
The Schrödinger equation

The one-dimensional Schrödinger equation for a free particle is

ik
∂2ψ(x, t)

∂x2
=
∂ψ(x, t)

∂t
,

where k > 0 is a constant (involving Planck’s constant and the mass of
the particle) and i =

√−1 as usual. The solution ψ is called the wave
function describing instantaneous “state” of the particle. For the analog
in 3 dimensions (which is the one actually used by physicists - the one-
dimensional version we are dealing with is a simplified mathematical model),
one can interpret the square of the absolute value of the wave function as the
probability density function for the particle to be found at a point in space.
In other words, |ψ (x, t)|2 dx is the probability of finding the particle in the
“volume dx” surrounding the position x, at time t.

If we restrict the particle to a “box” then (for our simplied one-dimensional
quantum-mechanical model) we can impose a boundary condition of the form

ψ(0, t) = ψ(L, t) = 0,

and an initial condition of the form

ψ(x, 0) = f(x), 0 < x < L.

Here f is a function (sometimes simply denoted ψ(x)) which is normalized
so that

∫ L

0

|f(x)|2 dx = 1.

If |ψ (x, t)|2 represents a pdf of finding a particle “at x” at time t then∫ L

0
|f(x)|2 dx represents the probability of finding the particle somewhere

in the “box” initially, which is of course 1.

Method:

• Find the sine series of f(x):

f(x) ∼
∞∑
n=1

bn(f) sin(
nπx

L
),
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• The solution is

ψ(x, t) =
∞∑
n=1

bn(f) sin(
nπx

L
) exp(−ik(nπ

L
)2t).

Each of the terms

ψn(x, t) = bn sin(
nπx

L
) exp(−ik(nπ

L
)2t).

is called a standing wave (though in this case sometimes bn is chosen so that∫ L

0
|ψn(x, t)|2 dx = 1).

Example:
Let

f(x) =

{ −1, 0 ≤ x ≤ 1/2,
1, 1/2 < x < 1.

Then L = 1 and

bn(f) =
2

1

∫ 1

0

f(x) sin(
nπx

1
)dx =

1

nπ
(−1 + 2 cos(

nπ

2
)− cos(nπ)).

Thus

f(x) ∼ b1(f) sin(πx) + b2(f) sin(2πx) + ...
=

∑
n

1
nπ

(−1 + 2 cos(nπ
2

)− cos(nπ)) · sin(nπx) .

Taking more and more terms gives functions which better and better
approximate f(x). The solution to Schrödinger’s equation, therefore, is

ψ(x, t) =
∞∑
n=1

1

nπ
(−1 + 2 cos(

nπ

2
)− cos(nπ)) · sin(nπx) · exp(−ik(nπ)2t).

Explanation:
Where does this solution come from? It comes from the method of separa-

tion of variables and the superposution principle. Here is a short explanation.
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First, assume the solution to the PDE ik ∂
2ψ(x,t)
∂x2 = ∂ψ(x,t)

∂t
has the “fac-

tored” form

ψ(x, t) = X(x)T (t),

for some (unknown) functions X,T . If this function solves the PDE then it
must satisfy kX ′′(x)T (t) = X(x)T ′(t), or

X ′′(x)
X(x)

=
1

ik

T ′(t)
T (t)

.

Since x, t are independent variables, these quotients must be constant. In
other words, there must be a constant C such that

T ′(t)
T (t)

= ikC, X ′′(x)− CX(x) = 0.

Now we have reduced the problem of solving the one PDE to two ODEs
(which is good), but with the price that we have introduced a constant which
we don’t know, namely C (which maybe isn’t so good). The first ODE is
easy to solve:

T (t) = A1e
ikCt,

for some constant A1. It remains to “determine” C.
Case C > 0: Write (for convenience) C = r2, for some r > 0. The ODE

for X implies X(x) = A2 exp(rx) +A3 exp(−rx), for some constants A2, A3.
Therefore

ψ(x, t) = A1e
−ikr2t(A2 exp(rx)+A3 exp(−rx)) = (a exp(rx)+b exp(−rx))e−ikr2t,

where A1A2 has been renamed a and A1A3 has been renamed b. This will
not match the boundary conditions unless a and b are both 0.

Case C = 0: This implies X(x) = A2 + A3x, for some constants A2, A3.
Therefore

ψ(x, t) = A1(A2 + A3x) = a+ bx,

where A1A2 has been renamed a and A1A3 has been renamed b. This will
not match the boundary conditions unless a and b are both 0.
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Case C < 0: Write (for convenience) C = −r2, for some r > 0. The ODE
for X implies X(x) = A2 cos(rx) + A3 sin(rx), for some constants A2, A3.
Therefore

ψ(x, t) = A1e
−ikr2t(A2 cos(rx) + A3 sin(rx)) = (a cos(rx) + b sin(rx))e−ikr

2t,

where A1A2 has been renamed a and A1A3 has been renamed b. This will
not match the boundary conditions unless a = 0 and r = nπ

L

These are the solutions of the heat equation which can be written in
factored form. By superposition, “the general solution” is a sum of these:

ψ(x, t) =
∑∞

n=1(an cos(rnx) + bn sin(rnx))e
−ikr2nt

= b1 sin(r1x)e
−ikr21t + b2 sin(r2x)e

−ikr22t + ...,
(1)

for some bn, where rn = nπ
L

. Note the similarity with Fourier’s solution to
the heat equation.

There is one remaining condition which our solution ψ(x, t) must satisfy.
We have not yet used the IC ψ(x, 0) = f(x). We do that next.

Plugging t = 0 into (1) gives

f(x) = ψ(x, 0) =
∞∑
n=1

bn sin(
nπ

L
x) = b1 sin(

π

L
x)) + b2 sin(

2π

L
x)) + ... .

In other words, if f(x) is given as a sum of these sine functions, or if we
can somehow express f(x) as a sum of sine functions, then we can solve
Schrödinger’s equation. In fact there is a formula for these coefficients bn:

bn =
2

L

∫ L

0

f(x) cos(
nπ

L
x)dx.

It is this formula which is used in the solutions above.

Written by wdj, last updated 3-9-2007.
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