(z,0) = f(z),
u,(0,t) = u,(L,t) = 0.

e Find the cosine series of f(z):

F@) ~ G4+ D7 anlf) cos(“70),

e The solution is

7’L7T.T nm

= _+Zan COS ))eXp(—k(f)%)‘

15. Wave equation

The wave equation with zero ends boundary conditions models the
motion of a (perfectly elastic) guitar string of length L:

{ 2w(z,t) — g2 82w(w t)

Here w(x,t) denotes the displacement from rest of a point x on the
string at time ¢. The initial displacement f(z) and initial velocity g(z)
at specified by the equations

U)(l‘,()) :f(x)a wt<x70) :g(l‘).

e Find the sine series of f(z) and g(z):

Z b, (f)sin mm), Z b, (g) sin mrx)

e The solution is

w(w,t) = Z(bn(f) Cos(zzt) + aLz:T(g) sin(zzt)) sin(nzx)_
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