
Python and Coding Theory

Course Notes, Spring 2009-2010

Prof David Joyner, wdj@usna.edu

March 22, 2010

Draft Version - work in progress

1



Acknowledgement: There are XKCD comics scattered throughout (http://xkcd.
com/), created by Randall Munroe. I thank Randall Munroe for licensing his
comics with a a Creative Commons Attribution-NonCommercial 2.5 License, which
allows them to be reproduced here. Commercial sale of his comics is prohibited.
I also have made use of William’s Stein’s class notes [St] and John Perry’s class
notes, resp., on their Mathematical Computation courses.

Except for these, and occasional brief quotations (which are allowed under Fair
Use guidelines), these notes are copyright David Joyner, 2009-2010, and licensed
under the Creative Commons Attribution-ShareAlike License.

Python is a registered trademark
(http://www.python.org/psf/trademarks/)

There are some things which cannot be learned quickly,
and time, which is all we have,
must be paid heavily for their acquiring.
They are the very simplest things,
and because it takes a man’s life to know them
the little new that each man gets from life
is very costly and the only heritage he has to leave.

- Ernest Hemingway (From A. E. Hotchner, Papa Heming-
way, Random House, NY, 1966)
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These are lecture notes for a course on Python and coding theory designed
for students who have little or no programmig experience. The text is [B],

N. Biggs, Codes: An introduction to information, com-
munication, and cryptography, Springer, 2008.

No text for Python is officially assigned. There are many excelnt ones, some
free (in pdf form), some not. One of my personal favorites is David Beazley’s
[Be], but I know people who prefer Mark Lutz and David Ascher’s [LA].
Neither are free. There are also excellent books which are are free, such as
[TP] and [DIP]. Please see the references at the end of these notes. I have
really tried to include good refereences (at least, references on Python that
I realy liked), not just throw in ones that are related. It just happens that
there are a lot of good free references for learning Python. The MIT Python
programming course [GG] also does not use a text. They do however, list as
an optional reference

Zelle, John. Python Programming: An Introduction
to Computer Science, Wilsonville, OR: Franklin, Beedle &
Associates, 2003.

(Now I do mention this text for completeness.) For a cryptography reference,
I recommend the Handbook of Applied Cryptography [MvOV]. For a more
complete coding theory reference, I recommend the excellent book by Cary
Huffman and Vera Pless [HP].

You will learn some of the Python computer programming language and
selected topics in “coding theory”. The material presented in the actual lec-
tures will probably not follow the same linear ordering o these notes, as I will
probably bring in various examples from the later (mathematical) sections
when discussing the earlier sections (on programming and Python).

I wish I could teach you all about Python, but there are some limits to
how much information can be communicated in one semester! We broadly
interprete “coding theory” to mean error-correcting codes, communication
codes (such as Gray codes), cryptography, and data compression codes. We
will introduce these topics and discuss some related algorithms implemented
in the Python programs.

A programming language is a language which allows us to create programs
which perform data manipulations and/or computations on a computer. The
basic notions of a programming language are “data”, “operators”, and “state-
ments.” Some basic examples are included in the following table.
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Data Operators Statements
numbers +, - , *, ... assignment
strings + (or concatenation) input/output
Booleans and, or conditionals, loops

Our goal is to try to understand how basic data types are represented,
what types of operations or manipulations Python allows to be performed on
them, and how one can combine these into statements or Python commands.
The focus of the examples will be on mathematics, especially coding theory.

Figure 1: Python.
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/
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1 Motivation

Python is a powerful and widely used programming language.

• “Python is fast enough for our site and allows us to produce maintainable
features in record times, with a minimum of developers,” said Cuong Do,
Software Architect, YouTube.com.

• “Google has made no secret of the fact they use Python a lot for a number
of internal projects. Even knowing that, once I was an employee, I was
amazed at how much Python code there actually is in the Google
source code system.”, said Guido van Rossum, Google, creator of Python.

Speaking of Google, Peter Norvig, the Director of Research at Google, is a
fan of Python and an expert in both management and computers. See his
very interesting article [N] on learning computer programming. Please read
this short essay.

• “Python plays a key role in our production pipeline. Without it a project the
size of Star Wars: Episode II would have been very difficult to pull off.
From crowd rendering to batch processing to compositing, Python binds
all things together,” said Tommy Burnette, Senior Technical Director,
Industrial Light & Magic.

Python is often used as a scripting language (i.e., a programming language
that is used to control software applications). Javascript embedded in a
webpage can be used to control how a web browser such as Firefox displays
web content, so javascript is a good example of a scripting language. Python
can be used as a scripting language for various applications (such as Sage
[S]), and is ranked in the top 5-10 worldwide in terms of popularity.

Python is fun to use. In fact, the origin of the name comes from the
television comedy series Monty Python’s Flying Circus and it is a common
practice to use Monty Python references in example code. It’s okay to laugh
while programming in Python (Figure 1).

According to the Wikipedia page on Python, Python has seen extensive
use in the information security industry, and has been used in a number
of commercial software products, including 3D animation packages such as
Maya and Blender, and 2D imaging programs like GIMP and Inkscape.

Please see the bibliography for a good selection of Python references. For
example, to install Python, see the video [YTPT] or go to the official Python
website http://www.python.org and follow the links. (I also recommend
installing IPython http://ipython.scipy.org/moin/.)
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2 What is Python?

Confucius said something like the following: “If your terms are not used
carefully then your words can be misinterpreted. If your words are misin-
terpreted then events can go wrong.” I am probably misquoting him, but
this was the idea which struck me when I heard this some time ago. That
idea resonates in both mathematics and in computer programming. State-
ments must be constructed from carefully defined terms with a clear and
unambiguous meaning, or things can go wrong.

Python is a computer programming language designed for readability and
functionality. One of Python’s design goals is that the meaning of the code
is easily understood because of the very clear syntax of the language. The
Python programming language has a specific syntax (form) and semantics
(meaning) which enables it to express computations and data manipulations
which can be performed by a computer.

Python’s implementation was started in 1989 by Guido van Rossum at
CWI (a national research institute in the Netherlands) as a successor to the
ABC programming language (an obscure language made more popular by the
fact that it motivated Python!). Van Rossum is Python’s principal author,
and his continuing central role in deciding the direction of Python is reflected
in the title given to him by the Python community, Benevolent Dictator for
Life (BDFL).

Python is an interpreted language, i.e., a programming language whose
programs are not directly executed by the host cpu but rather executed
(or“interpreted”) by a program known as an interpreter. The source code of
a Python program is translated or (partially) compiled to a “bytecode” form
of a Python “process virtual machine” language. This is in distinction to C
code which is compiled to cpu-machine code before runtime.

Python is a “dynamically typed” programming language. A programming
language is said to be dynamically typed, when the majority of its type
checking is performed at run-time as opposed to at compile-time. Dynam-
ically typed languages include JavaScript, Lisp, Lua, Objective-C, Python,
Ruby, and Tcl.

The data which a Python program deals with must be described precisely.
This description is referred to as the data type. In the case of Python, the
fact that Python is dynamically typed basically means that the interpreter
or compiler will figure out for you what type a variable is at run-time, so
you don’t have to declare variable types yourself. The fact that Python is
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Figure 2: 11th grade. (You may replace Perl by Python if you wish:-)
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/

“strongly typed” means1 that it will actually raise a run-time type error when
you have violated a Python grammar/syntax rule as to how types can be used
together in a statement.

Of course, just because Python is dynamically and strongly typed does
not mean you can neglect “type discipline”, that is carelessly mixing types
in your statements, hoping Python to figure out things.

Here is an example showing how Python can figure out the type from the
command at run-time.

Python

>>> a = 2012
>>> type(a)
<type ’int’>
>>> b = 2.011

1A caveat: This terminology is not universal. Some computer scientists say that a
strongly typed language must also be statically typed. A staticaly typed language is one
in which the variables themselves, and not just the values, have a fixed type associated to
them. Python is not statically typed.
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>>> type(b)
<type ’float’>

The Python compiler can also “coerce” types as needed. In this example
below, the interpreter coerces at runtime the integer a into a float so that it
can compute a+b:

Python

>>> c = a+b
>>> c
2014.011
>>> type(c)
<type ’float’>

However, if you try to so something illegal, it will raise a type error.
Python

>>> 3+"3"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’int’ and ’str’

Also, Python is an object-oriented language. Object-oriented program-
ming (OOP) uses “objects” - data structures consisting of datafields and
methods - to design computer programs. For example, a matrix could be the
“object” you want to write programs to deal with. You could define a class

of matrices and, for example, a method for that class might be addition (rep-
resenting ordinary addition of matrices). We will return to this example in
more detail later in the course.

2.1 Exercises

Exercise 2.1. Install Python [Py] or SymPy [C] or Sage [S] (which contains
them both, and more), or better yet, all three. (Don’t worry they will not
conflict with each other).

Create a “hello world!” program. Print out it and your output and hand
both in.
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3 I/O

This section is on very basic I/O (input-output), so skip if you know all you
need already.

How do you interface with

• Python,

• Sage (a great mathematical software system that includes Python and
has its own great interface),

• SymPy (another great mathematical software system that includes Python
and has its own great interface),

• IPython (a Python interface)?

This section tries to address these questions.
Another option is codenode which also runs Python in a nice graphical

interface (http://codenode.org/) or IDLE (another Python command-line
interface or CLI). Another way to learn about interfaces is to watch (for
example) J. Unpingco’s videos [Un] this.

3.1 Python interface

Python is available at hht://www.python.org/ and works equally well on all
computer platforms (MS Windows, Macs, Linux, etc.) Documentation for
Python can be found at that website but see the references in the bibliography
at the end as well.

The input prompt is >>>. Python does not print lines which are assign-
ments as output. If it does print an output, the output will appear on a line
without a >>>, as in the following example.

Python

>>> a = 3.1415
>>> print a
3.1415
>>> type(a)
<type ’float’>
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Python has several ways to read in files which are filled with legal Python
commands. One is the import command. This is really designed for Python
“modules” which have been placed in specific places in the Python directory
structure. Another is to “execute” the commands in the file, say myfile.py,
using the Python command: python myfile.py.

To have Python read in a file of data, or to write data to a file, you can
use the open command, which has both read and write methods. See the
Python tutorial, http://docs.python.org/tutorial/inputoutput.html ,
for more details. Since Sage has a more convenient mechanism for this (see
below), we shall not go into more details now.

3.2 Sage input/output

Sage is built on Python, so includes Python, but is designed for general pur-
pose mathematical computation (the lead developer of Sage is a number-
theorist). The interface to Sage is IPython, though it has been configured
in a customized way to that the prompt says sage: as opposed to In or
>>>. Other than this change in prompt, the command line interface to Sage
is similar to that if Python and SymPy.

Sage

sage: a = 3.1415
sage: print a
3.14150000000000
sage: type(a)
<type ’sage.rings.real_mpfr.RealLiteral’>

Sage also include SymPy and a nice graphical interface (http://www.sagenb.
org/), called the Sage notebook. The graphical interface to Sage works via
a web browser (firefox is recommended, but most others should also work).

13

http://docs.python.org/tutorial/inputoutput.html
http://www.sagenb.org/
http://www.sagenb.org/


Figure 3: Sage notebook interface . The default interface is Sage but you
can also select Python for example.

Figure 4: Sage notebook interface . You can plot two curves, each with
their own color, on the same graph by simply “adding” them.
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Figure 5: Sage notebook interface . Plots in 3 dimensions are also possible
in Sage (3d-curves, surfaces and parametric plots). Sage creates this plot of
the Rubik’s cube, “under the hood”, by “adding” lots of colored cubes.

See http://www.flickr.com/photos/sagescreenshots/ or the Sage web-
site for more screenshots.

You can try it out at http://www.sagenb.org/, but there are thousands
of other users around the world also using that system, so you might prefer
to install it yourself on your own computer.

Sage has a great way to read in files which are filled with legal Sage com-
mands - it’s called the attach command. Just type attach ’myfilename’

in either the command-line version or the notebook version of Sage.
Sage also has a great way to communicate your worksheets with a friend

(or any other Sage user):

• First, you can “publish” the worksheets on a webserver running Sage
and send your friend the link to your worksheet. (Go to http://

www.sagenb.org/, log in, and click on the “published” link for lots of
examples.) If your friend has an account on the same Sage server, then
all you need to do is “share” your saved worksheet with them (after
clicking “share” you will go to another screen at which you type your
friends account name into the box provided and click “invite”).
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• Second, you can download your worksheet to a file myworksheet.sws

(they always end in sws) and email that file to someone else. They can
either open it using a copy of Sage they have on their own computer, or
go to a public Sage server like http://www.sagenb.org/, log in, and
upload your file and open it that way.

3.3 SymPy interface

SymPy is also available for all platforms.
SymPy is built on Python, so includes Python, but is designed for people

who are mostly interested in applied mathematical computation (the lead
developer of SymPy is a geophysicist). The interface to SymPy is IPython,
which is a convenient and very popular Python shell/interface which has a
different (default) prompt for input. Each input prompt looks like In [n]:

as opposed to >>>.

SymPy

In [1]: a = 3.1415

In [2]: print a
------> print(a)
3.1415

In [3]: type(a)
Out[3]: <type ’float’>

More information about SymPy is available form its website http://www.

sympy.org/.

3.4 IPython interface

IPython is an excellent interface but it is visually the same as SymPy’s in-
terface, so there is nothing new to add. See htp://www.ipython.org/ (or
http://ipython.scipy.org/moin/) for more information about IPython.

4 Symbols used in Python

What are symbols such as ., :, ,, +, -, %, ^, *,\_, and &, used for in Python?
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4.1 period

The period . This symbol is used by Python is several different ways.

• It can be used as a separator in an import statement.

Python

>>> import math
>>> math.sqrt(2)
1.4142135623730951

Here math is a Python module (i.e., a file named math.py) somewhere
in your Python directory and sqrt is a function defined in that file.

• It can be used to separate a Python object from a method which applies
to that object. For example, sort is a method which applies to a
list; L.sort() (as opposed to the functional notation sort(L) ) is
the Python-ic, or object-oriented, notation for the sort command. In
other words, we often times (but not always, as the above sqrt example
showed) put the function behind the argument in Python.

Python

>>> L = [2,1,4,3]
>>> type(L)
<type ’list’>
>>> L.sort()
>>> L
[1, 2, 3, 4]

4.2 colon

The colon : is used in several ways. First, it appears at the end of each def

statement, for statement, if statement, and while statement, and signals
that an indentation must be used in the next block of statements. It is also
in the lambda statement. The colon is also used for manipulating lists. It
comprises the so-called slice notation for constructing sublists.

Python

>>> L = [1,2,3,4,5,6]
>>> L[2:5]
[3, 4, 5]
>>> L[:-1]
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[1, 2, 3, 4, 5]
>>> L[:5]
[1, 2, 3, 4, 5]
>>> L[2:]
[3, 4, 5, 6]

By the way, slicing also works for tuples and strings.

Python

>>> s = "123456"
>>> s[2:]
’3456’
>>> a = 1,2,3,4
>>> a[:2]
(1, 2)

I tried to think of a joke with “slicing”, “dicing”, “Veg-O-Matic” , and
“Python” in it but failed. If you figure one out, let me know! (I give a
link in case you are too young to remember the ads: remember the http:

//en.wikipedia.org/wiki/Veg-O-Matic.)

4.3 comma

The comma , is used in ways you expect. However, there is one nice and
perhaps unexpected feature.

Python

>>> a = 1,2,3,4
>>> a
(1, 2, 3, 4)
>>> a[-1]
4
>>> r,s,u,v = 5,6,7,8
>>> u
7
>>> r,s,u,v = (5,6,7,8)
>>> v
8
>>> (r,s,u,v) = (5,6,7,8)
>>> r
5

You can finally forget parentheses and not get yelled at by your mathematics
professor! In fact, if you actually do forget them, other programmers will
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think you are realy cool since they think that means you know about Python
tuple packing! Python adds parentheses in for you automatically, so don’t
forget to drop parentheses next time you are using tuples.
http://docs.python.org/tutorial/datastructures.html

4.4 plus

The plus + symbol is used of course in mathematical expressions. However,
you can also add lists, tuples and strings. For those objects, + acts by
concatenation.

Python

>>> words1 = "Don’t"
>>> words2 = "skip class tomorrow!"
>>> words1+" "+words2
"Don’t skip class tomorrow!"

Notice that the nested quote symbol in words1 doesn’t bother Python.
You can either use single quote symbols, ’, or double quote symbols " to
define a string, and nesting is allowed.

Concatenation works on tuples and lists as well.

Python

>>> a = 1,2,3,4
>>> a[2:]
(3, 4)
>>> a[:2]
(1, 2)
>>> a[2:]+a[:2]
(3, 4, 1, 2)
>>> a[:2]+a[2:]
(1, 2, 3, 4)

4.5 minus

The minus - sign is used of course in mathematical expressions. It is (unlike
+) also used for set objects. It is not used for lists, strings or tuples.

Python

>>> s1 = set([1,2,3])
>>> s2 = set([2,3,4])
>>> s1-s2
set([1])
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>>> s2-s1
set([4])

4.6 percent

The percent % symbol is used for modular arithmetic operations in Python.
If m and n are positive integers (say n > m) then n%m means the remainder
after dividing m into n. For example, dividing 5 into 12 leaves 2 as the
remainder. The remainder is an integer r satisfying 0 ≤ r < m.

Python

>>> 12%5
2
>>> 10%5
0

4.7 asterisk

The asterisk * is the symbol Python uses for multiplication of numbers. When
applied to lists or tuples or strings, it has another meaning.

Python

>>> L = [1,2,3]
>>> L*3
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> 2*L
[1, 2, 3, 1, 2, 3]
>>> s = "abc"
>>> s*4
’abcabcabcabc’
>>> a = (0)
>>> 10*a
0
>>> a = (0,)
>>> 10*a
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

4.8 superscript

The superscript ^ in Python is not used for mathematical exponentiation!
It is used as the Boolean operator “exclusive or” (which can get confusing
at times ...). Mathematically, it is used as the union of the set-theoretic
differences, i.e., the elements in exactly one set but not the other.
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Python

>>> s1 = set([1,2,3])
>>> s2 = set([2,3,4])
>>> s1-s2
set([1])
>>> s2-s1
set([4])
>>> s1ˆs2
set([1, 4])

Python does mathematical exponentiation using the double asterisk.
Python

>>> 2**3
8
>>> (-1)**2009
-1

4.9 underscore

The underscore _ is only used for variable, function, or module names. It
does not act as an operator.

4.10 ampersand

The ampersand & sign is used for intersection of set objects. It is not used
for lists, strings or tuples.

Python

>>> s1 = set([1,2,3])
>>> s2 = set([2,3,4])
>>> s1&s2
set([2, 3])

5 Data types

the lyf so short, the craft so long to lerne
- Chaucer (1340-1400)

21



Python data types are described in http://docs.python.org/library/

datatypes.html. Besides numerical data types, such as int (for integers)
and float (for reals), there are other types such as tuple and list. A more
complete list, with examples, is given below.

Type Description Syntax example
str An immutable sequence "string", """\python

of Unicode characters is great""", ’2012’
bytes An immutable sequence of bytes b’Some ASCII’
list Mutable, can contain mixed types [1.0, ’list’, True]
tuple Immutable, can contain mixed types (-1.0, ’tuple’, False)

set, Unordered, contains no duplicates set([1.2, ’xyz’, True]),
frozenset frozenset([4.0, ’abc’, True])
dict A mutable group of key {’key1’: 1.0, ’key2’: False}

and value pairs
int An immutable fixed precision 42

number of unlimited magnitude
float An immutable floating point 2.71828

number (system-defined precision)
complex An immutable complex number -3 + 1.4j

with real and imaginary parts
bool An immutable Boolean value True, False

5.1 Examples

Some examples illustrating some Python types.

Python

>>> type("123") ==str
True
>>> type(123) ==str
False

>>> type("123") ==int
False
>>> type(123) ==int
True

>>> type(123.1) == float
True
>>> type("123") == float
False
>>> type(123) == float
False
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The next examples illustrate syntax for Python tuples, lists and dictionaries.

Python

>>> type((1,2,3))==tuple
True
>>> type([1,2,3])==tuple
False
>>> type([1,2,3])==list
True
>>> type({1,2,3})==tuple # set-theoretic notation is not allowed

File "<stdin>", line 1
type({1,2,3})==tuple

ˆ
SyntaxError: invalid syntax
>>> type({1:"a",2:"b",3:"c"})==tuple
False
>>> type({1:"a",2:"b",3:"c"})
<type ’dict’>
>>> type({1:"a",2:"b",3:"c"})==dict
True

Note you get a syntax error when you try to enter illegal syntax (such as
set-theoretic notation to describe a set) into Python.

