SM450
Take home Exam 2
Prof Joyner

You may use class notes, class text, Python books or the internet, but
please reference your use with appropriate detail. Work on your own or (if
you wish) with one partner.

Due Friday, 2010-04-16. Electronic submissions only. All programs must
be submitted either as Sage/Python worksheets. Document all your code.
If you work with a partner, both of you must test all the documentation
included in your submission.

1. (Option A) Write a Python module containing two classes, A MatrixS-
pace class (the “ring” of matrices kxn matrixes (mod m), where m is an
integer), and a MatrixElement class (representing the individual ma-
trices). You may not use pre-existing Sage classses for this. Here the
integer mj 1 is not necessarily a prime.

e MatrixSpace should have the following methods: __repr__, __str__,
__call__, row_dimension, column_dimension.
e MatrixElement should have the following methods: __repr__,

__str__, row_vectors (returning the list of rows), column_vectors
(returning the list of columns), matrix_entry (which has input i,
j and outputs the i,j-th entry of the matrix), __add__, __sub__.
For extra credit, implement cofactor (which has input i, j and
outputs the i,j-th cofactor of the matrix), __mul__ (when the ma-

trices are square) and det (when the matrices are square).

When finished,
MatrixSpaceModm(10, 2, 3)

will represent the set of 2 x 3 matrices mod 10, with addition mod 10,
and

A = MatricesModm(10, [[1,2,3],[4,5,6]1])
MatricesModm(10, [[1,0,7]1,[2,8,3]11)

(ov}
Il



will represent elements of that set. You module should enable you to
compute A+B and A-B correctly.

Fully document your methods with INPUT, OUTPUT, and EXAM-
PLES for each docstring.

. (Option B) A graph is a pair G = (V, E), where V is a set of ver-
tices (often labeled by non-negative integers) and £ C V x V is a set
of edges. Implement a graph class with methods __repr__, __str
vertex_list (which lists all the vertices), edge_list (which lists all
the edges), add_vertex, add_edge, neighbors (which has input a ver-
tex v in the graph and returns all those vertices connected to v by a
single edge).

——

Extra credit: Also, allow your vertices to have integer weights. Imple-
ment the chip firing game: In this care, the vertices are the players and
the weights are their “chips” (imagine each chip is worth 1 dollar). A
vertex is active if it has more chips than neighboring vertices. Only
active vertices can ‘fire”. When you “fire” a vertex, the player must
pay one chip to each neighbor (so if there were 5 neighbors then the
weight of that vertex would be 5 lower than before the firing).

. Using your class in Option A (or using Sage’s matrices over GF'(2)),
implement the 3 x 3 determinant game. Here are the rules: there are
two players - Player 0 and Player 1. You start with an “empty” matrix
and players alternately enter either 0 (for Player 0) or 1 (for Player 1).
Player 0 wins if the determinant is 0 (mod 2) amd loses otherwise. A
“fip of a coin” decides whose turn is first.

Extra credit if you can determine a winning strategy (assuming both
players play “optimally”).

. The integers 1 to 500 are written on the blackboard of a classroom.
Students Alice and Bob play the following game: the students alternate
erasing a number on the board. The game ends when there are exactly
two numbers remaining. If the numbers are additive inverses in Z/37Z
then Bob wins; otherwise Alice wins. If Alice starts, does Bob have a
winning strategy (assuming both players play “optimally”)?

(Okay, this can be solved with no programming, but if you can program
this, you will get extra credit.)



5. Write Python code to solve the following problem.

A reporter asks a military officer how many soldiers are at a certain
military base. The officer, not wanting to reveal such sensitive infor-
mation, but also not wanting to seem overly secretive, gives an indirect
answer:

When my soldiers form 2 columns there is 1 soldier left.

When my soldiers form 3 columns there are 2 soldier left.
When my soldiers form 4 columns there are 3 soldier left.
When my soldiers form 5 columns there are 4 soldier left.
When my soldiers form 6 columns there are 5 soldier left.
When my soldiers form 7 columns there are 0 soldier left.

How many soldiers are there?