However, you can enter sets in Python, and you can efficiently test for
membership using the in operator.

Python

>>> S = set()
>>> S.add(1)
>>> S.add(2)
>>> S
set([1, 2])
>>> S.add(1)
>>> S
set([1, 2])
>>> 1 in S
True
>>> 2 in S
True
>>> 3 in S
False

Of course, you can perform typical set theoretic operations (e.g., union,
intersection, issubset, . . . ) as well.
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5.2 Unusual mathematical aspects of Python

Print the floating point version of 1/10.

Python

>>> 0.1
0.10000000000000001

There is an interesting story behind this “extra” trailing 1 displayed above.
Python is not trying to annoy you. It follows the IEEE 754 Floating-Point
standard (http://en.wikipedia.org/wiki/IEEE_754-2008): each (finite)
number is described by three integers: a sign (zero or one), s, a significand (or
‘mantissa’), c, and an exponent, q. The numerical value of a finite number is
(−1)s×c×bq, where b is the base (2 or 10). Python stores numbers internally
in base 2, where 1 ≤ c < 2 (recorded to only a certain amount of accuracy)
and, for 64-bit operating systems, −1022 ≤ q ≤ 1023. When you write 1/10
in base 2 and print the rounded off approximation, you get the funny decimal
expression above.

If that didn’t amuse you much, try the following.

Python

>>> x = 0.1
>>> x
0.10000000000000001
>>> s = 0
>>> print x
0.1
>>> for i in range(10): s+=x
...
>>> s
0.99999999999999989
>>> print s
1.0

The addition of errors creates a bigger error, though in the other direc-
tion! However, print does rounding, so the output of floats can have this
schizophrenic appearance.

This is one reason why using SymPy or Sage (both of which are based
on Python) is better because they replace Python’s built-in mathematical
functions with much better libraries. If you are unconvinced, look at the
following example.
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Python

>>> a = sqrt(2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ’sqrt’ is not defined
>>> a = math.sqrt(2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ’math’ is not defined
>>> import math
>>> a = math.sqrt(2)
>>> a*a
2.0000000000000004
>>> a*a == 2
False
>>> from math import sqrt
>>> a = sqrt(2)
>>> a
1.4142135623730951

Note the NameError exception raised form the command on the first line.
This is because the Pythonmath library (which contains the definition of the
sqrt function, among others) is not automatically loaded. You can import

the math library in several ways. If you use import math (which imports all
the mathematical functions defined in math), then you have to remember to
type math.sqrt instead of just sqrt. You can also only import the function
which you want to use (this is the recommended thing to do), using from

math import sqrt. However, this issue is is not a problem with SymPy or
Sage.

Sage

sage: a = sqrt(2)
sage: a
sqrt(2)
sage: RR(a)
1.41421356237310

SymPy

In [1]: a = sqrt(2)

In [2]: a
Out[2]:

___
\/ 2

In [3]: a.n()
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Out[3]: 1.41421356237310

And if you are not yet confused by Python’s handling of floats, look at the
“long” (L) representation of “large” integers (where “large” depends on your
computer architecture, or more precisely your operating system, probably
near 264 for most computers sold in 2009). The following example shows
that once you are an L, you stay in L (there is no getting out of L), even if
you are number 1!

Python

>>> 2**62
4611686018427387904
>>> 2**63
9223372036854775808L
>>> 2**63/2**63
1L

Note also that the syntax in the above example did not use ^, but rather **,
for exponentiation. That is because in Python ^ is reserved for the Boolean
and operator. Sage “preparses” ^ to mean exponentiation.

The Zen of Python, I
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
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6 Algorithmic terminology

Since we will be talking about programs implementing mathematical pro-
cedures, it is natural that we will need some technical terms to abstractly
describe features of those programs. For this reason, some really basic terms
of graph theory and complexity theory will be helpful.

6.1 Graph theory

Graph theory is a huge and interesting field in its own, and a lifetime of
courses could be taught on its various aspects and applications, so what we
introduce here will not even amount to an introduction.

Definition 1. A graph G = (V,E) is an ordered pair of sets, where V is a
set of vertices (possibly with weights attached) and E ⊆ V × V is a set of
edges (possibly with weights attached). We refer to V = V (G) as the vertex
set of G, and E = E(G) the edge set. The cardinality of V is called the order
of G, and |E| is called the size of G.

If e ∈ E is an edge and v ∈ V is a vertex on either “end” of e then we
say v is incident to e (or that e is incident to v). If u, v are vertices and
(u, v) ∈ E is an edge then u and v are called adjacent edges.

A loop is an edge of the form (v, v), for some v ∈ V . If the set E of edges
is allowed to be a multi-set and if multiple edges are allowed then the graph
is called a multi-graph. A graph with no multiple edges or loops is called a
simple graph.

There are various ways to describe a graph. Suppose you want into a
room with 9 other people. Some you shake hands with and some you don’t.
Construct a graph with 10 vertices, one for each person in the room, and draw
and edge between two vertices if the associated people have shaken hands.
Is there a “best” way to describe this graph? One way to describe the graph
is to list (i.e., order) the people in the room and (separately) record the set
of pairs of people who have shaken hands. This is equivalent to labeling the
people 1, 2, . . . , 10 and then constructing the 10 × 10 matrix A = (aij),
where aIj = 1 if person i shook hands with person j, and aij = 0 otherwise.
(This matrix A is called the “adjacency matrix’ of the graph.) Another way
to descibe the graph is to list the people in the room, but this time, attached
to each person, add the set of all people that person shook hands with. This
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way of describing a graph is related to the idea of a Python dictionary, and
is called the “dictionary description.”

Figure 6: A graph created using Sage.

If no weights on the vertices or edges are specified, we usually assume all
the weights are implicitly 1 and call the graph unweighted. A graph with
weights attached, especially with edge weights, is called a weighted graph.

One can label a graph by attaching labels to its vertices. If (v1, v2) ∈ E
is an edge of a graph G = (V,E), we say that v1 and v2 are adjacent vertices.
For ease of notation, we write the edge (v1, v2) as v1v2. The edge v1v2 is also
said to be incident with the vertices v1 and v2.

Definition 2. A directed edge is an edge such that one vertex incident with
it is designated as the head vertex and the other incident vertex is designated
as the tail vertex. A directed edge is said to be directed from its tail to its
head. A directed graph or digraph is a graph such that each of whose edges
is directed.

If u and v are two vertices in a graph G, a u-v walk is an alternating
sequence of vertices and edges starting with u and ending at v. Consecutive
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vertices and edges are incident. Notice that consecutive vertices in a walk
are adjacent to each other. One can think of vertices as destinations and
edges as footpaths, say. We are allowed to have repeated vertices and edges
in a walk. The number of edges in a walk is called its length.

A graph is connected if, for any distinct u, v ∈ V , there is a walk connect-
ing u to v.

A trail is a walk with no repeating edges. Nothing in the definition of a
trail restricts a trail from having repeated vertices. Where the start and end
vertices of a trail are the same, we say that the trail is a circuit, otherwise
known as a closed trail.

A walk with no repeating vertices is called a path. Without any repeating
vertices, a path cannot have repeating edges, hence a path is also a trail. A
path whose start and end vertices are the same is called a cycle.

A graph with no cycles is called a forest. A connected graph with no
cycles is called a tree. In other words, a tree is a connected forest.

Figure 7: A tree created using Sage.
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6.2 Complexity notation

There are many interesting (and very large) texts on complexity theory in
theoretical computer science. However, here we merely introduce some new
terms and notation to allow us to discuss how “complex” and algorithm or
computer program is.

There are many ways to model complexity and the discussion can easily
get diverted into technical issues in theoretical computer science. Our pur-
pose in this section is not to be complete, or really even to be rigorously
accurate, but merely to explain some notation and ideas that will help us
discuss abstract features of an algorithm to help us decide which algorithm
is better than another.

The first idea is simply a bit of technical notation which helps us compare
the rate of growth (or lack of it) of two functions.

Let f and g be two functions of the natural numbers to the positive reals.
We say f is big-O of g, written2

f(n) = O(g(n)), n→∞,

provided there are constant c > 0 and n0 > 0 such that

f(n) ≤ c · g(n),

for all n > n0. We say f is little-o of g, written

f(n) = o(g(n)), n→∞,

provided for every constant ε > 0 there is an n0 = n0(ε) > 0 (possibly
depending on ε) such that

f(n) ≤ ε · g(n),

for all n > n0. This condition is also expressed by saying

lim
n→∞

f(n)

g(n)
= 0.

2This notation is due to Edmund Landau a great German number theorists. This
notation can also be written using the Vinogradov notation f(n) � g(n), though the
“big-O” notation is much more common in computer science.
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We say f is big-theta of g, written3

f(n) = Θ(g(n)), n→∞,

provided both f(n) = O(g(n)) and g(n) = O(f(n)) hold.

Example 3. We have

n ln(n) = O(3n2 + 2n+ 10),

3n2 + 2n+ 10 = Θ(n2),

and
3n2 + 2n+ 10 = o(n3).

Figure 8: Travelling Salesman Problem .
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/

Here is a simple example of how this terminology could be used.

3This notation can also be written using the Vinogradov notation f(n) ≡ g(n) or
f(n) ≈ g(n), though the “big-theta” notation is much more common in computer science.
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Suppose that an algorithm takes as input an n-bit integer. We say that
algorithm has complexity f(n) if, for all inputs of size n, the worst-case
number of computations required to return the output is f(n).

Some algorithms have really terrible worst-case complexity estimates but
excellent “average-case complexity” estimates. This topic goes well beyond
this course, but the (excellent) lectures of the video-taped course [DL] are
a great place to learn more about these deeper aspects of the theory of
algorithms (see, for example, the lectures on sorting).

Example 4. Consider the extended Euclidean algorithm. This is an algo-
rithm for finding the greatest common divisor (GCD) of integers a and b
which also finds integers x and y satisfying

ax+ by = gcd(a, b).

For example, gcd(12, 15) = 3. Obviously, 15 − 12 = 3, so with a = 12 and
b = 15, we have x = −1 and y = 1. How do you compute these systematically
and quickly?

Python

def extended_gcd(a, b):
"""

EXAMPLES:
>>> extended_gcd(12,15)
(-1, 1)

"""
if a%b == 0:

return (0, 1)
else:

(x, y) = extended_gcd(b, a%b)
return (y, x-y*int(a/b))

Python

def extended_gcd(a, b):
"""

EXAMPLES:
>>> extended_gcd(12,15)
(-1, 1, 3)

"""
x = 0
lastx = 1
y = 1
lasty = 0
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while b <> 0:
quotient = int(a/b)
temp = b
b = a%b
a = temp
temp = x
x = lastx - quotient*x
lastx = temp
temp = y
y = lasty - quotient*y
lasty = temp

return (lastx, lasty, a)

Let us analyze the complexity of the second one. How many steps does
this take in the worst-case situation?

Suppose that a > b and that a is an n-bit integer (i.e., a ≤ 2n). The first
four statements are “initializations”, which are done just one time. However,
the nine statements inside the while loop are repeated over and over, as long
as b (which gets re-assigned each step of the loop) stays strictly positive.

Some notation will help us understand the steps better. Call (a0, b0) the
original values of (a, b). After the first step of the while loop, the values of
a and b get re-assigned. Call these updated values (a1, b1). After the second
step of the while loop, the values of a and b get re-assigned again. Call these
updated values (a2, b2). Similarly, after the k-th step, denote the updated
values of (a, b), by (ak, bk). After the first step, (a0, b0) = (a, b) is replaced
by (a1, b1) = (b, a (mod b)). Note that b > a/2 implies a (mod b) < a/2,
therefore we must have either 0 ≤ a1 ≤ a0/2 or 0 ≤ b1 ≤ a0/2 (or both). If
we repeat this while loop step again, then we see that 0 ≤ a2 ≤ a0/2 and
0 ≤ b2 ≤ a0/2. Every 2 steps of the while loop, we decrease the value of b by
a factor of 2. Therefore, this algorithm has complexity T (n) where

T (n) ≤ 4 + 18n = O(n).

Such an algorithm is called a linear time algorithm, since it complexity is
bounded by a polynomial in n of degree 1.

Excellence in any department can be attained only by the
labor of a lifetime; it is not to be purchased at a lesser price.
- Samuel Johnson (1709-1784)
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7 Keywords and reserved terms in Python

Three basic types of Python statements are

• conditionals (such as an “if-then” statement),

• assignments, and

• iteration (such as a for or while loop).

Python has set aside many commands to help you create such statements.
Python also protects you from accidentally over-writing these commands by
“reserving” these commands.

When you make an assignment in Python, such as a = 1, you add the
name (or “identifier” or “variable”) a to the Python namespace. You can
think of a namespace as a mapping from identifiers (i.e., a variable name
such as a) to Python objects (e.g., an integer such as 1). A name can be

• “local” (such as a in a = 1),

• “global” (such as the complex constant j representing
√
−1),

• “built-in” (such as abs, the absolute value function), or

• “reserved”, or a “keyword” (such as and - see the table below).

The terms below are reserved and cannot be re-assigned. For example,
trying to set and equal to 1 will result in a syntax error:

Python

>>> and = 1
File "<stdin>", line 1
and = 1

ˆ
SyntaxError: invalid syntax

Also, None cannot be re-assigned, though it is not considered a keyword.
Note: the Boolean values True and False are not keywords and in fact can
be re-assigned (though you probably should not do so).
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Keyword meaning
and boolean operator
as used with import and with

assert used for debugging
break used in a for/while loop
class creates a class

continue used in for/while loops
def defines a function or method
del deletes a reference to a object instance
elif used in if ... then statements
else used in if ... then statements

except used in if ... then statements
exec executes a system command

finally used in if ... then statements
for used in a for loop
from used in a for loop

global this is a (constant) data type
if used in if ... then statements

import loads a file of data or Python commands
in boolean operator on a set
is boolean operator

lambda defined a simple “one-liner” function
not boolean operator
or boolean operator

pass allows and if-then-elif statement to skip a case
print duh:-)
raise used for error messages
return output of a function

try allows you to test for an error
while used in a while loop
with used for ???
yield used for iterators and generators

The names in the table above are reserved for your protection. Even
though type names such as int, float, str, are not reserved variables that
does not mean you should reuse them.

Also, you cannot use operators (for example, -, +, \, or ^) in a variable
assignment. For example, my-variable = 1 is illegal.
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The keyword module:
Python

>>> import keyword
>>> keyword.kwlist()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’list’ object is not callable
>>> keyword.kwlist
[’and’, ’as’, ’assert’, ’break’, ’class’, ’continue’, ’def’, ’del’,
’elif’, ’else’, ’except’, ’exec’, ’finally’, ’for’, ’from’, ’global’,
’if’, ’import’, ’in’, ’is’, ’lambda’, ’not’, ’or’, ’pass’, ’print’,
’raise’,
’return’, ’try’, ’while’, ’with’, ’yield’]
>>>

7.1 Examples

and:
Python

>>> 0==1
False
>>> 0==1 and (1+1 == 2)
False
>>> 0+1==1 and (13%4 == 1)
True

Here n%m means “the remainder of n modulo m”, where m and n are integers
and m 6= 0.

as:
Python

>>> import numpy as np

The as keyword is used in import statements. The import statement
adds new commands to Python whcih were not loaded by default. Not loading
“espoteric” commands into Python has some advantages, such as making
various aspects of Python more efficient.

I probably don’t need to tell you that, in spite of what the xkcd cartoon
Figure 1 says, import antigravity will probably not make you fly!
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break

An example of break will appear after the for loop examples below.

A class examples (“borrowed” from Kirby Urber [U], a Python +math-
ematics educator from Portland Oregon):

class:
Python

thesuits = [’Hearts’,’Diamonds’,’Clubs’,’Spades’]
theranks = [’Ace’] + [str(v) for v in range(2,11)] + [’Jack’,’Queen’,’King’]
rank_values = list(zip(theranks, range(1,14)))

class Card:
"""
This class models a card from a standard deck of cards.
thesuits, theranks, rank_values are local constants

From an email of kirby urner <kirby.urner@gmail.com>
to edu-sig@python.org on Sun, Nov 1, 2009.

"""
def __init__(self, suit, rank_value ):

self.suit = suit
self.rank = rank_value[0]
self.value = rank_value[1]

def __lt__(self, other):
if self.value < other.value:

return True
else:

return False
def __gt__(self, other):

if self.value > other.value:
return True

else:
return False

def __eq__(self, other):
if self.value == other.value:

return True
else:

return False
def __repr__(self):

return "Card(%s, %s)"%(self.suit, (self.rank, self.value))
def __str__(self):

return "%s of %s"%(self.rank, self.suit)

Once read into Python, here is an example of its usage.

Python

>>> c1 = Card("Hearts", "Ace")
>>> c2 = Card("Spades", "King")
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>>> c1<c2
True
>>> c1; c2
Card(Hearts, (’A’, ’c’))
Card(Spades, (’K’, ’i’))
>>> print c1; print c2
A of Hearts
K of Spades

def:
Python

>>> def fcn(x):
... return x**2
...
>>> fcn(10)
100

The next simple example gives an interactive example requiring user input.

Python

>>> def hello():
... name = raw_input(’What is your name?\n’)
... print "Hello World! My name is %s"%name
...
>>> hello()
What is your name?
David
Hello World! My name is David
>>>

The examples above of def and class bring up an issue of how variables
are recalled in Python. This is briefly discussed in the next subsection.

The for loop construction is useful if you have a static (unchanging) list
you want to run through. The most common list used in for loops uses the
range construction. The Python expression

range(a,b)

returns the list of integers a, a+ 1, . . . , b− 1. The Python expression
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range(b)

returns the list of integers 0, 1, . . . , b− 1.

for/while:
Python

>>> for n in range(10,20):
... if not(n%4 == 2):
... print n
...
11
12
13
15
16
17
19
>>> [n for n in range(10,20) if not(n%4==2)]
[11, 12, 13, 15, 16, 17, 19]

The second example above is an illustration of list comprehension. List com-
prehension is a syntax for list construction which mimics how a mathemati-
cian might define a set.

The break command is used to break out of a for loop.

break:
Python

>>> for i in range(10):
... if i>5:
... break
... else:
... print i
...
0
1
2
3
4
5

for/while:
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Python

>>> L = range(10)
>>> counter = 1
>>> while 7 in L:
... if counter in L:
... L.remove(counter)
... print L
... counter = counter + 1
...
[0, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 3, 4, 5, 6, 7, 8, 9]
[0, 4, 5, 6, 7, 8, 9]
[0, 5, 6, 7, 8, 9]
[0, 6, 7, 8, 9]
[0, 7, 8, 9]
[0, 8, 9]

if/elif:
Python

>>> def f(x):
... if x>2 and x<5:
... return x
... elif x>5 and x<8:
... return 100+x
... else:
... return 1000+x
...
>>> f(0)
1000
>>> f(1)
1001
>>> f(3)
3
>>> f(5)
1005
>>> f(6)
106

When using while be very careful that you actually do have a terminating
condition in the loop!

lambda:
Python

>>> f = lambda x,y: x+y
>>> f(1,2)
3
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The command lambda allows you to create a small simple function which
does not have any local variables except those used to define the function.

raise:
Python

>>> def modulo10(n):
... if type(n)<>int:
... raise TypeError, ’Input must be an integer!’
... return n%10
...
>>> modulo10(2009)
9
>>> modulo10(2009.1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in modulo10

TypeError: Input must be an integer!

yield:
Python

>>> def pi_series():
... sum = 0
... i = 1.0; j = 1
... while(1):
... sum = sum + j/i
... yield 4*sum
... i = i + 2; j = j * -1
...
>>> pi_approx = pi_series()
>>> pi_approx.next()
4.0
>>> pi_approx.next()
2.666666666666667
>>> pi_approx.next()
3.4666666666666668
>>> pi_approx.next()
2.8952380952380956
>>> pi_approx.next()
3.3396825396825403
>>> pi_approx.next()
2.9760461760461765
>>> pi_approx.next()
3.2837384837384844
>>> pi_approx.next()
3.0170718170718178
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This function generates a series of approximations to π = 3.14159265 . . . .
For more examples, see for example the article [PG].

7.2 Basics on scopes and namespaces

We talked about namespaces in §7. Recall a namespace is a mapping from
variable names to objects. For example, a = 123 places the name a in the
namespace and “maps it” to the integer object 123 of type int.

The namespace containing the built-in names, such as the absolute value
function abs, is created when the Python interpreter starts up, and is never
deleted.

The local namespace for a function is created when the function is called.
For example, the following commands show that the name b is “local” to the
function f.

Python

>>> a = 1
>>> def f():
... a = 2
... b = 3
... print a,b
...
>>> f()
2 3
>>> a
1
>>> b
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ’b’ is not defined

In other words, the value of a assigned in the command a = 1 is not changed
by calling the function f. The assignment a = 2 inside the function definition
cannot be accessed outside the function. This is an example of a “scoping
rule” – a process the Python interpreter follows to try to determine the value
of a variable name assignment.

Scoping rules for Python classes are similar to functions. That is to say,
variable names declared inside a class are local to that class. The Python
tutorial has more on the subtle issues of scoping rules and namespaces.
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7.3 Lists and dictionaries

These are similar data types in some ways, so we clump them together into
one section.

7.4 Lists

Lists are one of the most important data types. Lists are “mutable” in
the sense that you can change their values (as is illustrated below by the
command B[0] = 1). Python has a lot of functions for manipulating and
computing with lists.

Python

sage: A = [2, 3, 5, 7, 11]
sage: B = A
sage: C = copy(A)
sage: B[0] = 1
sage: A; B; C
[1, 3, 5, 7, 11]
[1, 3, 5, 7, 11]
[2, 3, 5, 7, 11]

Note C, the copy, was left alone in the reassignment.
Python

sage: A = [2, 3, [5, 7], 11, 13]
sage: B = A
sage: C = copy(A)
sage: C[2] = 1
sage: A; B; C
[2, 3, [5, 7], 11, 13]
[2, 3, [5, 7], 11, 13]
[2, 3, 1, 11, 13]

Here again, C, the copy, was the only odd man out in the reassignment.
An analogy: A is a list of houses on a block, represented by their street

addresses. B is a copy of these addresses. C is a snapshot of the houses. If
you change one of the addresses on the block B, you change that in A but not
C. If you use GIMP or Photoshop to modify one of the houses depicted in C,
you of course do not change what is actually on the block in A or B. Does
this seem like a reasonable analogy?
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It is not a correct analogy! The example below suggests a deeper be-
haviour, indicating that this analogy is wrong!

Python

sage: A = [2, 3, [5, 7], 11, 13]
sage: B = A
sage: C = copy(A)
sage: C[2][1] = 1
sage: A; B; C
[2, 3, [5, 1], 11, 13]
[2, 3, [5, 1], 11, 13]
[2, 3, [5, 1], 11, 13]

Here C’s reassignment changes everything!
This indicates that the “snapshot” analogy is missing the key facts. In

fact, the copy C of a list A is not really a snapshop but a recording of some
memory address information which points to data at those locations in A. If
you change the addresses in C, you will not change what is actually stored in
A. Accessing a sublist of a list is looking at the data stored at the location
represented by that entry in the list. Therefore, changing a sublist entry of
the copy changes the entries of the originals too. If you represent each house
as its list of family members, so A is a list of lists, then the copy command
will accurately copy family member, and so if you change elements in one
copy of the sublist, you change those elements in all sublists.

7.4.1 Dictionaries

Dictionaries, like lists, are mutable. A Python dictionary is an unordered
set of key:value pairs, where the keys are unique. A pair of braces {}
creates an empty dictionary; placing a comma-separated list of key:value
pairs initializes the dictionary.

Python

>>> d = {1:"a", 2:"b"}
>>> d
{1: ’a’, 2: ’b’}
>>> print d
{1: ’a’, 2: ’b’}
>>> d[1]
’a’
>>> d[1] = 3
>>> d
{1: 3, 2: ’b’}
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>>> d.keys()
[1, 2]
>>> d.values()
[3, ’b’]

One difference with lists is that dictionaries do not have an ordering. They
are indexed by the “keys” (as opposed to the integers 0, 1, . . . , m− 1, for a
list of length m). In fact, tere is not much difference between the dictionary
d1 and the list d2 below.

Python

>>> d1 = {0:"a", 1:"b", 2:"c"}
>>> d2 = ["a", "b", "c"]

Dictionaries can be much more useful than lists. For example, suppose you
wanted to store all your friends’ cell-phone numbers in a file. You could
create a list of pairs, (name of friend, phone number), but once this list
becomes long enough searching this list for a specific phone number will get
time-consuming. Better would be if you could index the list by your friend’s
name. This is precisely what a dictionary does.

The following examples illustrate how to create a dictionary in Sage, get
access to entries, get a list of the keys and values, etc.

Sage

sage: d = {’sage’:’math’, 1:[1,2,3]}; d
{1: [1, 2, 3], ’sage’: ’math’}
sage: d[’sage’]
’math’
sage: d[1]
[1, 2, 3]
sage: d.keys()
[1, ’sage’]
sage: d.values()
[[1, 2, 3], ’math’]
sage: d.has_key(’sage’)
True
sage: ’sage’ in d
True

You can delete entries from the dictionary using the del keyword.
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Sage

sage: del d[1]
sage: d
{’sage’: ’math’}

You can also create a dictionary by typing dict(v) where v is a list of
pairs:

Sage

sage: dict( [(1, [1,2,3]), (’sage’, ’math’)])
{1: [1, 2, 3], ’sage’: ’math’}
sage: dict( [(x, xˆ2) for x in [1..5]] )
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

You can also make a dictionary from a “generator expression” (we have
not discussed these yet).

Sage

sage: dict( (x, xˆ2) for x in [1..5] )
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

In truth, a dictionary is very much like a list inside the Python interpreter
on your computer. However, dictionaries are “hashed” objects which allow
for fast searching.

Warning: Dictionary keys must be hashable The keys k of a dictionary
must be hashable, which means that calling hash(k) doesn’t result in an
error. Some Python objects are hashable and some are not. Usually objects
that can’t be changed are hashable, whereas objects that can be changed
are not hashable, since the hash of the object would change, which would
totally devastate most algorithms that use hashes. In particular, numbers
and strings are hashable, as are tuples of hashable objects, but lists are never
hashable.

We hash the string ’sage’, which works since one cannot change strings.

Sage

sage: hash(’sage’)
-596024308
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The list v = [1,2] is not hashable, since v can be changed by deleting,
appending, or modifying an entry. Because [1,2] is not hashable it can’t be
used as a key for a dictionary.

Sage

sage: hash([1,2])
Traceback (most recent call last):
...
TypeError: list objects are unhashable
sage: d = {[1,2]: 5}
Traceback (most recent call last):
...
TypeError: list objects are unhashable
\end{verbatim}
However the tuple {\tt (1,2)} is hashable and can hence be used as a
dictionary key.
\begin{verbatim}
sage: hash( (1,2) )
1299869600
sage: d = {(1,2): 5}

Hashing goes well beyong the subject of this course, but see the course
[DL] for more details if you are interested.

7.5 Tuples, strings

Both of these are non-mutable, which makes them faster to store and ma-
nipulate in Python.

Lists and dictionaries are useful, but they are “mutable” which means
their values can be changed. There are circumstances where you do not want
the user to be allowed to change values.

For example, a linear error-correcting code is simply a finite dimensional
vector space over a finite field with a fixed basis. Since the basis is fixed,
we may want to use tuples instead of lists for them, as tuples are immutable
objects.

Tuples, like lists, can be “added”: the + symbol represents concatenation.
Also, like lists, tuples can be multiplied by a natural number for iterated
concatenation. However, as stated above, an entry (or “item”) in a tuple
cannot be re-assigned.

Python

>>> a = (1,2,3)
>>> b = (0,)*3
>>> b
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(0, 0, 0)
>>> a+b
(1, 2, 3, 0, 0, 0)
>>> a[0]
1
>>> a[0] = 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support item assignment

Strings are similar to tuples in many ways.

Python

>>> a = "123"
>>> b = "hello world! "
>>> a[1]
’2’
>>> b*2
’hello world! hello world! ’
>>> b[0] = "H"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’str’ object does not support item assignment
>>> b+a
’hello world! 123’
>>> a+b
’123hello world! ’

Note that addition is “non-commutative”: a+b 6= b+a.
There are lots of very useful string-manipulation functions in Python. For

example, you can replace any substring using the replace method. You can
find the location of (the first occurrence of) any substring using the index

method.
Python

>>> a = "123"
>>> b = "hello world! "
>>> b.replace("h","H")
’Hello world! ’
>>> b
’hello world! ’
>>> b.index("o")
4
>>> b.index("w")
6
>>> b.replace("! ","")
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’hello world’
>>> b.replace("! ","").capitalize().replace("w","W")
’Hello World’

Since strings are very important data objects, they are covered much more
extensively in other places. Please see any textbook on Python for more
examples.

7.5.1 Sets

Python has a set datatype, which behaves much like the keys of a dictio-
nary. A set is an unordered collection of unique hashable objects. Sets are
incredibly useful when you want to quickly eliminate duplicates, do set theo-
retic operations (union, intersection, etc.), and tell whether or not an objects
belongs to some collection.

You create sets from the other Python data structures such as lists, tuples,
and strings. For example:

Python

>>> set( (1,2,1,5,1,1) )
set([1, 2, 5])
>>> a = set(’abracadabra’); b = set(’alacazam’)
>>> a
set([’a’, ’r’, ’b’, ’c’, ’d’])
>>> b
set([’a’, ’c’, ’z’, ’m’, ’l’])

There are also many handy operations on sets.
Python

>>> a - b # letters in a but not in b
set([’r’, ’b’, ’d’])
>>> a | b # letters in either a or b
set([’a’, ’c’, ’b’, ’d’, ’m’, ’l’, ’r’, ’z’])
>>> a & b # letters in both a and b
set([’a’, ’c’])

If you have a big list v and want to repeatedly check whether various ele-
ments x are in v, you could write x in v. This would work. Unfortunately,
it would be really slow, since every command x in v requires linearly search-
ing through for x. A much better option is to create w = set(v) and type
x in w, which is very fast. We use Sage’s time function to check this.
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Sage

sage: v = range(10ˆ6)
sage: time 10ˆ5 in v
True
CPU time: 0.16 s, Wall time: 0.18 s
sage: time w = set(v)
CPU time: 0.12 s, Wall time: 0.12 s
sage: time 10ˆ5 in w
True
CPU time: 0.00 s, Wall time: 0.00 s

You see searching a list of length 1 million takes some time, but searching a
(hashable) set is done essentially instantly.

The Zen of Python, II
In the face of ambiguity, refuse the temptation to guess.
There should be one - and preferably only one - obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea - let’s do more of those!

- Tim Peters (Long time Pythoneer)

8 Iterations and recursion

Neither of these are data types but they are closely connected with some
useful Python constructions. Also, they “codify” very common constructions
in mathematics.

8.1 Repeated squaring algorithm

The basic idea is very simple. For input you have a number x and an integer
n > 0. Assume x is fixed, so we are really only interested in an efficient
algorithm as a function of n.
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We start with an example.

Example 5. Compute x13.
First compute x (0 steps), x4 (2 steps, namely x2 = x ·x and x4 = x2 ·x2),

and x8 (2 steps, namely x4 and x8 = x4 · x4). Now (3 more steps)

x13 = x · x · x4 · x8.

In general, we can compute xn in about O(log n) steps. Here is an imple-
mentation in Python.

Python

def power(x,n):
""
INPUT:

x - a number
n - an integer > 0

OUTPUT:
xˆn

EXAMPLES:
>>> power(3,13)
1594323
>>> 3**(13)
1594323

""
if n == 1:

return x
if n%2 == 0:

return power(x, int(n/2))**2
if n%2 == 1:

return x*power(x, int((n-1)/2))**2

Very efficient! You can see that we are, at each step, roughly speaking, divid-
ing the exponent by 2. So the algorithm roughly has worst-case complexity
2 log2(n).

For more variations on this idea, see for example http://en.wikipedia.
org/wiki/Exponentiation_by_squaring.

8.2 The Tower of Hanoi

The “classic” Tower of Hanoi consists of p = 3 posts or pegs, and a number
d of disks of different sizes which can slide onto any post. The puzzle starts
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with the disks in a neat stack in ascending order of size on one post, the
smallest at the top, thus making a conical shape4 This can be generalized to
any number of pegs greater than 2, if desired.

The objective of the puzzle is to move the entire stack to another rod,
obeying the following rules:

• Only one disk may be moved at a time.

• Each move consists of taking the upper disk from one of the posts and
sliding it onto another one, on top of the other disks that may already
be present on that post.

• No disk may be placed on top of a smaller disk.

The Tower of Hanoi Problem is the problem of designing a general algo-
rithm which describes how to move d discs from one post to another. We
may also ask how many steps are needed for the shorted possible solution.
We many also ask for an algorithm to compute which disc should be moved
at a given step in a shortest possible algorithm (without demanding to know
which post to place it on).

The following procedure demonstrates a recursive approach to solving the
classic 3-post problem.

• label the pegs A, B, C (we may want to relabel these to affect the
recursive procedure)

• let d be the total number of discs, and label the discs from 1 (smallest)
to d (largest).

To move d discs from peg A to peg C:

(1) move d− 1 discs from A to B. This leaves disc d alone on peg A.

(2) move disc d from A to C

(3) move d− 1 discs from B to C so they sit on disc d.

4For example, see the Wikipedia page http://en.wikipedia.org/wiki/Tower of Hanoi
for more details and references.
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The above is a recursive algorithm: to carry out steps (1) and (3), apply
the same algorithm again for d − 1 discs. The entire procedure is a finite
number of steps, since at some point the algorithm will be required for d = 1.
This step, moving a single disc from one peg to another, is trivial.

Here is Python code implementing this algorithm.

Python

def Hanoi(n, A, C, B):
if n != 0:

Hanoi(n - 1, A, B, C)
print ’Move the plate from’, A, ’to’, C
Hanoi(n - 1, B, C, A)

There are many other ways to approach this problem.

Exercise 8.1. Let Tn denote the number of step it takes to solve the 3-post
Tower of Hanoi, if you make the best move possibly each time.

• Explain why Tn = 2Tn−1 + 1 using only the definition of the Tower of
Hanoi puzzle.

• Use this and mathematical induction to show Tn = 2n − 1.

If there are m posts and d discs, we label the posts 0, 1, . . . , m − 1 in
some fixed manner, and we label the discs 1, 2, . . . , d in order of decreasing
radius. It is hopefully self-evident that you can uniquely represent a given
“state” of the puzzle by a d-tuple of the form (p1, p2, . . . , pd), where pi is the
post number that disc i is on (where 0 ≤ pi ≤ m− 1, for all i). Indeed, since
the discs have a fixed ordering (smallest to biggest, top to bottom) on each
post, this d-tuple uniquely specifies a puzzle state. In particular, there are
md different possible puzzle states.

Define a graph Γ to have vertices consisting of all md such puzzle states.
These vertices can be represented by an element in the Cartesian product
V = (Z/mZ)d. We connect two vertices v, w in V by an edge if and ony if it
is possible to go from the state represented by v to the state represented by
w using a legal disc move. (in this case, we say that v is a neighbor of w.) It
is not hard to see that the only way two elements of V = (Z/mZ)d can be
connected by an edge is if the d-tuple v is the same as the d-tuple w in every
coordinate except one.
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Figure 9: Sierpinski Valentine .
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/

Example 6. For instance, if m = 3 and d = 2 then (2, 0) simply means that
the biggest disc is on post 2 and the other (smaller) disc is on post 0.

Here is one possible solution in this case. Suppose we start with (2, 2)
(both discs are on post 2).

• First move: place the smaller disc to post 1 (this gives us (2, 1)).

• Second move: place the bigger disc on post 0 (giving us (0, 1)).

• Third and final move: place the smaller disc on post 0 (this gives us
(0, 0)).

See the “bottom side” of the triangle in Figure 10, (made using a graph-
theoretic construction implemented by Robert Beezer in Sage).

In fact, the above Hanoi program gives this output:
Python

>>> Hanoi(2, "2", "0", "1")
Move the plate from 2 to 1
Move the plate from 2 to 0
Move the plate from 1 to 0

54



Figure 10: Tower of Hanoi graph for 3 posts and 2 discs.

Example 7. For instance, if m = d = 3 then (2, 2, 2) simply means that all
three discs are on the same post (of course, the smallest one being on top),
namely on the post labeled as 2. See Figure 11, which used Sage as in the
example above, for the possible solutions to this puzzle.

See Figure 12 for the example of the unlabeled graph representing the
states of the Tower of Hanoi puzzle with 3 posts and 6 discs. Notice the
similarity to the Sierpinski triangle (see for example, http://en.wikipedia.
org/wiki/Sierpinski_triangle)!

See Figure 13 for the example of the unlabeled graph representing the
states of the Tower of Hanoi puzzle with 5 posts and 3 discs.

8.3 Fibonacci numbers

The Fibonacci sequence is named after Leonardo of Pisa, known as Fibonacci,
who mentioned them in a book he wrote in the 1200’s. Apparently they were
known to Indian mathematicians centuries before.

He considers the growth of a rabbit population,where

• In the 0-th month, there is one pair of rabbits.

• In the first month, the first pair gives birth to another pair.
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Figure 11: Tower of Hanoi graph for 3 posts and 3 discs.

• In the second month, both pairs of rabbits have another pair, and the
first pair dies.

• In general, each pair of rabbits has 2 pairs in its lifetime, and dies.

Let the population at month n be fn. At this time, only rabbits who were
alive at month n−2 are fertile and produce offspring, so fn−2 pairs are added
to the current population of fn−1. Thus the total is fn = fn−1 + fn−2. The
recursion equation

fn = fn−1 + fn−2, n > 1, f1 = 1, f0 = 0,

defined the Fibonacci sequence. The terms of the sequence are Fibonacci
numbers. (See also Example 37 below.)

8.3.1 The recursive algorithm

There is an exponential time algorithm to compute the Fibonacci numbers.

56



Figure 12: Unlabeled Tower of Hanoi graph for 3 posts and 6 discs.

Python

def my_fibonacci(n):
"""
This is really really slow.
"""
if n==0:

return 0
elif n==1:

return 1
else:

return my_fibonacci(n-1)+my_fibonacci(n-2)

How many steps does my_fibonacci(n) take?
In fact, the “complexity” of this algorithm to compute fn is about equal

to fn (which is about φn, where φ = 1+
√

5+1
2

is the golden ratio.). The reason
why is that the number of steps can be computed as being the number of
“f1”s and “f2”s which occur in the ultimate decomposition of fn obtained
by re-iterating the recurrence fn = fn−1 + fn−2. Since f1 = 1 and f2 = 1,

57



Figure 13: Unlabeled Tower of Hanoi graph for 5 posts and 3 discs.

this number is equal to simply fn itself.

8.3.2 The matrix-theoretic algorithm

There is a sublinear algorithm to replace this exponential algorithm.
Consider the matrix

F =

(
0 1
1 1

)
.
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Lemma 8. For each n > 0, we have F n =

(
fn−1 fn
fn fn+1

)
.

proof: The case n = 1 follows from the definition. Assume that F k =(
fk−1 fk
fk fk+1

)
, for some k > 1. We have

F k+1 =

(
fk−1 fk
fk fk+1

)
·
(

0 1
1 1

)
=

(
fk−1 fk−1 + fk
fk+1 fk + fk+1

)
=

(
fk−1 fk+1

fk+1 fk+2

)
.

The claim follows by induction. �
We can use the repeated squaring algorithm (§8.1) to compute F n. Since

this has complexity, O(log n), this algorithm for computing fn has complexity
O(log n).

8.3.3 Exercises

The sequence of Lucas numbers {Ln} begins:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . ,

and in general are defined by Ln = Ln−1 +Ln−2, for n > 1 (L0 = 2, L1 = 1).
This sequence is named after the mathematician Francois Édouard Anatole
Lucas (1842-1891), A Lucas prime is a Lucas number that is prime. The first
few Lucas primes are

2, 3, 7, 11, 29, 47, . . . .

It is known that Ln is prime implies n is prime, except for the cases n = 0,
4, 8, 16.. The converse is false, however. (I’ve read the paper at one point
many years ago but have forgotten the details now.)

Exercise 8.2. Modify one of the Fibonacci programs above and create pro-
grams to generate the Lucas numbers. Remember to comment your program
and put it in the format given in §9.4.

8.4 Collatz conjecture

The Collatz conjecture is an unsolved conjecture in mathematics, named
after Lothar Collatz. The conjecture is also known as the 3n+ 1 conjecture,
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or as the Syracuse problem, among others. Start with any integer n greater
than 1. If n is even, we halve it n/2, else we “triple it plus one” (3n + 1).
According to the conjecture, for all positive numbers this process eventually
converges to 1. For details, see for example http://en.wikipedia.org/

wiki/Collatz_conjecture.
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Figure 14: The Collatz Conjecture.
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/

Exercise 8.3. Write a Python program which tests the Collatz conjecture
for all numbers n < 100. You program should have input n and output the
number of steps the program takes to “converge” to 1.
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9 Programming lessons

Try this in a Python interactive interpreter:
>>> import this

Programming is hard. You cannot fool a computer with faulty logic. You
cannot hide missing details hoping your teacher is too tired of grading to
notice. This time your teacher is the computer and it never tires. Ever. If
your program does not work, you know it because your computer returns
something unexpected.

An important aspect of programming is the ability to “abstract” and
“modularize” your programs. By “abstract’, I mean to determine what the
essential aspects of your program are and possibly to see a pattern in some-
thing you or someone else has already done. This helps you avoid “reinventing
the wheel.” By “modularize”, i.e., “decomposibility”, I mean you should see
what elements in your program are general and transportable to other pro-
grams then then separating those out as separate entities and writing them
as separate subprograms5.

Another part (very important, in my opinion) of programming is style
conventions. Please read and follow the style conventions of Python pro-
gramming described in http://www.python.org/dev/peps/pep-0008/ (for
the actual Python code) and http://www.python.org/dev/peps/pep-0257/

(for the comments and docstrings).

9.1 Style

In general, you should read the Style Guide for Python Code http://www.

python.org/dev/peps/pep-0008/, but here are some starter suggestions.
Whitespace usage:

• 4 spaces per indentation level.

• No tabs. In particular, never mix tabs and spaces.

5Note: In Python, the word “module” has a specific technical meaning which is separate
(though closely related) to what I am talking about here.
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• One blank line between functions.

• Two blank lines between classes.

• Add a space after “,” in dicts, lists, tuples, and argument lists, and
after “:” in dicts, but not before.

• Put spaces around assignments and comparisons (except in argument
lists).

• No spaces just inside parentheses or just before argument lists.

Naming conventions:

• joined lower for functions, methods, attributes.

• joined lower or ALL CAPS for constants (local, resp., global).

• StudlyCaps for classes.

• camelCase only to conform to pre-existing conventions.

• Attributes: interface, internal, private

9.2 Programming defensively

“Program defensively” (see MIT lecture 3 [GG]):

• If you write a program, expect your users to enter input other than
what you want. For example, if you expect an integer input, assume
they enter a float or string and anticipate that (check for input type,
for example).

• Assume your program contains mistakes. Include enough tests to catch
those mistakes before they catch you.

• Generally, assume people make mistakes (you the programmer, your
users) and try to build in error-checking ingredients into your program.
Spend time on type-checking and testing “corner cases” now so you
don’t waste time later.
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• Add tests in the docstrings in several cases where you know the input
and output. Add tests for the different types of options allowed for any
optional keywords you have.

If it helps, think of how angry you will be at yourself if you write a poorly
documented program which has a mistake (a “bug”, as Grace Hopper phrased
it6 ; see also Figure 15 for a story behind this terminology) which you can’t
figure out. Trust me, someone else who wants to use your code and notices
the bug, then tries reading your undocumented code to “debug” it will be
even angrier. Please try to spend time and care and thought into carefully
writing and commenting/documenting your code.

There is an article Docstring Conventions, http://www.python.org/

dev/peps/pep-0257/, with helpful suggestions and conventions (see also
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.

html). Here are some starter suggestions.
Docstrings explain how to use code, and are for the users of your code.

Explain the purpose of the function. Describe the parameters expected and
the return values.

For example, see the docstring to the inverse image function in Example
10.

Comments explain why your function does what it does. It is for the
maintainers of your code (and, yes, you must always write code with the
assumption that it will be maintained by someone else).

For example, # !!! FIX: This is a hack is a comment7.

9.3 Debugging

When you have eliminated the impossible, whatever remains,
however improbable, must be the truth.

A. Conan Doyle, The Sign of Four

6See http://en.wikipedia.org/wiki/Grace Hopper for details on her interesting
life.)

7By the way, a “hack”, or “kludge”, refers to a programming trick which does not
follow expected style or method. Typically it involves a clever or quick fix to a computer
programming problem which is perceived to be a clumsy solution.
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There are several tools available for Python debugging. Presumably you
can find them by “googling” but the simplest tools, in my opinion, are also
the best tools:

• Use the print statement liberally to print out what you think a par-
ticular step in your program should produce.

• Use basic logic and read your code line-by-line to try to isolate the
issue. Try to reduce the “search space” you need to test using print

statements by isolating where you think the bug most likely will be.

• Read the Python error message (i.e., the “traceback”), if one is pro-
duced, and use it to further isolate the bug.

• Be systematic. Never search for the bug in your program by randomly
selecting a line and checking that line, then randomly selecting another
line . . . .

• Apply the “scientific method”:

– Study the available data (output of tests, print statements, and
reading your program.

– Think up a hypothesis consistent with all your data. (For example,
you might hypothesize that the bug is in a certain section of your
program.)

– Design an experiment which tests and can possibly refute your
hypothesis. Think about the expected result of your experiment.

– If your hypothesis leads to the location of the bug, next move
to fixing your bug. If not, then you should modify suitably your
hypothesis or experiment, or both, and repeat the process.

If you use the Sage command line, there is a built-in debugger pdb which
you can “turn on” if desired. For more on the pdb commands, see the Sage tu-
torial, http://www.sagemath.org/doc/tutorial/interactive_shell.html.
For pure Python, see for example, the blog post [F] or the section of William
Stein’s mathematical computation course [St] on debugging. In fact, this is
what William Stein says about using the print statement for debugging.
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1. Put print 0, print 1, print 2, etc., at various points
in your code. This will show you were something crashes
or some other weird behavior happens. Sprinkle in more
print statements until you narrow down exactly where the
problem occurs.

2. Print the values of variables at key spots in your code.

3. Print other state information about Sage at key spots in your
code, e.g., cputime, walltime, get memory usage, etc.

The main key to using the above is to think deductively and
carefully about what you are doing, and hopefully isolate the
problem. Also, with experience you’ll recognize which problems
are best tracked down using print statements, and which are not.

These suggestions can also be useful to simply tell when certain parts of your
code are taking up more time than you expected (so-called “bottlenecks”).
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Figure 15: First computer “bug” (a moth jamming a relay switch). This was
a page in the logbook of Grace Hopper describing a program running on the
Mark II computer at Harvard University computing arc tangents, probably
to be used for ballistic tables for WWII. (Incidentally, 1945 is a typo for 1947
according to some historians.)

Example 9. In the hope that it may help someone who has not every de-
bugged anything before, here is a very simple example.
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Suppose you are trying to write a program to multiply two matrices.

Python

def mat_mult(A, B):
"""
Multiplies two 2x2 matrices in the usual way

INPUT:
A - the 1st 2x2 matrix
B - the 2nd 2x2 matrix

OUTPUT:
the 2x2 matrix AB

EXAMPLES:
>>> my_function(1,2) # for a Python program
<the output>

AUTHOR(S):
<your name>

TODO:
Implement Strassen’s algorithm [1] since it
uses 7 multiplications instaead of 8!

REFERENCES:
[1] http://en.wikipedia.org/wiki/Strassen_algorithm

"""
a1 = A[0][0]
b1 = A[0][1]
c1 = A[1][0]
d1 = A[1][1]
a2 = B[0][0]
b2 = B[0][1]
c2 = B[1][0]
d2 = B[1][1]
a3 = a1*a2+b1*c2
b3 = a1*b2+b1*d2
c3 = c1*a2-d1*c2
d3 = c1*b2+d1*d2
return [[a3,b3],[c3,d3]]

This is actually wrong. In fact, if you read this into the Python interpreter
and try an exampl, you get the following output.

Python

>>> A = [[1,2],[3,4]]; B = [[5,6],[7,8]]
>>> mat_mult(A, B)
[[19, 22], [-13, 50]]
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This is clearly nonsense, since the product of matrices having positive entries
must again be positive. Besides, an easy computation by hand tells us that(

1 2
3 4

)
·
(

5 6
7 8

)
=

(
19 22
43 50

)
.

(I’m sure you see that in this extremely example there is an error in the
computation of c3, but suppose for now you don’t see that.)

To debug this, let us enter print statements in some key lines. In this
example, lets see if the mistake occurs in the computation of a3, b3, c3, or
d3.

Python

def mat_mult(A, B):
"""
Multiplies two 2x2 matrices in the usual way

INPUT:
A - the 1st 2x2 matrix
B - the 2nd 2x2 matrix

OUTPUT:
the 2x2 matrix AB

EXAMPLES:
>>> my_function(1,2) # for a Python program
<the output>

AUTHOR(S):
<your name>

TODO:
Implement Strassen’s algorithm [1] since it
uses 7 multiplications instaead of 8!

REFERENCES:
[1] http://en.wikipedia.org/wiki/Strassen_algorithm

"""
a1 = A[0][0]
b1 = A[0][1]
c1 = A[1][0]
d1 = A[1][1]
a2 = B[0][0]
b2 = B[0][1]
c2 = B[1][0]
d2 = B[1][1]
a3 = a1*a2+b1*c2
print ’a3 = ’, a3
b3 = a1*b2+b1*d2
print ’b3 = ’,b3
c3 = c1*a2-d1*c2
print ’c3 = ’,c3
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d3 = c1*b2+d1*d2
print ’d3 =’, d3
return [[a3,b3],[c3,d3]]

Read this into Python again. The same input this time yields the following
output.

Python

>>> A = [[1,2],[3,4]]; B = [[5,6],[7,8]]
>>> mat_mult(A, B)
a3 = 19
b3 = 22
c3 = -13
d3 = 50
[[19, 22], [-13, 50]]

Now you see that the line computing c3 has a bug. Opps - there is a -

instead of a + there! We’ve located our bug. The correct program, with a
correct example, is the following one.

Python

def mat_mult(A, B):
"""
Multiplies two 2x2 matrices in the usual way

INPUT:
A - the 1st 2x2 matrix
B - the 2nd 2x2 matrix

OUTPUT:
the 2x2 matrix AB

EXAMPLES:
>>> A = [[1,2],[3,4]]; B = [[5,6],[7,8]]
>>> mat_mult(A, B)
[[19, 22], [43, 50]]
>>> A = [[2,0],[0,3]]; B = [[4,0],[0,5]]
>>> mat_mult(A, B)
[[8, 0], [0, 15]]

AUTHOR(S):
<your name>

TODO:
Implement Strassen’s algorithm [1] since it
uses 7 multiplications instaead of 8!
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REFERENCES:
[1] http://en.wikipedia.org/wiki/Strassen_algorithm

"""
a1 = A[0][0]
b1 = A[0][1]
c1 = A[1][0]
d1 = A[1][1]
a2 = B[0][0]
b2 = B[0][1]
c2 = B[1][0]
d2 = B[1][1]
a3 = a1*a2+b1*c2
b3 = a1*b2+b1*d2
c3 = c1*a2+d1*c2
d3 = c1*b2+d1*d2
return [[a3,b3],[c3,d3]]

Figure 16: Academia vs Business .
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/

9.4 Pseudocode

Etymology
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• pseudo: From the Ancient Greek φενδηζ (pseudes), meaning “false,
lying”

• code: From the Old French (meaning “system of law”) and Latin codex
(meaning “book”), a later form of caudex (“a tablet of wood smeared
over with wax, on which the ancients originally wrote”).

This does not mean that your pseudocode can be false!
Example template of Python pseudocode.

Python

<variable> = <expression>

if <condition>:
do stuff

else:
do other stuff

while <condition>:
do stuff

for <variable> in <sequence>:
do stuff with variable

def <function name>(<arguments>):
do stuff with arguments
return something

<function name>(<arguments>) # Function call

Here is a more detailed template of a Python function.

Python

def my_function(my_input1, my_input2 = my_default_value2):
"""
Description.

INPUT:
my_input1 - the type of the 1st input
my_input2 - the type of the 2nd input

OUTPUT:
the type of the output

EXAMPLES:
sage: my_function(1,2) # for a Sage program
<the output>
>>> my_function(1,2) # for a Python program
<the output>
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AUTHOR(S):
<your name>

REFERENCES:
[1] <A Wikipedia article describing the algorithm used>, <url>
[2] <A book on algorithms describing the algorithm used>,
<page numbers>

"""
command1
command2
return output

Please remember these:

• Always indent using 4 spaces (no tabs).

• Comment, comment, comment. Even if your comment is longer than
your program, still comment. (Please re-read §9.2 if you are unclear
why that is important.)

Example 10. To illustratethe above-mentioned template, let’s do an exam-
ple of the so-called bisection method.

Suppose we have an integer-valued monotonicaly increasing function

f : {0, 1, . . . ,M} → Z,

for some given integer M . Suppose that we are given n and we want to find
m such that f(m) = n.

If the range of f is so large that we cannot enumerate the choices and
search (the “brute force” way), then the following method might help.

Pseudocode:
pseudo-Python

low = 0
high = M
guess = (low + high)/2

while not(f(guess) == n):
if f(guess) < n:

low = guess
else:

high = guess
guess = (low + high)/2

return guess
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This is okay, except that if n is not in the range of f then it will run
forever. We need to add another few statements to ensure that it will not
run forever. We will also print out the number of steps the program takes to
gives us better intuition as to how fast it runs.

Python

def inverse_image(fcn, val, max_domain):
""
Description.

INPUT:
fcn - a monotonically increasing integer-valued function
val - a value of that function
max_domain - an integer M>0 defining the domain of fcn [0,1,..,M]

OUTPUT:
an integer m such that f(m) = val

EXAMPLES:
sage: f = lambda x: xˆ2
sage: val = 11103ˆ2
sage: max_domain = 12500
sage: inverse_image(f, val, max_domain); val
(11103, 14)
123276609

Not bad - 14 steps to take the square-root of a 9 digit number!

AUTHOR(S):
John Q. Public

REFERENCES:
[1] Wikipedia article, http://en.wikipedia.org/wiki/Bisection_method
[2] ’’Introduction to Computer Science and Programming’’,
course taught by Prof. Eric Grimsom, Prof. John Guttag,
MIT Fall 2008
http://academicearth.org/courses/introduction-to-computer-science-and-programming

""
counter = 1
low = 0
high = M
guess = (low + high)/2

while not(f(guess) == n) and counter<1000:
if f(guess) < n:

low = guess
else:

high = guess
guess = (low + high)/2
counter += 1

assert counter <= 1000, ’Too many iterations’
return guess, counter
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Ars longa, vita brevis, occasio praeceps, experimentum per-
iculosum, iudicium difficile (Life is short, [the] craft long, oppor-
tunity fleeting, experiment treacherous, judgment difficult.)
- Hippocrates (c. 400BC)

9.5 Exercises

Several of the exercises below will help you develop skills in algorithm design.
The idea is to write a program in Sage or Python to solve the problem and to
describe in pseudocode the algorithm you devised. Comment your program
with detailed docstrings.

1. Explain and properly comment the following program.
Python

>>> def silly(y, x=3):
... z = x
... while(z>0):
... y = y+x
... z = z-1
... return y
...
>>> silly(0,3)
9
>>> silly(0,5)
25

Also, create a table of values for each step of the iteration.

2. Create a table of values of all the key variables for the extended Eu-
clidean algorithm (see §4) for the case a = 24, b = 15.

3. A bowl of marbles in your math classroom contains 2009 green marbles
and 2010 red ones. Every time you go to class, you must pick 2 marbles.
If you pick 2 marbles of the same color, your math professor generously
adds a red marble to the bowl. If you pick 2 marbles of different colora,
your math professor generously adds a green marble to the bowl. What
is the color of the last marble (hypotheticaly assuming you go to class
for as many times as needed to answer the question)?

Describe in pseudocode the algorithm you designed to solve this prob-
lem.
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4. (http://projecteuler.net/index.php?section=problems&id=24, one
of the easiest of the Project Euler problems) A permutation is an or-
dered arrangement of objects. For example, 3124 is one possible per-
mutation of the digits 1, 2, 3 and 4. If all of the permutations are
listed numerically or alphabetically, we say they are in lexicographic
order. The lexicographically ordered permutations of 0, 1 and 2 are:

012 021 102 120 201 210 .

What is the millionth lexicographic permutation of the digits 0, 1, 2,
3, 4, 5, 6, 7, 8 and 9?

Describe in pseudocode the algorithm you designed to solve this prob-
lem.

5. Take any 4-digit number with distinct digits. Permuting the digits
gives 4! = 24 different numbers. Let N be the maximum and n the
minimum. Compute N − n. Repeat. Eventually you reach 6417 find
the maximum number of repetitions to get to 6174.

Describe in pseudocode the algorithm you designed to solve this prob-
lem.

6. (http://projecteuler.net/index.php?section=problems&id=268, the
most difficult of the Project Euler problems as of Dec 15, 2009) It can
be verified that there are 23 positive integers less than 1000 that are
divisible by at least four distinct primes less than 100.

Find how many positive integers less than 1016 are divisible by at least
four distinct primes less than 100.

Describe in pseudocode the algorithm you designed to solve this prob-
lem. Test it!

10 Classes in Python

A Python class can, for example, correspond to the mathematical object you
are working with, e.g., a Matrix class for matrices, a DifferentialEquations
class for differential equations, etc. This works very nicely for expressing
mathematics, and is much different and conceptually superior to what you
get in Mathematica and Matlab.
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The Python class construction allows you to define your own new data
types and methods for those data types. For example, you can define addi-
tion for instances of your Matrix class and also addition for instances of your
DifferentialEquations class. You can use + for both operations (this is called
operator overloading) and Python knows how to keep these different opera-
tions separate. Though modeled on C++ classes, Python classes are simpler
and easier to use. They support both single and multiple inheritance and
one can derive from builtin classes.

A class example (“borrowed” from Kirby Urber [U], a Python +mathe-
matics educator from Portland Oregon).

Python

class Dog():
def __init__(self, name):

self.name = name
def __repr__(self):

return ’Dog(%s)’%self.name
def __str__(self):

return ’Dog named %s’%self.name
def bark(self, loudness=1):

if loudness == 1:
print ’woof!’

elif loudness == 2:
print ’bark!’

elif loudness == 3:
print ’BARK!’

else:
print ’yipe-yipe-yipe!’

def dogs_name(self):
return self.name

Exercise 10.1. Add docstrings to this code following the outline in §??.

Once this class is read into Python, here is an example of its usage.

Python

>>> good_dog = Dog("zeus")
>>> type(good_dog)
<type ’instance’>
>>> type(Dog)
<type ’classobj’>
>>> good_dog
Dog named zeus
>>> good_dog.dogs_name()
’zeus’
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>>> good_dog.bark(2)
bark!

The functions bark and dogs name are examples of methods of the Dog

class.

11 What is a code?

A code is a rule for converting data in one format, or well-defined tangible
representation, into sequences of symbols in another format (and the finite
set of symbols used is called the alphabet). We shall identify a code as a finite
set of symbols which are the image of the alphabet under this conversion rule.
The elements of this set are referred to as codewords. For example, using the
ASCII code, the letters in the English alphabet get converted into numbers
{0, 1, . . . , 255}. If these numbers are written in binary then each codeword of
a letter has length 8. In this way, we can reformat, or encode, a “string” into
a sequence of binary symbols (i.e., 0’s and 1’s). Encoding is the conversion
process one way. Decoding is the reverse process, converting these sequences
of code-symbols back into information in the original format.

Some codes are used for secure communication (cryptography). Some
codes are used for reliable communication (error-correcting codes). Some
codes are used for efficient storage and communication (compression codes,
hashes, Gray codes). We shall briefly study some of these later.

Other codes are merely simpler ways to communicate information (flag
semaphores, color codes, genetic codes, braille codes, musical scores, chess
notation, football diagrams, and so on), and have little or no mathematical
structure. We shall not study them.

11.1 Basic definitions

If every word in the code has the same length, the code is called a block code.
If a code is not a block code then it is called a variable-length code. A
prefix-free code is a code (typically one of variable-length) with the property
that there is no valid codeword in the code that is a prefix (start) of any
other codeword8. This is the prefix-free condition.

8In other words, a codeword s = s1 . . . sm is a prefix of a codeword t = t1 . . . tn if and
only if m ≤ n and s1 = t1, . . . , sm = tm. Codes which are prefix-free are easier to decode
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An example is the ASCII code. See for example, Michael Goerz’ ASCII
reference card at http://users.physik.fu-berlin.de/~mgoerz/blog/refcards/.
(There is also a Python 2.5 reference card there too!)

Another example is

00, 01, 100.

A non-example is the code

00, 01, 010, 100

since the second codeword is a prefix of the third one. Another non-example
is Morse code

a a

b b

c c

d d

e e

f f

g g

h h

i i

j j

k k

l l

m m

n n

o o

p p

q q

r r

s s

t t

u u

v v

w w

x x

y y

z z

Table 1: Morse code

For example, look at the Morse code for a and the Morse code for w.
These codewords violate the prefix-free condition.

than codes which are not prefix-free.
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12 Gray codes

History9 : Frank Gray10 wrote about the so-called Gray codes in a 1951
paper published in the Bell System Technical Journal, and then patented
a device (used for television sets) based on it in 1953. However, the idea
of a binary Gray code appeared earlier. In fact, it appeared in an earlier
patent (one by Stibitz in 1943). It was also used in E. Baudot’s (a French
engineer) telegraph machine of 1878 and in a French booklet by L. Gros on
the solution to the “Chinese ring puzzle” published in 1872. The Gray code
appearing in Frank Gray’s 1953 patent, is a binary numeral system often
used in electronics, but with many applications in mathematics.

Really, “the Gray code” is a misnomer, as that term encompasses a large
class of related codes. We shall survey some of the constructions and appli-
cations of this very interesting class of “codes”.

12.1 Binary Gray codes

A binary Gray code of length n is a sequence of 2n n-tuples of 0’s and 1’s,
where two successive terms of the sequence differ in exactly one coordinate.

Example 11. A binary Gray code of length 3:

000, 001, 011, 010, 110, 100, 101, 111

Another one:

000, 001, 011, 010, 110, 111, 101, 100

The coordinates in each term of a Gray code need not be taken only form
the set {0, 1}. Let m > 1 be an integer. An m-ary Gray code of length n is
a sequence of 2n n-tuples elements taken from {0, 1, . . . ,m − 1}, where two
successive terms of the sequence differ in exactly one coordinate.

9This history comes from an unpublished section 7.2.1.1 (“Generating all n-tuples”) in
volume 4 of Donald Knuth’s The Art of Computer Programming.

10Frank Gray (1887-1969) was a physicist and researcher at Bell Labs who made nu-
merous innovations in television. He got his B.S. from Purdue University in 1911 and his
PhD from the University of Wisconsin in 1916. He started worked at Bell Labs in 1925.
He applied for the patent in 1947 but the patent was not awarded until 1953 for some
reason.
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Example 12. A 3-ary Gray code of length 2:

00, 10, 20, 21, 11, 01, 02, 12, 22.

Example 13. A 3-ary Gray code of length 3:

000, 100, 200, 210, 110, 010, 020, 120, 220, 221, 121, 021, 011, 111,

211, 201, 101, 001, 002, 102, 202, 212, 112, 012, 022, 122, 222.

Gray codes can be very useful in mathematics as they give a fast way
of generating vectors in a vector space over a finite field. They also can be
generalized to certain types of finite groups called Coxeter reflection groups.

Geometrically, a binary Gray code of length n can be visualized as a path
along the edges of a unit hypercube in Rn. A 3-ary Gray code can be visu-
alized using a Sierpinski triangle (see for example, http://en.wikipedia.
org/wiki/Sierpinski_triangle and §8.2 above).

Consider the so-called n-hypercube graph Qn. This can be envisioned as
the graph whose vertices are the vertices of a cube in n-space

{(x1, . . . , xn) | 0 ≤ xi ≤ 1},

and whose edges are those line segments in Rn connecting two “neighboring”
vertices (namely, two vertices which differ in exactly one coordinate). A
binary Gray code of length n can be regarded as a path on the hypercube
graph Qn which visits each vertex of the cube exactly once. In other words,
a binary Gray code of length n may be identified with a Hamiltonian cycle
on the graph Qn (see Figure 17 for an example).
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Figure 17: Plot of Γ3 viewed as a Hamiltonian path on Q3 .

How do you efficiently compute a Gray code?
Perhaps the simplest way to state the idea of quickly constructing the

reflected binary Gray code Γn of length n is as follows:

Γ0 = [], Γn = [0,Γn−1], [1,Γ
rev
n−1],

where Γrevm means the Gray code in reverse order. For instance, we have

Γ0 = [],

Γ1 = [0], [1],

Γ2 = [[0, 0], [0, 1], [1, 1], [1, 0],

and so on. This is a nice procedure if you want to create the entire list at
once (which, by the way, gets very long very fast).

An implementation of the reflected Gray code using Python is given below.

Python 3.0

def graycode(length,modulus):
"""
Returns the n-tuple reflected Gray code mod m.
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EXAMPLES:
sage: graycode(2,4)

[[0, 0],
[1, 0],
[2, 0],
[3, 0],
[3, 1],
[2, 1],
[1, 1],
[0, 1],
[0, 2],
[1, 2],
[2, 2],
[3, 2],
[3, 3],
[2, 3],
[1, 3],
[0, 3]]

"""
n,m = length,modulus
F = range(m)
if n == 1:

return [[i] for i in F]
L = graycode(n-1, m)
M = []
for j in F:

M = M+[ll+[j] for ll in L]
k = len(M)
Mr = [0]*m
for i in range(m-1):

i1 = i*int(k/m) # this requires Python 3.0 or Sage
i2 = (i+1)*int(k/m)
Mr[i] = M[i1:i2]

Mr[m-1] = M[(m-1)*int(k/m):]
for i in range(m):

if is_odd(i):
Mr[i].reverse()

M0 = []
for i in range(m):

M0 = M0+Mr[i]
return M0

Consider the reflected binary code of length 8, Γ8. This has 28 = 256
codewords. Sage can easily create the list plot of the coordinates (x, y),
where x is an integer j ∈ Z256 which indexes the codewords in Γ8 and the
corresponding y is the j-th codeword in Γ8 converted to decimal. This will
give us some idea of how the Gray code “looks” in some sense. The plot is
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given in Figure 18.

Figure 18: List plot of Γ8 created using Sage.

What if you only want to compute the i-th Gray codeword in the Gray
code of length n? Can it be computed quickly as well without computing
the entire list? At least in the case of the reflected binary Gray code, there
is a very simple way to do this. The k-th element in the above-described
reflected binary Gray code of length n is obtained by simply adding the
binary representation of k to the binary representation of the integer part of
k/2.

An example using Sage is given below.

Sage

def int2binary(m, n):
’’’
returns GF(2) vector of length n obtained
from the binary repr of m, padded by 0’s
(on the left) to length n.

EXAMPLES:
sage: for j in range(8):
....: print int2binary(j,3)+int2binary(int(j/2),3)
....:
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(0, 0, 0)
(0, 0, 1)
(0, 1, 1)
(0, 1, 0)
(1, 1, 0)
(1, 1, 1)
(1, 0, 1)
(1, 0, 0)

’’’
s = bin(m)
k = len(s)
F = GF(2)
b = [F(0)]*n
for i in range(2,k):

b[n-k+i] = F(int(s[i]))
return vector(b)

def binary2int(b):
"""
inverts int2binary

"""
k = len(b)
n = sum([int(b[i])*2**(k-1-i) for i in range(k)])
return n

def graycodeword(m, n):
’’’
returns the mth codeword in the reflected binary Gray code
of length n.

EXAMPLES:
sage: graycodeword(3,3)
(0, 1, 0)

’’’
return int2binary(m,n)+int2binary(int(m/2),n)

Exercise 12.1. Convert the above function graycodeword into a pure Python
function.

12.2 Non-binary Gray codes

The term “Gray code” is ambiguous. It is actually a large family of sequences
of n-tuples. Let Zm = {0, 1, . . . ,m− 1}. More precisely, an m-ary Gray code
of length n (called a binary Gray code when m = 2) is a sequence of all
possible (namely, N = mn) n-tuples

g1, g2, . . . , gN ,

where
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• each gi ∈ Zn
m,

• gi and gi+1 differ by 1 in exactly one coordinate.

In other words, an m-ary Gray code of length n is a particular way to order
the set of all mn n-tuples whose coordinates are taken from Zm. From the
transmission/communication perspective, this sequence has two advantages:

• It is easy and fast to produce the sequence, since successive entries
differ in only one coordinate.

• An error is relatively easy to detect, since you can compare an n-tuple
with the previous one. If they difer in more than one coordinate, you
know an error was made.

Example 14. Here is a 3-ary Gray code of length 2:

[0, 0], [1, 0], [2, 0], [2, 1], [1, 1], [0, 1], [0, 2], [1, 2], [2, 2]

and here is a binary Gray code of length 3:

[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 0, 1], [0, 0, 1].

Gray codes have applications to engineering, recreational mathematics
(solving the Tower of Hanoi puzzle, “The Brain” puzzle, the “Chinese ring
puzzle”, and others), and to mathematics (for example, aspects of combina-
torics, computational group theory and the computational aspects of linear
codes).

Next, let’s try creating a decimal (i.e., 10-ary) Gray code of length 3.
How far will the usual process of counting get us? We start

(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, 9),

but the next natural choice, namely (0, 1, 0), won’t work since it changes 2
coordinates. Instead, let’s pick (0, 1, 9) and count in reverse order,

(0, 1, 9), (0, 1, 8), . . . , (0, 1, 0).

Note that (0, 1, 9) really was the smallest vector which had not yet been
choosen after (0, 0, 9) and which had the key property that it differed in
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exactly one coordinate. After selecting that, we “filled in gaps” in the only
way possible. Now we have

(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, 9), (0, 1, 9), (0, 1, 8), . . . , (0, 1, 0),

we choose the smallest vector which has not yet been choosen. This is (0, 2, 0),
so we start counting again,

(0, 2, 0), (0, 2, 1), . . . , (0, 2, 9),

but we again have to stop. Pick the smallest legal one (0, 3, 9) and count in
reverse order,

(0, 3, 9), (0, 3, 8), . . . , (0, 3, 0).

This type of construction is an example of a “greedy algorithm11” In any
case, it is clear that this procedure will produce a decimal Gray code of
length three.

In general, this algorithm generalizes to one which does not even require
one with the same “radix” for each coordinate. Suppose you want to compute
a mixed-radix Gray code which is a sequence of N =

∏n−1
i=0 mi codewords (for

a fixed list of “radixes” m0,m1, . . . ,mn−1, each of which is > 1),

(a0, a1, . . . , an−1),

where 0 ≤ ai ≤ mi for all i, and each element of the sequence differs from a
neighboring element by ±1 in exactly one coordinate.
Algorithm: Input: A length n and a list of radixes m0,m1, . . . ,mn−1.
Output: A mixed-radix Gray code of length n.

• Start with the all 0 tuple of length n, (0, . . . , 0).

• Find the lexicographically smallest element which is “legally” a Gray
codeword and append it to the current lsit of codewords.

11Wikipedia, which more-or-less follows the NIST definition in
http://www.itl.nist.gov/div897/sqg/dads/HTML/greedyalgo.html, has a great
definition: “A greedy algorithm is any algorithm that follows the problem solving
metaheuristic of making the locally optimal choice at each stage with the hope of finding
the global optimum.”.
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• Repeat until all a codewords are obtained.

Example 15. Here is an example of a mixed-radix Gray code with entries
in Z3 × Z2 × Z4. For brevity, we write a codeword (a, b, c) as abc.

First, construct the entries with a 0 in the first coordinate:

000, 001, 002, 003, 013, 012, 011, 010. (1)

Note the last four codewords can be obtained from the first four by “reflec-
tion” and substituting 1 for 0 in the second coordinate. Now, reflect all these
and substitute 1 for 0 in the first coordinate:

110, 111, 112, 113, 103, 102, 101, 100. (2)

Now, reflect all these and substitute 2 for 1 in the first coordinate:

200, 201, 202, 203, 213, 212, 211, 210. (3)

Concatenating (1), (2), (3) together gives the 24 = 3 · 2 · 4 elements of the
Gray code.

12.3 An application of Gray codes to mathematics

There are many applications of Gray codes to mathematics. For example, the
construction of fractals and space-filling curves can be accomplished using
Gray codes. In this section, we focus on an application to linear codes in a
particular example.

Gray codes and linear codes

In the computational aspects of error-correcting codes, it is very impor-
tant to be able to compute, or at least find a good approximation for, the
so-called minimum distance of the code. The only general method of doing
this is to search over all codewords and compute the ones of minimum Ham-
ming weight. The fastest way (known to me at this time) to implement this
search uses Gray codes.

The idea easily is illustrated using an example.

88



Example 16. Consider the binary Hamming code C with parameters [7, 4, 3].
We shall discuss error-correcting codes in general later. For now, we simply
define C to be the subset of vectors of GF (2)7 of the form

E(m) = (m1,m2,m3,m4,m1 +m3 +m4,m1 +m2 +m4,m1 +m2 +m3 +m4),

wherem = (m1,m2,m3,m4) run over all possible elements inGF (2)4. (Think
of m as the “information” you want to transmit over a noisy channel and
E(m) as the message you send. The message contains the information plus
some redundancy. Hopefully there is enough redundancy for the receiver to
recover the information if an error was made during transmission.) Gray
codes arise in the attempt to generate this set as quickly as possible.

Let

b1 = (1, 0, 0, 0, 1, 1, 1), b2 = (0, 1, 0, 0, 0, 1, 1), b3 = (0, 0, 1, 0, 1, 0, 1), b4 = (0, 0, 0, 1, 1, 1, 0).

Then we can write E(m) as

E(m) = m1·(1, 0, 0, 0, 1, 1, 1)+m2·(0, 1, 0, 0, 0, 1, 1)+m3·(0, 0, 1, 0, 1, 0, 1)+m4·(0, 0, 0, 1, 1, 1, 0) = m1b1+m2b2+m3b3+m4b4.

(Think of the bi’s as basis vectors spanning a vector space.) Let Γ4 denote
the reflected binary Gray code of length 4. This is the set GF (2)4 ordered
in such a way that successive elements differ in exactly one bit:

[0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0],
[1, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1],
[1, 1, 1, 1], [0, 1, 1, 1], [0, 1, 0, 1], [1, 1, 0, 1], [1, 0, 0, 1], [0, 0, 0, 1].

Here is a short algorithm to generate C from Γ4. Write

Γ4 = {g0 = (0, 0, 0, 0), g1, g2, . . . , g15, g16 = g0}.

Initialize: C = {(0, 0, 0, 0, 0, 0, 0)}. c = (0, 0, 0, 0, 0, 0, 0). (Think of c as the
last element you added to the set C.)
for i in {1, . . . , 24 = 16}:
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• if gi and gi−1 only differ in the k-th coordinate (1 ≤ k ≤ 4) then let

c = c+ bk.

• Add c to C.

At the end of this for loop, you will have constructed all possible elements of
C.

Sage

G4 = graycode(4,2)
G4.append([0,0,0,0])
c = vector(GF(2), [0,0,0,0,0,0,0])
C = [c]
b1 = vector(GF(2), [1,0,0,0,1,1,1])
b2 = vector(GF(2), [0,1,0,0,0,1,1])
b3 = vector(GF(2), [0,0,1,0,1,0,1])
b4 = vector(GF(2), [0,0,0,1,1,1,0])
b = [b1,b2,b3,b4]
for i in range(1,16):

k = add_vectors_mod_m(G4[i],G4[i-1],2).index(1)
# this picks on where the vectors differ by 1
c = c + b[k]
C.append(c)

This generates the set

{(0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 1, 1), (1, 1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 0, 1, 1), (0, 1, 1, 0, 1, 1, 0), (1, 1, 1, 0, 0, 0, 1),
(1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 0, 0, 0), (0, 1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 0, 1, 0), (1, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 1, 1, 1, 0)}.

13 Huffman codes

According to the September 1991 issue of Scientific American (see [HSA],
[HW]):

In 1951, David A. Huffman and his MIT information theory
classmates were given the choice of a term paper or a final exam.
The professor, Robert M. Fano, assigned a term paper on the
problem of finding the most efficient binary code. Huffman, un-
able to prove any codes were the most efficient, was about to
give up and start studying for the final when he hit upon the
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idea of using a frequency-sorted binary tree and quickly proved
this method the most efficient. In doing so, the student outdid
his professor, who had worked with information theory inven-
tor Claude Shannon to develop a similar code (the suboptimal
Shannon-Fano coding scheme).

Here is the informal description of the problem that Prof. Fano gave his
students:
Given: A set of symbols, say A = {a1, a2, . . . , an}, and their weights, say
W = {w1, w2, . . . , wn} (usually proportional to probabilities of occurences).
We shall assume thoughout that each wi > 0.
Find: A prefix-free binary code (a set of codewords) with minimum expected
codeword length.

In other words, if C = CA,W = {c1, c2, . . . , cn} is the code (the encoder
simply being the map ai 7−→ ci) then each ci is a binary vector, say of length
`i, and the expected codeword length

L(C) =
n∑
i=1

wi`i,

is minimal among all such prefix-free codes.
The algorithms for constructing a Huffman code are relatively sophisti-

cated. We refer to Biggs [B], §3.6. However, there are several implementa-
tions of Huffman coding written in Python available free on the internet.

Example 17. We shall use the following program which can be found on
the Python wiki.

Python

def huffman(freqtable):
"""
Generate Huffman codes
http://wiki.python.org/moin/ProblemSets

/99%20Prolog%20Problems%20Solutions#Problem50.3AGenerateHuffmancodes

License: Python License
http://www.python.org/psf/license/

Return a dictionary mapping keys to huffman codes
for a frequency table mapping keys to frequencies.

>>> freqtable = dict(a=45, b=13, c=12, d=16, e=9, f=5)
>>> sorted(huffman(freqtable).items())
[(’a’, ’0’), (’b’, ’101’), (’c’, ’100’), (’d’, ’111’), (’e’, ’1101’),
(’f’, ’1100’)]
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"""
from collections import defaultdict
from heapq import heappush, heappop, heapify
# mapping of letters to codes
code = defaultdict(list)
# Using a heap makes it easy to pull items with lowest frequency.
# Items in the heap are tuples containing a list of letters and the
# combined frequencies of the letters in the list.
heap = [ ( freq, [ ltr ] ) for ltr,freq in freqtable.iteritems() ]
heapify(heap)
# Reduce the heap to a single item by combining the two items
# with the lowest frequencies.
while len(heap) > 1:

freq0,letters0 = heappop(heap)
for ltr in letters0:

code[ltr].insert(0,’0’)
freq1,letters1 = heappop(heap)
for ltr in letters1:

code[ltr].insert(0,’1’)
heappush(heap, ( freq0+freq1, letters0+letters1))

for k,v in code.iteritems():
code[k] = ’’.join(code[k])

return code

Let us use it to find the Huffman code for the statement

”I like huffman codes more than brussels sprouts”,

with apologies to all those Brussels sprouts lovers out there.
Python

>> s = "I like huffman codes more than brussels sprouts"
>> A = ("","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o",

"p","q","r","s","t","u","v","w","x","y","z")
>> freq = {}
>>> for a in A:
... if a in s:
... freq[a] = s.count(a)
... else:
... freq[a] = 0
...
>>> freq
{’ ’: 7, ’a’: 2, ’c’: 1, ’b’: 1, ’e’: 4, ’d’: 1, ’g’: 0, ’f’: 2, ’i’: 1,
’h’: 2, ’k’: 1, ’j’: 0, ’m’: 2, ’l’: 2, ’o’: 3, ’n’: 2, ’q’: 0, ’p’: 1,
’s’: 6, ’r’: 3, ’u’: 3, ’t’: 2, ’w’: 0, ’v’: 0, ’y’: 0, ’x’: 0,
’z’: 0}
>>> Freq = [(x,y) for (y,x) in freq.items()]
>>> sorted(Freq)
[(0, ’g’), (0, ’j’), (0, ’q’), (0, ’v’), (0, ’w’), (0, ’x’), (0, ’y’),
(0, ’z’), (1, ’b’), (1, ’c’), (1, ’d’), (1, ’i’), (1, ’k’), (1, ’p’),
(2, ’a’), (2, ’f’), (2, ’h’), (2, ’l’), (2, ’m’), (2, ’n’), (2, ’t’),
(3, ’o’), (3, ’r’), (3, ’u’), (4, ’e’), (6, ’s’), (7, ’ ’)]
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Now we run the above program on this dictionary and sort the output:

Python

>>> sorted(huffman(freq).items())
[(’ ’, ’101’), (’a’, ’11010’), (’b’, ’1111101’), (’c’, ’110110’),
(’d’,’110111’), (’e’, ’1110’), (’f’, ’11110’), (’g’, ’11111000000000’),
(’h’, ’0000’), (’i’, ’111111’), (’j’, ’11111000000001’), (’k’, ’00010’),
(’l’, ’0010’), (’m’, ’0011’), (’n’, ’0100’), (’o’, ’0110’), (’p’, ’00011’),
(’q’, ’1111100000001’), (’r’, ’0111’), (’s’, ’100’), (’t’, ’0101’),
(’u’, ’1100’), (’v’, ’111110000001’), (’w’, ’11111000001’),
(’x’,’1111100001’), (’y’, ’111110001’), (’z’, ’11111001’)]

As you can see, the most common character symbols get assigned to the
shortest codewords in the Huffman code for our statement above.

13.1 Exercises

Exercise 13.1. Verify this for your own statement. (Make one up or use
your favorite quotation.)

Hand in the code, frequence table and the Python programming you did
to produce them.

14 Error-correcting, linear, block codes

Error-correcting codes are used to facilitate reliable communication of digi-
tal information. Basically, you add redundancy in a clever way to allow the
receiver to recover the message even if there were lots of errors in the trans-
mission due to “noise” in the communication channel. Cell-phones, comput-
ers, DVDs, and many other devices use error-correcting codes. Postal codes
(the little stripes at the bottom fo an envelope), ISBN codes, and product
bar-codes are other examples. Different devices have different noise char-
acteristics, and so use different types of codes. As with shoes, no one size
fits all. The noise in a cell-phone is more variable (for example, if you are
talking while driving in your car and moving away from a cell-phone tower),
and also requires less fidelity than say a music CD player. Indeed, the error-
correcting codes used by cell-phones today is much different than that used
by CDs and DVDs. The type of error-coorecting code used by CDs and
DVDs is called a “block” code. This means that you break up the digital
data to be transmitted into blocks of a fixed size, say k bits, encodes that
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block by adding n−k redundancy bits, and transmits that n-bit block to the
receiver. For example, NASA’s Mariner spacecraft (between 1969 and 1977)
used a Reed-Muller code. We shall discuss Reed-Muller codes briefly below.

14.1 The communication model

Consider a source sending messages through a noisy channel. The message
sent will be regarded as a vector of length n whose entries are taken from a
given finite field F (typically, F = GF (2)).

For simplicity, assume that the message being sent is a sequence of 0’s and
1’s. Assume that, due to noise, when a 0 is sent, the probability that a 0 is
(correctly) received is p and the probability that a 1 is (incorrectly) received
is 1− p. Assume also that the noise of the channel is not dependent on the
symbol sent: when a 1 is sent, the probability that a 1 is (correctly) received
is p and the probability that a 0 is (incorrectly) received is 1 − p. Here p is
a fixed probability which depends on the noise on the channel, 0 < p < 1/2.

14.2 Basic definitions

The basic definition explains how the theory of linear codes relies heavily on
basic linear algebra.

Definition 18. A linear error-correcting block code, or linear code for short,
finite dimensional vector space with a fixed basis.

We shall typically think of a linear code as a subspace of Fn with a fixed
basis, where F is a finite field and n > 0 is an integer called the length of the
code. Moreover, the basis for the whole space code Fn will typically be the
standard basis,

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). (4)

There are two common ways to specify a linear code C.

• You can give C as a vector subspace of Fn by specifying a set of basis
vectors for C. This set of basis vectors is, by convention, placed as the
rows of a matrix called a generator matrix of C. Obviously, the order
in which the rows are presented does not affect the code itself.

If g1, . . . gk are the rows of G then
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C = {c = m1g1 + · · ·+mkgk | somemi ∈ GF (q)},
is the set of linear combinations of the row vectors gi. The vector of
coefficients, m = (m1, . . . ,mk) is sometimes called the message vector
or information vector. In other words, encoding of a message can be
defined via the generator matrix:

m = (m1, . . . ,mk) 7→ c = m1g1 + · · ·+mkgk,
Fk → C.

(5)

• You can give C as a vector subspace of Fn by specifying a matrix H
for which C is the kernel of H, C = ker(C). This matrix is called a
check matrix of C. Again, the order in which the rows are presented
does not affect the code itself.

These two ways of defining a code are not unrelated.

Proposition 19. If G = (Ik | A) is the generating matrix for C then H =
(−At | In−k) is a parity check matrix.

The proof of this is not too hard if you know how block matrix multipli-
cation works and can verify that H · tG = 0 = (−At | In−k) · t(Ik | A) = 0.

A code with symbols taken from GF (p) is sometimes called a p-ary code,
though when p = 2 you usually simply say binary and for p = 3 you say
ternary.

Geometrically, two codewords are “far” from each other if there are “a
lot” of coordinates where they differ.

Definition 20. If v, w ∈ Fn are vectors then we define

d(v, w) = |{i | vi 6= wi, 1 ≤ i ≤ n},
to be the Hamming distance between v and w. The function d is called the
Hamming metric. The weight of a vector v (in the Hamming metric) is the
Hamming distance between v and the 0 vector.

A metric on a set X is a function

d : X ×X → R
(where R is the set of real numbers). For all x, y, z ∈ X, this function is
required to satisfy the following conditions:
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• d(x, y) ≤ 0 and d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality ).

Lemma 21. The Hamming metric is a metric on the vector space V =
GF (q)n.

proof: We must show d(u,w) ≤ d(u, v) + d(v, w), for all vectors u, v, w ∈
V .

We have: if ui 6= wi then

• ui = vi and vi 6= wi, or

• ui 6= vi and vi = wi, or

• ui 6= vi and vi 6= wi.

Counting these conditions, we see

|{i | ui 6= wi}| ≤ |{i | ui 6= vi}|+ |{i | vi 6= wi}|,

since |{i | ui 6= vi}| counts the last two conditions and |{i | vi 6= wi}| counts
the first two conditions. �

14.3 Decoding

Suppose a codeword c ∈ C is sent over a noisy channel. Let v ∈ GF (q)n

denote the received vector. If no error was made in transmission (the most
likely scenerio), then v = c. If a single error was made (the second most
likely scenerio), then v and c differ in exactly one bit, and so on.

Here is the simplest method of decoding, or correcting, an error in trans-
mission - in other words, determining c from v.
Nearest neighbor decoding:
INPUT: A code C ⊂ GF (q)n and a vector v ∈ GF (q)n.
OUTPUT: A codeword c ∈ C with d(v, c) as small as possible.

• Initialize c0 = 0.

• For all c ∈ C: if d(c, v) < d(c0, v) then c0 = c.
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• Return c0.

Let v, w be any vectors in GF (q)m. We say v is equivalent to w if there
is a non-zero scalar r ∈ GF (q) such that v = r · w. Otherwise, we say that
v, w are inequivalent.

Proposition 22. Let C ⊂ GF (q)n be a code with check matrix H. Let
v ∈ GF (q)n be a vector which differs from some codeword in C in at most one
coordinate. The nearest neighbor algorithm can compute the error coordinate
and the codeword if all columns of H are inequivalent.

proof: Suppose v = c+ a · ei, for some c ∈ C, some non-zero a ∈ GF (q),
and some i (where ei is the i-th standard basis vector of GF (q)n). Can we
solve for c, a and i? Yes, here is how. Compute

Hv = H(c+ a · ei) = Hc+ a ·Hei = a ·Hei,

which is a times the i-th column vector of H. But all these column vectors
are inequivalent, so knowing a ·Hei, we can determine i and a. This allows
us to determine c = v − a · ei. �

If x is a real number, let [x] denote its integer part.

Proposition 23. If C is an [n, k, d] code then the nearest neighbor algorithm
can correct ≤ [(d− 1)/2] errors.

proof: Let v ∈ GF (q)n be a received vector. Assume ≤ [(d− 1)/2] errors
have been made in transmission. This means that the Hamming distance
from v to the sent codeword c is ≤ [(d − 1)/2]. Assume that the nearest
neighbot algorithm returns a codeword c′, so c′ is the closest codeword to v.
We have

d(c′, v) ≤ d(c, v) ≤ [(d− 1)/2].

By the triangle inequality

d(c, c′) ≤ d(c, v) + d(c′, v) ≤ d− 1 < d.

This means c′ − c is a codeword of weight < d, so c′ = c. �
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14.4 The covering radius

Question: What is the smallest radius r such that the balls of radius r
centered about all the codewords,

B(c, r) = {v ∈ GF (q)n | d(c, v) ≤ r}

are disjoint.
Answer: [(d−1)/2]. By the above proof, we see that the triangle inequal-

ity will not allow two balls centered at neighboring codewords are disjoint if
and only if they have radius ≤ [(d− 1)/2].

The union of all these disjoint balls of radius [(d− 1)/2] centered at the
codewords in C usually does not equal the entire space V = GF (q)n. (When
it does, C is called perfect) How much larger do we have to make the radius
so that the union of these balls does cover all of V ? In other words, we want
to increase the radius r = [(d− 1)/2] to some new radius rho so that

∪c∈CB(c, ρ) = V.

This new radius is called the covering radius. In general, it is hard to find
good upper bounds on ρ.

We need some basic facts about finite fields before proceeding further into
the theory of linear codes.

14.5 Finite fields

What is a finite field? As you probably know already, a field is an algebraic
structure with two binary operations, usually denoted + (called addition)
and · (or simply juxtaposition, called multiplication. These operations satisfy
certain axioms such as associativity and distributivity. They are listed for
completeness below.

• Closure of F under addition and multiplication: For all a, b ∈ F, both
a+ b and a · b are in F .

• Associativity of addition and multiplication: For all a, b, c ∈ F, the
following equalities hold: a+(b+c) = (a+b)+c and a ·(b ·c) = (a ·b) ·c.

• Commutativity of addition and multiplication: For all a, b ∈ F, the
following equalities hold: a+ b = b+ a and a · b = b · a.
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• Additive and multiplicative identity: There exists an element of F,
called the additive identity and denoted by 0, such that for all a ∈ F,
a+ 0 = a. Likewise, there is another element, called the multiplicative
identity and denoted by 1, such that for all a ∈ F, a · 1 = a. (In
particular, any field must contain at least 2 distinct elements, 0 and 1.)

• Additive and multiplicative inverses: For every a ∈ F, there exists an
element −a ∈ F, such that a+(−a) = 0. Similarly, for any a ∈ F−{0},
there exists an element a−1 ∈ F, such that a · a−1 = 1.

• Distributivity of multiplication over addition: For all a, b, c ∈ F, the
following equality holds: a · (b+ c) = (a · b) + (a · c).

Examples of finite fields are not hard to construct. For example, look at
the set of integers modulo a prime p, denoted12

Z/pZ = GF (p) = {0, 1, . . . , p− 1},

with addition and multiplication performed modulo p. This is called “the”
finite field of prime order p, or sometimes simply a prime field.

Modular arithmetic is defined as follows. Two integers a and b are said
to be congruent modulo p, denoted a ≡ b (mod p), if their difference a− b is
an integer multiple of p. Compared to familiar addition and multiplication
of integers Z, on the set Z/pZ,

• replace = on Z by ≡ (mod p),

• replace + on Z by addition followed by reducing modulo p,

• replace · on Z by multiplication followed by reducing modulo p.

For example, if p = 7 then 4 + 5 = 9 ≡ 2 (mod 7), so 4 + 5 = 2 ∈ Z/7Z.
Likewise, 4 · 5 = 20 ≡ 6 (mod 7), so 4 · 5 = 6 ∈ Z/7Z. Since, 4 + 3 = 7 ≡ 0
(mod 7), so −4 = 3 ∈ Z/7Z (and −3 = 4 ∈ Z/7Z). Since 3 · 5 = 15 ≡ 1
(mod 7), we see 3−1 = 5 ∈ Z/7Z.

You can see that addition and multipliation is pretty easy. The hardest
operation is division. How do you compute the inverse of an element? Use
the extended Euclidean algorithm (Example 4 above). Suppose a ∈ Z/pZ

12Both GF (p) and Z/pZ are commonly used notations for this field.
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is non-zero and you want to compute a−1. Since a and p have no common
factors (remember, p is a prime and 0 < a < p), by the extended Euclidean
algorithm, there are x, y such that ax + py = 1. It turns out that a−1 = x.
Why? Write ax+py = 1 as ax−1 = p ·(−y). This implies a ·x ≡ 1 (mod p),
or ax = 1 ∈ Z/pZ. Therefore, by definition, x = a−1.

There is no finite field class in the version of Python you download from
python.org. However Sage [S] has excellent functionality for finite fields
built in.

Exercise 14.1. Create a class structure for Z/pZ with methods for addition,
multiplication, subtraction, and division.

There are other finite fields besides GF (p). It turns out that all finite
field F have the following interesting properties:

• The set F−{0} (denoted F×) provided with the multiplicative operation
of the field is a cyclic group.

• There is a unique prime p such that p · a = 0 ∈ F for all a ∈ F. Here
p · a simply means a + a + · · ·+ a (p times). (This prime is called the
characteristic of F.) Moreover, GF (p) is a subfield of F and F is a finite
dimensional vector space over GF (p).

If dimGF (p) F = k then F is sometimes denoted as GF (pk).

Example 24. The most commonly used finite field which is not a prime field
is GF (4). There are several ways to construct this. One is to specific the set
of elements

GF (4) = {0, 1, z, z + 1},

and then to define + and · as addition and multiplication modulo z2 + z + 1
and modulo 2 (so, for example, z2 = −z − 1 = z + 1).

The addition table for GF (4):

+ 0 1 z z + 1

0 0 1 z z + 1
1 1 0 z + 1 z
z z z + 1 0 1

z + 1 z + 1 z 1 0
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The multiplication table for GF (4):

· 0 1 z z + 1

0 0 0 0 0
1 0 1 z z + 1
z 0 z z + 1 1

z + 1 0 z + 1 1 z

14.5.1 A simple Python class for a prime finite fields

"""

Finite fields in Python.

"""

#def FF(p):

# return FF_prime(p)

class FF:

"""

Implements "prime" finite fields.

EXAMPLES:

sage: F = FF(5)

sage: print F

Finite field with 5 elements

sage: F

FF(5)

"""

def __init__(self, p):

self.characteristic = p

def __repr__(self):

"""

Called to compute the "official" string representation of an object.
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If at all possible, this should look like a valid Python expression

that could be used to recreate an object with the same value.

EXAMPLES:

sage: F = FF(5)

sage: F

FF(5)

"""

return "FF(%s)"%self.characteristic

def __str__(self):

"""

Called to compute the "informal" string description of an object.

EXAMPLES:

sage: F = FF(5)

sage: print F

Finite field with 5 elements

"""

return "Finite field with %s elements"%self.characteristic

def __lt__(self, other):

"""

Returns True of self < other, False otherwise.

"""

return False

def __gt__(self, other):

"""

Returns True of self > other, False otherwise.

"""

return False

def char(self):

return self.characteristic
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def __eq__(self, other):

"""

Returns True of self = other and False otherwise.

EXAMPLES:

sage: F1 = FF(5)

sage: F2 = FF(7)

sage: F1 == F2

False

sage: F2 = FF(5)

sage: F1 == F2

True

"""

p = self.char()

q = other.char()

return p == q

def __call__(self, a):

"""

Reduces a mod p.

EXAMPLES:

sage: F1(12)

2

"""

p = self.characteristic

return FFElement(p, a)

def __contains__(self, a):

"""

EXAMPLES:

sage: F = FF(5)

sage: 2 in F

True

sage: 6 in F

False
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"""

p = self.characteristic

if a>=0 and a<p:

return True

else:

return False

class FFElement:

def __init__(self, p, a):

self.characteristic = p

self.element = a%p

self.base_field = FF(p)

def __repr__(self):

"""

Called to compute the "official" string representation of an object.

If at all possible, this should look like a valid Python expression

that could be used to recreate an object with the same value.

EXAMPLES:

"""

return "FFElement(%s, %s)"%(self.characteristic, self.element)

def __str__(self):

"""

Called to compute the "informal" string description of an object.

EXAMPLES:

"""

return "Finite field element %s in %s"%(self.element, self.base_field)

def __add__(self, other):

"""

Implements +. Assumes both self and other are instances of

FFElement class.
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EXAMPLES:

sage: F = FF(7)

sage: a = F(102); b = F(-2)

sage: a; b; print a; print b; a+b

FFElement(7, 4)

FFElement(7, 5)

Finite field element 4 in Finite field with 7 elements

Finite field element 5 in Finite field with 7 elements

2

"""

p = self.characteristic

return (self.element+other.element)%p

def __sub__(self, other):

"""

Implements -.

EXAMPLES:

sage: F = FF(7)

sage: a = F(102); b = F(-2)

sage: a; b; print a; print b; a-b

FFElement(7, 4)

FFElement(7, 5)

Finite field element 4 in Finite field with 7 elements

Finite field element 5 in Finite field with 7 elements

6

"""

p = self.characteristic

return (self.element-other.element)%p

def __mul__(self, other):

"""

Implements multiplication *.

EXAMPLES:

sage: F = FF(7)

sage: a = F(102); b = F(-2)

sage: a; b; print a; print b; a*b
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FFElement(7, 4)

FFElement(7, 5)

Finite field element 4 in Finite field with 7 elements

Finite field element 5 in Finite field with 7 elements

6

"""

p = self.characteristic

return (self.element*other.element)%p

def __div__(self, other):

"""

Implements /.

EXAMPLES:

sage: F = FF(7)

sage: a = F(102); b = F(-2)

sage: a; b; print a; print b; a/b

FFElement(7, 4)

FFElement(7, 5)

Finite field element 4 in Finite field with 7 elements

Finite field element 5 in Finite field with 7 elements

5

"""

p = self.characteristic

a = self.element

b = other.element

return (a*b.__pow__(-1))%p

def __pow__(self, n):

"""

Implements ^ or **.

EXAMPLES:

sage: F = FF(7)

sage: a = F(102); b = F(-2)

sage: a; b; print a; print b; a**(-1); b^2

FFElement(7, 4)

FFElement(7, 5)
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Finite field element 4 in Finite field with 7 elements

Finite field element 5 in Finite field with 7 elements

2

4

"""

p = self.characteristic

a = self.element

n = int(n)

#print "computing %s ^ %s mod %s"%(a,n,p)

if a%p == 0 and not(n<0):

return 0

if p == 2 and n == -1:

return a%p

if n == 0:

return 1

if n == 1:

return a%p

if n>1:

if n%2 == 0:

return ((a.__pow__(int(n/2)))**2)%p

if n%2 == 1:

return (a*(a.__pow__(int(n/2)))**2)%p

if n == -1:

return (a.__pow__(p-2))%p

if n<-1:

return ((a.__pow__(-1))**(-n))%p

return 0 # should never happen

def inverse(self):

"""

Implements the inverse.

EXAMPLES:

sage: F = FF(7)

sage: a = F(102); b = F(-2)

sage: a; b; print a; print b; a.inverse(); b.inverse()

FFElement(7, 4)

FFElement(7, 5)
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Finite field element 4 in Finite field with 7 elements

Finite field element 5 in Finite field with 7 elements

2

3

"""

p = self.characteristic

a = self.element

if a%p == 0:

raise ValueError, "Element must be non-zero."

if p == 2:

return a%p

return (a.__pow__(p-2))%p

14.6 Repetition codes

Example 25. You: “Good morning.”
Me: “What?”
You: “Good Morning!” (louder).
Me: “What?”
You: “GOOD MORNING!” (even louder).
Me: “Yes. Why didn’t you say that the first time?”
This illustrates a “repetition code”. More precisely, the p-ary repetition

code of length n is the set of all n-tuples of the form (x, x, ..., x), for x ∈
GF (p). (We leave it as an exercise to verify that this is a vector space over
GF (q).) We think of x as representing information you want to send. It could
be the “greyness” of a pixel in a picture or a letter (represented in ASCII
code) in a word, for example. Since the channel might contain noise, we send
(x, x, ..., x) instead, with the understanding that the receiver should perform
a “majority vote” to decode the vector. (For example, if (0, 1, 0, ..., 0) was
received then 0 “wins the vote”).

This wasn’t a very efficient example. Let’s try again.
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14.7 Hamming codes

Richard Hamming, while at Bell Labs in New Jersey, was a pioneer of coding
theory, virtually creating the theory in a seminal paper published in 1949,
Hamming codes were discovered by Hamming in the 1940’s, in the days when
an computer error would crash the computer and force the programmer to
retype his punch cards. Out of frustration, he tried to design a system
whereby the computer could automatically correct certain errors. The family
of codes named after him can easily correct one error, as we will see.

14.7.1 Binary Hamming codes

For each integer r > 2 the binary Hamming code Hr is a code with 2r− r− 1
information bits and r redundancy bits. The Hamming code is a code of
length n = 2r− r− 1 which is a subspace of GF (2)n defined to be the kernel
of the r × n GF (2)-matrix H whose columns consist of all non-zero vectors
of length r. In other words, we define C = Hr by specifying the check matrix
of C.

There are various ways to write such a check matrix of a Hamming code,
depending on how you decide to order the column vectors. Different orderings
can lead to different vector spaces. If two codes differ only in the ordering of
the columns of their check matrix or generator matrix then they are called
permutation equivalent codes, or sometimes simply equivalent codes. If C is
a Hamming code, we call any code equivalent to C a Hamming code as well.

Example 26. The binary Hamming code of length n = 7 has check matrix

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

 = (− tA I),

and generator matrix

H =


1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

 = (I A),

for a 3× 4 matrix A, where I denotes the identity matrix of the appropriate
dimension.
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While linear codes are not built into the standard version of Python you
download from python.org, many linear codes, including all the Hamming
codes, are implemented in Sage.

Sage

sage: C = HammingCode(3,GF(2))
sage: C.check_mat()
[1 0 0 1 1 0 1]
[0 1 0 1 0 1 1]
[0 0 1 1 1 1 0]

14.7.2 Decoding Hamming codes

Let C = Hr be our Hamming code, r > 2. Let F = GF (2).
For decoding, we make the assumption that for each message sent by

the sender over the noisy channel, the transmission received by the receiver
contains at most one error. Mathematically, this means that if the sender
transmits the codeword c ∈ C then the receiver either received c or c + ei,
for some i. Here ei is the i-th standard basis element (see (4)).

Decoding algorithm: Assume that for each message sent by
the sender over the noisy channel, the transmission received by
the receiver contains at most one error.

INPUT: The received vector v ∈ Fn.
OUTPUT: The codeword c ∈ C closest to v in the Hamming

metric.
ALGORITHM:

• Order the columns of the check matrix H of C in some fixed
way.

• Compute s = Hv (this is called the syndrome of v).

• If s = 0 then v is a codeword. Let c = v.

If s 6= 0 then v = c + ei for some codeword c and some ei.
In this case,

s = Hv = H(c+ ei) = Hc+Hei = 0 +Hei = Hei

is the i-th column of H. This tells us what i is. Also, this
means that there was an error in the i-th coordinate of c.
Let c = v + ei.
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• Return c.

Example 27. If the code is simply

C = H2 = {(0, 0, 0), (1, 1, 1)} = ker

(
1 1 0
1 0 1

)
and the received vector is v = (1, 1, 0) then H · tv = t(0, 1), so the error is
in the 3-rd coordinate. Therefore c = (1, 1, 1) ∈ C is the closest codeword.

Example 28. Let C = H3, so the check matrix is given as in Example 26.
If v = (1, 1, 1, 0, 0, 0, 0) then Hv = (1, 1, 1), which is the 4-th column of H.
Thus, c = (1, 1, 1, 1, 0, 0, 0) is the closest codeword and is the decoded version
of v.

14.7.3 Non-binary Hamming codes

It actually wasn’t Hamming who first constructed the non-binary generaliza-
tion of his codes but M. Golay, in another very influential paper on coding
theory of the late 1940’s.

There is a family of Hamming codes for every finite field F, analogous to
the family constructed above for F = GF (2). We shall construct them for
the prime fields F = GF (p).

Let V = Fr and let V × denote the set of all vectors in V except for the
0-vector. Define the map s : V × → V × as follows.

• If v = (v1, . . . , vr) ∈ V × satisfies v1 6= 0 then define s(v) = 1
v1
v.

• Otherwise, let i > 1 denote the smallest coordinate index for which
vi 6= 0 (so vi−1 = 0 and 0 < i ≤ r). Define s(v) = 1

vi
v.

Let S = s(V ×) denote the image of this map s.

Exercise 14.2. Show that |S| = pr−1
p−1

.

The first step to constructing the family of Hamming codes for F = GF (p)
is to compute the set S and order it is some fixed way, writing each element
as a column vector of length r,

S = {s1, s2, . . . , sn},
where n = pr−1

p−1
.
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The next step is to construct a matrix r × n H with entries in F whose
columns are the elements of the set S constructed above.

Finally, let Hr = Hr(F) denote the code whose check matrix is H:

Hr = ker(H).

This is “the” r-th Hamming code over F. (The ordering of the coordinates is
not well-defined by the conditions above.)

Example 29. If F = GF (3) and

H =

(
2 2 1 0
2 1 0 1

)
and

G =

(
1 0 1 1
0 1 1 2

)
then H is a check matrix and G is a generator matrix of

H2(GF (3)) = {(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0),
(2, 1, 0, 2), (0, 2, 1, 2), (1, 2, 0, 1), (2, 2, 2, 0)}.

This is implemented in Sage.

Sage

sage: C = HammingCode(2,GF(3))
sage: C.check_mat()
[1 0 2 2]
[0 1 2 1]
sage: C.list()
[(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0),
(2, 1, 0, 2), (0, 2, 1, 2), (1, 2, 0, 1), (2, 2, 2, 0)]

14.8 The Singleton bound

Let H be a check matrix for an [n, k, d] code C. Let

H = (h1, h2, ..., hn),

where each hi is a column vector in GF (q)n−k. Each c ∈ C gives rise to a
dependency relation
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c1h1 + ...+ cnhn = 0.

The dependency relation with the smallest number of non-zero terms is de-
termined from a non-zero codeword having smallest possible weight, d.

We have proven the following

Lemma 30. The positive integer d is the minimum distance of C if and only
if there is some set of d columns of H which are linearly dependent but no
set of d− 1 or fewer columns are linearly dependent.

What is the largest d can be? Let X be a maximal subset of the column
vectors of H which are linearly independent. Since H is full rank, |X| =
rank(H) = n − k. The largest d can be is if d is the cardinality of some set
X ′ of columns for which each proper subset is independent. This means, X ′

is at most n− k + 1. We have proven the following

Theorem 31. (Singleton bound): d+ k ≤ n+ 1.

14.9 Dual codes

Just as the row span of the generator matrix G gives rise to a code, the row
span of the check matrix H should also give rise to a code. How are these
two row spans related? One is the “dual” of the other.

If C ⊂ GF (q)n is any linear code, define the dual code C⊥ by

C⊥ = {v ∈ GF (q)n | v · c = 0 for all c ∈ C}.

Do some examples ...
the weight enumerator polynomial of a binary linear code specifies the

number of words of each possible Hamming weight. Let be a binary linear
code length n. The weight distribution is the sequence of numbers

Ai = {c ∈ C | wt(c) = i},

giving the number of codewords c in C having weight i as i ranges from 0 to
n. The weight enumerator is the bivariate polynomial

WC(x, y) =
n∑

w=0

Awx
wyn−w.
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The MacWilliams identity states that

WC⊥(x, y) =
1

| C |
WC(y − x, y + x).

A Vandermonde matrix, named after Alexandre-Théophile Vandermonde13,
is an m× n matrix

V =


1 α1 α2

1 . . . αn−1
1

1 α2 α2
2 . . . αn−1

2

1 α3 α2
3 . . . αn−1

3
...

...
...

. . . amp;
...

1 αm α2
m . . . αn−1

m


The determinant of a square Vandermonde matrix (where m = n) can be
expressed as:

det(V ) =
∏

1≤i<j≤n

(αj − αi). (6)

This is called the Vandermonde determinant. This is a widely used result in
mathematics, which we shall not prove here.

Define the Reed-Solomon code of order k over GF (p) by

RSf (p) = {(f(1), . . . , f(p− 1)) | f ∈ GF (p)[x]k},

where

GF (p)[x]k = {f ∈ GF (p)[x] | deg(f) ≤ k}.

Lemma 32. If f ∈ GF (p)[x]k has more than k distinct zeroes then f = 0.

proof: Let f(x) = akx
k + . . . a1x+ a0. If f(ri) = 0 for 1 ≤ i ≤ k+ 1 then

we have the set of k + 1 equations in k + 1 unknowns

akr
k
i + . . . a1ri + a0 = 0,

for 1 ≤ i ≤ k + 1. This can be converted into a matrix equation

13A French chemist from the 1700’s; see, for example,
http://en.wikipedia.org/wiki/Alexandre-Théophile Vandermonde.
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
1 r1 r2

1 . . . rn−1
1

1 r2 r2
2 . . . rn−1

2

1 r3 r2
3 . . . rn−1

3
...

...
...

. . . amp;
...

1 rk+1 r2
k+1 . . . rn−1

k+1


(

r1
...rk+1

)
=

(
0
...0

)
.

If the rows are distinct the the Vandermonde determinant identity (6) implies
that ll the coefficients ai must be zero. �

Theorem 33. If p + 1 > k then the minimum distance of C = RSk(p) is
greater than or equal to n+ 1− k.

proof: Let ~f1 denote the codeword (f1(1), . . . , f1(p−1)) and let ~f2 denote

the codeword (f2(1), . . . , f2(p−1)), for f1, f2 ∈ GFp)[x]k. Suppose d(~f1, ~f2) <
n+ 1− k, in order to get a contradition. In this case, there are at least k+ 1
“points” i for which f1(i) = f2(i). Therefore, the polynomial f2− f1 has > k
zeros. The previous lemma implies f1 = f2 �

Corollary 34. If p+ 1 > k then C = RSk(p) is an MDS code.

14.10 Reed-Muller codes

Let m > 1 be an integer and let P1, P2, . . . , Pn denote all the points in the
set Fm. For any integer r, 1 ≤ r ≤ m(p− 1), let

F[x1, . . . , xm]r

denote the vector space over F of polynomials in the xi of total degree ≤ r.

Definition 35. The r-th order generalized Reed-Muller code RMF(r,m) of
length n = pm is the vector space of all vectors of the form (f(P1), f(P2), . . . , f(Pn)),
where f ∈ F[x1, . . . , xm]r.

In other words, RMF(r,m) is the image of the evaluation map

eval : F[x1, . . . , xm]r → Fn,
defined by

eval(f) = (f(P1), f(P2), . . . , f(Pn)).

This is implemented in Sage but only in the binary case.
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Sage

sage: C = BinaryReedMullerCode(2,4); C
Linear code of length 16, dimension 11 over Finite Field of size 2
sag: C.check_mat()
[1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1]
[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
[0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1]
[0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1]
[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

15 Cryptography

Cryptography is the study and practice of methods of secure communication.
Though in the days of Cesear, secret communication amounted to very simple
methods, modern cryptography required knowledge of extremely advanced
and sophisticated mathematical techniques. In this section, only a few of the
simplest (but relatively common) crytposystems will be discussed.

Figure 19: Cryptography .
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/

Let A be a finite set, which we call the alphabet (typically, A = F is a
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finite field, such as GF (p) for some prime p), and let M be the set of all
finite sequences of elements of A, which we call the message space. A cipher
is a mapping

E : M →M

called encryption, and an inverse mapping D : M → M called a decryption,
which satisfy D(E(m)) = m for all m ∈M . The messages in the range of E
are called the cipher text and the domain of E is called the message text.

15.1 Linear feedback shift register sequences

One type of cipher is the following. Suppose that your alphabet is GF (2) =
{0, 1} and that the message space M is as above. Let r = (r1, r2, . . . ) be
an infinite sequence of random elements of A. Define the encryption map
E : M → M by E(m) = m + r, where addition is componentwise modulo
2. Since r is a random sequence, any eavesdropper would think the received
message is random as well. Define the decryption map D : M → E by
D(m) = m + r, where again addition is componentwise modulo 2. This is
called a one time key pad cipher and r is called the key.

This is a wonderful cryptosystem. There is just one problem. How do
we construct a random sequence in a practical way that both the sender (for
encoding) and the receiver (for decoding) have a copy?

Linear feedback shift registers are one way to try to solve that problem.

Definition 36. Let p be a prime, k > 1 be an integer, and let a1, ..., ak are
given elements of GF (p). A linear feedback shift register sequence (LFSR)
modulo p of length k is a sequence s1, s2, ... such that s1, ..., sk are given and

sk+i = a1si + a2si+1 + ...+ aksk+i−1 , i > 0,

where addition and multiplication is performed over GF (p).

An equation such as this is called a recursion equation of length k modulo
p.

Example 37. The Fibonacci sequence is an example of a recursion equation
of length 2 over the integers. However, you can also reduce each of the
elements in the series modulo p, or simply compute the recursive equations
modulo p, to get a LFSR of length 2 modulo p.
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The sequence

fn+1 = fn + fn−1, f0 = 0, f1 = 1,

over GF (3) is

0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, . . . .

Notice that this Fibonacci sequence mod 3 seems to be periodic with period
8. This will be explained below.

Though LFSR ciphers are rather easy to break (see for example T. Brock
[Br]), they are still used today in bluetooth devices (http://en.wikipedia.
org/wiki/E0_(cipher)), among other things.

15.1.1 Linear recurrence equations

Suppose that a0, a1, . . . , ak−1 are given integers. The general method for
solving a recurrence equation of the form

sk+i = a0si + a1si+1 + ...+ ak−1sk+i−1, i > 1,

with s1, s2, ..., sk given, is rather simple to describe (in principle - in practice
it may be quite hard).

First, “guess” sn = crn, where c and r are constants. Substituting into
the recursion relation and simplifying, we find that c can be arbitrary but r
must satisfy

a0 + a1r + ...+ ak−1r
k−1 − rk = 0.

Let r1, ..., rk be the roots of this polynomial. We shall assume that these roots
are distinct. Under these conditions, let sn be an arbitrary linear combination
of all your “guesses”,

sn = c1r
n
1 + c2r

n
2 + ...ckr

n
k .

Recall that s1, ..., sk are known, so we have k equations in the k unknown
c1, ..., ck. This completely determines sn.

Example 38. Let sn satisfy sn = sn−1 + sn−2 and let s1 = 1, s2 = 1.

We must solve r2 − r − 1 = 0, whose roots are r1 = 1+
√

5
2

and r2 = 1−
√

5
2

.
Therefore,

sn = c1(
1 +
√

5

2
)n + c2(

1−
√

5

2
)n, n > 0.
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Since s1 = 1 and s2 = 1, we have

sn = 5−1/2rn1 − 5−1/2rn2 .

The recurrence equation

sk+n = a0sn + a1sn+1 + ...+ ak−1sk+n−1, n > 1, (7)

is equivalent to the matrix equation
0 1 0 . . . 0
0 0 1 . . . 1
... . . .
0 0 . . . 0 1
a0 a1 . . . ak−1




sn
sn+1

...
sn+k−1

 =


sn+1

sn+2
...

sn+k

 ,

where sn+k is given as above.

15.1.2 Golumb’s conditions

S. Golomb indtroduced a list of three statistical properties a sequence of
numbers A = {an}∞n=1, an ∈ {0, 1}, should display for it to be considered
“random”. Define the autocorrelation of A to be

C(k) = C(k,A) = lim
N→∞

1

N

N∑
n=1

(−1)an+an+k .

In the case where A is periodic with period P then this reduces to

C(k) =
1

P

P∑
n=1

(−1)an+an+k .

Assume A is periodic with period P .

• balance: |
∑P

n=1(−1)an| ≤ 1.

• low autocorrelation: For some “small” constant ε > 0, the autocorrela-
tion14 satisfies, for 0 ≤ ` ≤ P − 1,

14Not everyone defined the autocorrelation this way, but this definition is useful for
sequences of elements in GF (2).
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C(`) =

{
1, ` = 0,
ε, ` 6= 0.

(For sequences satisfying these first two properties, it is known that
ε = −1/P must hold.)

• proportional runs property: In each period, about half the runs have
length 1, one-fourth have length 2, and so on. Moveover, there are
about as many runs of 1’s as there are of 0’s.

Example 39. The GF (2)-version of the Fibonacci sequence is

{fn} = {0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . . }.

The period is P = 3, and so autocorrelation is

C(0) =
1

3
[(−1)f1+f1 +(−1)f2+f2 +(−1)f3+f3 ] =

1

3
[(−1)0 +(−1)0 +(−1)0] = 1,

C(1) =
1

3
[(−1)f1+f2+(−1)f2+f3+(−1)f3+f4 ] =

1

3
[(−1)0+(−1)1+(−1)1] = −1/3,

C(2) =
1

3
[(−1)f1+f3+(−1)f2+f4+(−1)f3+f5 ] =

1

3
[(−1)1+(−1)0+(−1)1] = −1/3.

Therefore, it has “low autocorrelation.” It is “balanced”:

|
3∑

n=1

(−1)fn| = |(−1)1 + (−1)1 + (−1)0| = 1 ≤ 1.

In a period, {0, 1, 1}, we have 1 run of length 1 and one run of length 2. For
period 3, this is the best we can do to try to satisfy the “proportional runs
property.”

This verifies Golomb’s statistical conditions in this example.
This can also be partially done in Sage.

Sage

sage: F = GF(2); l = F(1); o = F(0)
sage: fill = [o,l]; key = [1,l]; n = 20
sage: lfsr_sequence(key, fill, n)
[0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1]
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The theorem’s below, due to Golomb, tell us how easy it is to construct
such random-looking sequences.

Theorem 40. Let S = {si} be defined as above, (7). The period of S is at
most pk− 1. It’s period is exactly P = pk− 1 if and only if the characteristic
polynomial of

A =


0 1 0 . . . 0
0 0 1 . . . 1
... . . .
0 0 . . . 0 1
a0 a1 . . . ak−1

 ,

is irreducible and primitive15 over GF (p).

The notion of a primitive polynomial goes beyond this course, but exam-
ples will be given below.

A related result is the following fact, though it is only stated in the binary
case.

Theorem 41. If C = {cn}∞n=1 are the coefficients of f(x)/g(x), where f, g ∈
GF (2)[x] and g(x) is irreducible and primitive. Then C is periodic with
period P = 2d − 1 (where d is the degree of g(x)) and satisfies Golomb’s
randomness conditions.

Example 42. Consider the GF (2) polynomial f(x) = x16+x14+x13+x11+1,
which is the characteristic polynomials of the matrix

15A polynomial f(x) of degree m with coefficients in GF (p) is a primitive polynomial if
it has a root α in GF (pm) such that {0, 1, α, α2, α3, . . . , αpm−2} is the entire field GF (pm),
and moreover, f(x) is the smallest degree polynomial having α as root. Roughly speaking,
think of primitive as being a “nice” irreducible polynomial.
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A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1



.

This polynomial f(x) is, according to Sage, irreducible and primitive.

Sage

sage: R.<x> = PolynomialRing(GF(2),"x")
sage: R
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
sage: f = xˆ16 + xˆ14 + xˆ13 + xˆ11 + 1
sage: f.is_irreducible()
True
sage: f.is_primitive()
True

Remark 1. For polynomials of such relatively high degree, using an open-
source mathematical software system like Sage can be very useful. Since
Sage is open-source, you can check the is primitive algorithm yourself if
there is any doubt that it is correct. In fact, since the source code for the
Sage implementation of the is primitive algorithm is available for anyone
to read, it is likely that many others already have checked it over. Though
these two facts may give you greater confidence that Sage’s is primitive is
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correct, it is a general principle that all software has bugs. Therefore, it is a
healthy attitude to be skeptical of all computer programs. They are written
by humans and humans make mistakes.

15.1.3 Exercises

Exercise 15.1. Verify all the conditions of Golomb’s tests for the degree 16
polynomial in Example 42.

Exercise 15.2. Is the Fibonacci sequence mod p periodic for other values of
p? If so, find the periods for p = 5 and p = 7. Do you see a pattern?

Exercise 15.3. Find the characteristic polynomial associated to the Fibonacci
sequence modulo 2. Is it irreducible and primitive?

Exercise 15.4. Think about how to generalize Golomb’s statistical conditions
to a LFSR over GF (p). What would your conditions be?

15.2 RSA

RSA was publicly described in 1978 by Ron Rivest, Adi Shamir, and Leonard
Adleman, though it was discovered many years earlier by a researcher at
GCHQ named Clifford Cocks as part of classified work (declassified in 1997).
is one of the most popular cryptosystems used today. It has a small key-size
given the data that it can encrypt, and appears to be fairly secure. There
is a company, RSA Labs, which issued several challenge problems worth up
to $200000. However, in 2007 the challenge was ended and the prizes were
retracted for the remaining unsolved problems (http://en.wikipedia.org/
wiki/Rsa_challenge).

RSA involves a public key and a private key. The public key can be known
to everyone and is used for encrypting messages. Messages encrypted with
the public key can only be decrypted using the private key. Even though the
public key and the private key are mathematicaly related, the security of the
RSA cryptosystem relies on that belief that it is computationally infeasible
to compute the private key from the public key.

• Choose two distinct prime numbers p and q.

• Compute n = pq.

n is used as the modulus for both the public and private keys
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• Compute φ(pq) = (p− 1)(q − 1), where φ is Euler’s totient function.

• Choose an integer e such that 1 < e < φ(pq), and e and φ(pq) are
relatively prime).

e is released as the public key exponent.

• Determine d (using modular arithmetic) which satisfies the congruence
relation de ≡ 1 (mod φ)(pq).

This is often computed using the extended Euclidean algorithm.

d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption)
exponent e. The private key consists of the modulus n and the private (or
decryption) exponent d which must be kept secret.

Encryption algorithm: Alice and Bob want to send messages to each
other. We assume the existence of Eve, an evil-hearted evesdropper, who
knows RSA and the public key.

Alice transmits her public key (n, e) to Bob and keeps the private key
secret. Bob wishes to send a message m to Alice, an integer 0 < m < n.
He then computes the ciphertext c corresponding to: me ≡ c (mod n). Bob
transmits c to Alice.

Decryption algorithm: Alice can recover m from c by using her private
key exponent d by the following computation:

cd ≡ (me)d ≡ med = m1+kφ(n) = m · (mk)φ(n) ≡ m (mod n),

by Euler’s Theorem (http://en.wikipedia.org/wiki/Euler’s_theorem).

Example 43. Let p = 1009 and q = 1013, so n = pq = 1022117. Therefore
φ(n) = 1020096. Select e = 123451, so we compute d = 300019. If the
message is m = 46577 then we transmit the ciphertext c = 622474.

This can be done using Sage as well.

Sage

sage: p = next_prime(1000)
sage: q = next_prime(1010)
sage: n = p*q
sage: n
1022117
sage: k = euler_phi(n)
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sage: e = 123451 # a random integer in [1,k-1]
sage: k; xgcd(k, e)
1020096
(1, -36308, 300019)
sage: x = xgcd(k, e)[1]
sage: y = xgcd(k, e)[2]
sage: d = y%k
sage: y*e%k; d*e%k
1
1
sage: m = randint(100, k); m
46577
sage: c = power_mod(m,e,n) # faster than mˆe%n
622474
sage: power_mod(c,d,n) # the same as m, collaborating m was correctly decrypted
46577

15.3 Diffie-Hellman

We’ve looked at RSA, which seems to be a good method of sending messages
secretly. However, RSA requires that a private key be transmitted secretly.
How is that to be accomplished in a practical way? One method for solving
this problem was suggested by Whitfield Diffie and Martin Hellman in 1976.

Here’s a description of their protocol.

• Alice and Bob agree on a finite cyclic group G and a generating element
g ∈ G. (This is usually done long before the rest of the protocol; g is
assumed to be known by all attackers.) We will write the group G
multiplicatively. Assume G has order n.

• Alice picks a random natural number a, 1 < a < n, and sends ga to
Bob.

• Bob picks a random natural number b, 1 < b < n, and sends gb to
Alice.

• Alice computes (gb)a.

• Bob computes (ga)b.

• Both Alice and Bob are now in possession of the group element gab,
which can serve as the shared secret key.
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Example 44. Let G = (Z/101Z)×, g = 3, an element of order n = |G| =
100. Alice picks a = 35 and Bob picks b = 36. Alice computes ga = 44 and
Bob computes gb = 31. The commonly shared key is gab = 36.

This can be done using Sage as well.
Sage

sage: G = IntegerModRing(101)
sage: g = G.random_element()
sage: g; g.multiplicative_order()
3
100
sage: a = randint(1,50)
sage: b = randint(1,50)
sage: a; b
35
36
sage: ga = gˆa
sage: gb = gˆb
sage: ga; gb
44
31
sage: gaˆb; gaˆb == gbˆa
36
True

Figure 20: Donald Knuth .
xkcd license: Creative Commons Attribution-NonCommercial 2.5 License,
http://creativecommons.org/licenses/by-nc/2.5/
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16 Matroids

Matroid theory generalizes ideas of linear algebra and graph theory. A good
reference is Oxley’s fine book [O]. These “discrete” objects are excellent
examples of what can be implemented using Python’s class structure. They
also generalize linear codes so fit nicely into this topic.

First, what is a matroid?

Definition 45. A finite matroid M is a pair (E, J), where E is a non-empty
finite set and J is a collection of subsets of E (called the independent sets)
with the following properties:

• The empty set is independent, i.e., ∅ ∈ J .

• (the hereditary property) Every subset of an independent set is inde-
pendent, i.e., for each E ′ ⊂ E, E ∈ J implies E ′ ∈ J .

• (the augmentation property or the independent set exchange property)
If A and B are two independent sets in J and A has more elements
than B, then there exists an element in A which is not in B that when
added to B still gives an independent set.

It can be shown that if M1 = (E, J1) is a matroid on the set E and
M2 = (E, J2) is also a matroid on E then |J1| = |J2|. This cardinality is
called the rank of the matroid.

If M = (E, J) is a matroid then any element of J that has maximal
possible cardinality is called a base of M .

If matroids generalize graphs, can you draw them? If so, what do they
look like? A related question: How do you construct them? If we know how
to construct them, perhaps we can “picture” that construction somehow.

• If E is any finite subset of a vector space V , then we can define a
matroid M on E by taking the independent sets of M to be the linearly
independent elements in E. We say the set E represents M .

Matroids of this kind are called vector matroids.

A matroid that is equivalent to a vector matroid, although it may be
presented differently, is called representable. If M is equivalent to a
vector matroid over a field F , then we say M is representable over F .
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• Every finite graph (or multigraph) G gives rise to a matroid as follows:
take as E the set of all edges in G and consider a set of edges indepen-
dent if and only if it does not contain a simple cycle. This is called the
graphic matroid of G.

16.1 Matroids from graphs

Let Γ = (V,E) denote a graph. The matroid M = (E, J) associated to Γ is
obtained by taking the matroid E to be the same set as the graph E (i.e., the
edges of the graph), and taking as a base for J the set of spanning forests16

of Γ. An element of J , the set of independent elements of the matroid, is
simply a forest in Γ. In the case then Γ is connected, this means that the
base for the matroid associated to Γ is the set of all spanning trees of Γ.

Example 46. First, consider the graph in Figure 6 in §6.1. The matroid
M = (E, J) is fairly large. Indeed, merely the base for J has nearly 300
elements!

Sage

sage: graph_dict = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,2], 4: [0,1],
5: [7, 6], 6: [2], 7: [2]}

sage: G = Graph(graph_dict); G
Graph on 8 vertices
sage: G.spanning_trees_count()
290

Let us consider a much smaller example.

Example 47. Consider the cycle on 3 vertices.

16Recall a forest in a graph is simply a subgraph which contains no cycles.
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Figure 21: A cycle on 3 vertices .

What is the matroid associated to this graph? Here are the spanning
trees in the graph:

These form a base for the independent sets J . This count agrees with what
Sage says as well:

Sage

sage: graph_dict = {0: [1,2], 1: [0,2], 2: [0,1]}
sage: G = Graph(graph_dict); G
Graph on 3 vertices
sage: G.spanning_trees_count()
3

The rest of the elements of J are the four graphs listed below.
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16.2 Matroids from linear codes

Let C be a linear code over a finite field F and G a generator matrix. Let E
be the set of all columns of G. This defines a matroid M representable over
F.

Example 48. If C is the binary linear code having generator matrix 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1


then the set of subsets of the column indices which correspond to independent
columns are

J = {{}, {0}, {0, 1}, {0, 1, 2}, {0, 1, 4}, {0, 2}, {0, 2, 3}, {0, 3}, {0, 3, 4}, {0, 4},
{1}, {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2}, {2, 3}, {2, 3, 4},
{2, 4}, {3}, {3, 4}, {4}},
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according to Sage. This set J is the set of independent sets of M and the
subset of J consisting of the 3-tuples is the set of bases of M . Here is the
program used to compute J .

Python

def independent_sets(mat):
F = mat.base_ring()
n = len(mat.columns())
k = len(mat.rows())
J = Combinations(n,k)
indE = []
for x in J:

M = matrix([mat.column(x[0]),mat.column(x[1]),mat.column(x[2])])
if k == M.rank(): # all indep sets of max size

indE.append(x)
for y in powerset(x): # all smaller indep sets

if not(y in indE):
indE.append(y)

return indE

Of course, if S is an element of J then any subset of S is also independent.

Question: Is this matroid the matroid of a graph? If so, can you construct
it?

17 Class projects

These are just suggestions. Just ask if you have strong interest in working
on something different. You can also look for ideas in the course textbook
Biggs [B].

All programs submitted must be released under an open-source license.
If you write all the programs yourself, with no resources used, then they are
in the public domain, since you are a U.S. government employee and this is
part of your official duties. If you use or modify someone elses code then you
must use code with an open-source GPL-compatible license. (For example,
MIT license, GPLv2+, Python license, and many others.) A copyright and
license statement must be included with your submitted code.

1. Gray codes. Cite and explain connections with/applications to cam-
panology, Hilbert space curves, Hamiltonian paths in a graph, the
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Tower of Hanoi, and electrical engineering. Implement versions ver-
sions and analyze them and test them for speed.

References:

• Steve Witham Hilbert Curves in More (or fewer) than Two Di-
mensions
http://www.tiac.net/~sw/2008/10/Hilbert/

• Gray codes Wikipedia
http://en.wikipedia.org/wiki/Gray_code

• David Joyner and Jim McShea Gray codes
http://www.usna.edu/Users/math/wdj/gray.html

• Application: Bell ringing, a section in Applied Abstract Alge-
bra, D. Joyner, R. Kreminski, J. Turisco, Johns Hopkins Univ.
Press, 2002.
http://www.usna.edu/Users/math/wdj/book/node158.html

• J. H. Conway, N. J. A. Sloane and Allan R. Wilks, Gray Codes
for Reflection Groups
http://www2.research.att.com/~njas/doc/wilks.html

2. Reed-Muller codes. Implement them as generally as possible. Discuss
history and applications.

3. Implement the Tanner graph of an error-correcting code
http://www.usna.edu/Users/math/wdj/book/node204.html

http://en.wikipedia.org/wiki/Tanner_graph

4. Huffman codes.

Implement Huffman codes in Sage. Discuss connection with informa-
tion theory and other compression codes. Is there a relationship with
efficiency of google computer searches?

Note this: http://en.wikipedia.org/wiki/Huffman_codes#History

5. Cryptography. Some possible examples.

• (Hard?) Implement a feedback with carry shift register stream
cipher.
http://www.math.ias.edu/~goresky/EngPubl.html

http://www.cs.uky.edu/~klapper/algebraic.html
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• (Hard?) The Biggs cryptosystem using graph theory, chip firing
games and Diffie-Hellman.

Reference:

[B1] Simon R. Blackburn, Cryptanalysing the critical group: effi-
ciently solving Biggs’s discrete logarithm problem,
http://eprint.iacr.org/2008/170

[B2] ——, Group Theory and Cryptography
http://personal.rhul.ac.uk/uhah/058/talks/bath2009.pdf

[S] F. Shokrieh, Discrete logarithms on the Jacobian of finite graphs,
pdf version avaialble on the internet, arXiv:0907.4764v1

6. Tower of Hanoi. Can you think of a Python class structure which would
help model this puzzle? See the slides by S. Dorée.

S. Dorée, The graphs of Hanoi, Portland Area Lecture Series (PALS),
November 19, 2009.

7. Social network analysis and graph theory.

• Implement the Havel-Hakimi algorithm in Sage. (More prescisely,
write an interface to the implementation in NetworkX; please ask
me for details and help.)

• Look at a specific model, such as http://en.wikipedia.org/

wiki/Watts_and_Strogatz_model, and implement it in Sage. Oth-
ers:

BarabásiAlbert model
http://en.wikipedia.org/wiki/BA_model

ErdösRényi model
http://en.wikipedia.org/wiki/Erdos-Renyi_model

8. Crowd dynamics. Implement a simulated bomb evaculation of a rectan-
gular room using Python, graphs, and Markoff processes. (For specific
suggestions, see me. A vaguely similar project is discussed in lectures
17-19 in [GG].)
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18 Labs and tests

18.1 Computer Lab 1

Exercises for lab 1.
To be handed in!

1. Create a hello world program using string concatenation

c = "hello World!!"

print c

def hello():

a = "Hello"

b = " World!"

c = a+b

return c

hello()

Note c is different “inside” the program than “outside.”

2. What is wrong with this statement?

as = 5

3. def hello(name = ’Mom’):

a = "Hello"

b = name

c = a+b

return c

How do you get this program to return ’Hello World!’?

(Hint: Look at # 5 at http://wiki.python.org/moin/SimplePrograms.)

4. Type

1/3
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into python 2.5 or 2.6, then type

1/3

into python 3.1. What is the difference?

5. Type

a = 1/10

print a

and

a = 1/10

print(a)

into both python 2.6 and python 3.1. What is the difference?

6. Type

a = 0.1

a

print a

into python 2.6 and 3.1. What is the difference?

7. Type

range(10)

s = 0

for i in range(101):

s = s+i

s

What is s?

8. Type

s = sum([i for i in range(101)])

s
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What is s?

9. Type

4%2

5%2

4%3

5%3

s = sum([i for i in range(101) if i%2 == 0])

s

What does % means? What is s?

10. Type

s = sum([i for i in range(101) if i%2 == 0 and i%3 == 0])

s

What is s?

11. Sign up at http://projecteuler.net/ and create an account. Write
a program that solves problem 1.

18.2 Computer Lab 2

1. Create a companion matrix program in Sage by building the matrix
row-by-row using the list append command.

def companion_mat(L):

k = len(L)

rows = []

for i in range(k-1):

r = [0]*k

r[i+1] = 1

rows.append(r)

rows.append(L)

return matrix(rows)

What is the companion matrix C of [1,1]? Of [2, 3, 4]?
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2. What is the characteristic polynomials of the companion matrix of
[1, 1]? Of [2, 3, 4]? (if C = companion mat(L), compute C.charpoly()

in Sage.)

3. What are the roots of the characteristic polynomials of the companion
matrix of [1, 1]? (If f = C.charpoly(), use Sage’s f.real roots() or
f.complex roots().) Do you recognize them?

4. What is C10? What is the 10-th Fibonacci number?

5. Let s0, s1, ... an infinite sequence and a, b be fixed. Show that

sn+1 = bsn + asn−1

if and only if (
sn
sn+1

)
=

(
0 1
a b

)(
sn−1

sn

)
.

6. Use this recursion relation to compute

(
0 1
a b

)16(
s0

s1

)
.

7. Now take a = b = 1 and assume s0 = 0, s1 = 1. (This infinite sequence
{sn} is now the Fibonacci sequence.)

How many computations does it take to compute f1024?

Each matrix multiplication takes 8 scalar multiplications (actually only
7, thanks to an extremely clever algorithm due to Strassen, but we omit
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the complicated details - use google to search “Strassen algorithm” if
you are interested in details).

This gives 1024× 8 (or 1024× 7) multiplications. Right?

Wrong!

First, compute

(
0 1
a b

)2

. Next compute (

(
0 1
a b

)2

)2 =

(
0 1
a b

)4

.

Next compute (

(
0 1
a b

)4

)2 =

(
0 1
a b

)8

. ... Finally, compute

(

(
0 1
a b

)512

)2 =

(
0 1
a b

)1024

. What is the total number of mul-

tiplications needed to compute the last quantity?

Answer:

8. In general, the Repeated Squaring Algorithm says that to compute
an you perform the following procedure.

an =


1, if n = 0
an−1a, if n is odd
(an/2)2, if n is even

Here is another version.

• Compute the binary representation of n:

n = b0 × 20 + b1 × 21 + · · ·+ bm × 2m,

where m = [log2(n)]. Here b = [bm, . . . , b0] (or [b0, . . . , bm], de-
pending on how you write it) is the binary representation of n.

• Compute the m numbers a, a2, a4, a8, . . . , a2m
.

• Compute an =
∏

i, such that bi 6=0 a
2i

.

9. Use the bin command in Python to convert the following numbers to
binary: 4, 5, 32, 33, 2048, 2049.

How many steps (muliplications, including repeated squarings) does it
take to compute 32049 using this algorithm?
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10. Can you implement the repeated squaring algorithm in Python (Sage
has this implemented automatically already)?

Use the template below and fill it in with Python or Sage commands.
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def power(a,n):

"""

your docstring...

"""

p = 1

#define p = a^n using above algorithm...

return p

11. Multiplying n × (n − 1), using “long multiplication” from elementary
school, takes about log2(n)2 = O(ln(n)2 multiplications. (There are
faster algorithms, but this is the one you are most used to.)

Write 37 and 75 as “binary polynomials”:

37 = × 1 + × 2 + × 22 + · · ·+ × 25

and
75 = × 1 + × 2 + × 22 + · · ·+ × 26.

How many multiplications are needed to compute 37× 75 this way?

12. Can other recursive procedures be computed quickly as well?

Suppose that s0 = 1 and sn = nsn−1 for n > 0. What is s10? sn?
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18.3 Computer Lab 3

1. Use the following (or using Python’s xor) programs in the assignment
below.

def int2binary(m, n):

"""

returns "binary list" of length n obtained

from the binary repr of m, padded by 0’s

(on the left) to length n.

"""

s = bin(m)

k = len(s)

b = [0]*n

for i in range(2,k):

b[n-k+i] = int(s[i])

return b

def binary2int(b):

"""

inverts int2binary

"""

k = len(b)

n = sum([int(b[i])*2**(k-1-i) for i in range(k)])

return n

Write the following program:

def add_vectors_mod_m(L1, L2, m):

"""

Adds two lists of the same length modulo m,

using componentwise addition.

INPUT:

L1 - integer list of length n

L2 - integer list of length n

m - integer >1.
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OUTPUT

L1+L2 mod m

"""

#write your program here.

Now use the program below to compute the 5th Gray codeword in the
reflected Gray code of length 4:

def graycodeword(m, n):

’’’

returns the mth codeword in the reflected binary Gray code

of length n.

’’’

return add_vectors_mod_m(int2binary(m,n), int2binary(int(m/2),n), 2)

2. You can XOR two positive integers a, b (1 ≤ a, b ≤ 2n − 1) using

binary2int(add_vectors_mod_m(int2binary(a,n), int2binary(int(b),n), 2))

or simply

import operator

operator.xor(a,b)

Find 76 XOR 89 = .

3. Try to decrypt this message:

[3, 11, 68, 10, 5, 18, 29, 69].

This is encoded by first converting to ASCII (using Python chr and
ord) then XORing with a single lower-case character (called the key).
(This is like Project Euler 59 but just XORs with a single character,
rather than a 3-letter word.)
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4. Now see if you can decode the message in Project Euler problem 59

http://projecteuler.net/index.php?section=problems&id=59

18.4 Computer Lab 4

The Python class for finite fields GF (p), p prime, is given in §14.5.1 above.
Make your own class that implements the class FFVectorSpace and FFVectors.
The vector space class must be able to take a prime p (for the characteristic)
and an integer n (for the dimension) as arguments. The vectors class must
be able to take a prime p, an integer n and a list of length n of integers
(for the coordinates of the vector) as arguments. You must implement vec-
tor addition and subtraction. However, scalar multiplication is extra credit.
Document your code with standard Python docstrings.

18.5 Take-home Test 1

You may use class notes, class text, Python books or the internet, but please
reference your use with appropriate detail. Work on your own and no serious
discussion (questions like “Did you finish Problem 2 yet?” are okay) of the
exam with others until they are all handed in.

1. Write a Python program to convert fahrenheit to celcius. Document
your code with examples and references as in §9.2 and §9.4 of the notes
(using Wikipedia is okay).

2. To start, in Python, define A = [2, 3, [4, 5], 6], then define B =

A and C = copy(A). (You may need to import the copy command using
from copy import * or import copy.)

• Set C[2] = 1. What is A, B, C?

• Start over17. Set B[2] = 1. What are A, B, C?

• Start over. Set A[2] = 1. What are A, B, C?

• Start over. Set C[2][1] = 1. What are A, B, C?

3. Using the ideas in §8.3.2, write a program to compute the 12-th Lucas
number, as defined in §8.3.3.

17This means, redefine A<B,C as above, not to “manually reset values.”
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4. Write a program collatz which has

INPUT: n - integer ≥ 1

OUTPUT: An integer given by

1, if n = 1,
n/2, if n is even,
3n+ 1, if n is odd,

(See the Wikipedia entry on the Collatz conjecture if you are interested
in the underlying question.) How many times you have to iterate your
program starting at n = 100 (n1 = 100, n2 = collatz(n1), n3 =
collatz(n2), . . . ) before you get to 1? In your program, be careful of
what type you are returning.

5. Explain and properly comment the following program.

def silly(y, x=3):

z=x

while(z>0):

y = y+x

z = z-1

return y

In other words, add docstrings, formatted as in §9.2 and §9.4 . In
particular, explain what x=3 does.

6. Consider the extended Euclidean algorithm as implemented in the sec-
ond program listed in §6.2, Example 4, of the notes. Create a table of
values of all the key variables for for each step of the while loop for
the case a = 24, b = 15.

7. A bowl of marbles in your math classroom contains 2009 green marbles
and 2010 red ones. Every time you go to class, you must pick 2 marbles.
If you pick 2 marbles of the same color, your math professor generously
adds a red marble to the bowl. If you pick 2 marbles of different colors,
your math professor generously adds a green marble to the bowl. What
is the color of the last marble and how many times (in a worst case
scenario) do you have to go to class before the bowl is empty?

(Okay, this can be solved with no programming, but if you can program
this, you will get extra credit.)
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