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1. Project Overview

What follows is just one facet of a Trident Scholar project, with input from work done in
the SM450A class. The overall goal of the project is to build and develop a class of efficient
error-correcting codes through recent advances in the algebraic geometry, combinatorics, and
commutative algebra of subspace arrangements. These codes are evaluation codes, which
are constructed using an ideal on a polynomial ring. The results that follow deal with one
specific ideal, namely, I =< x1 · · ·xl > in the polynomial ring Fq[x1, . . . , xl] in relation to the
vector space Fl

q (note that Fq is a finite field). Furthermore, note that in the construction of
these codes, in order to form a basis for the code, all polynomials up to degree j (which is
selected beforehand) are evaluated on each point in the vector space which evaluates to zero
on the ideal. There are two components to this component of the project: a short segment on
the relationship of the subspace arrangement codes being constructed for the Trident Scholar
project to Reed-Muller codes, and then a longer section describing some results with regard to
the dimension, k, of a code based upon the ideal I =< x1 · · ·xl >. The sage file attached to
this report was instrumental in these conclusions since it was able to easily generate properties
of parts of the matrix that represent the code.

2. Reed-Muller Codes and Hyperplane Arrangements

2.1. Description of Reed-Muller codes and Properties. Reed-Muller codes are a class of
codes that are closely related to the subspace arrangement codes used in this project. Just as an
ideal is used to generate a subspace arrangement code, a Reed-Muller code can be interpreted
as developing from the ideal I =< 0 >. Consequently, the construction and properties of
subspace arrangement codes can be applied to Reed Muller codes with I =< 0 > (essentially,
all points are considered in the matrix construction because I =< 0 >). Thus, formulae for the
length (n), dimension (k), and minimum distance (d) of certain types of Reed-Muller codes can
be given. Citing Introduction to Coding Theory by Jacobus Hendricus van Lint, when q = 2,

n = 2l, k =
j∑

s=0

(
l
s

)
, and d = 2l−j . In general, n = ql, since, as stated earlier, all points in the

vector space are considered. Further formulae for other instances of q are currently not known
or publicized, but, if j < q, d = (q − j)ql−1, according to List Decoding of q-ary Reed-Muller
Codes by Raad Pellikaan and Xin-Wen Wu.

2.2. Conjectures Based upon Reed-Muller Codes. Using the Sage file and functions
developed and used by Professor Joyner, Professor Wakefield, and myself, numerous examples
of Reed-Muller codes and subspace arrangement codes based upon the ideal I =< x1 · · ·xl >
were generated (j, l, and q where held constant for each pairing of a Reed-Muller code and
a subspace arrangement code). Though no definitive results were given, some trends were
identified, and they are listed here. Let n = ql, k = kGR−M , and d = dGR−M for the generalized
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Reed-Muller code. For selections of q, l, j ≤ l− 1, and I =< x1 · · ·xl >, n = ql− (q− 1)l (this
number represents all points that have at least one 0 component [so they are on a hyperplane],
obtained by subtracting the number of non-zero elements raised to the number of positions
in a point from the number of all points). Furthermore, there are indications that, for the
subspace arrangement code, k = kGR−M and d = dGR−M − (q−1)l. If j = l, n clearly remains
the same; on the other hand, it appears that k =dim(Generalized Reed-Muller code)−1 and
d = dGR−M − (q − 1)l. Ideally, these formulae can be proven, as well as finding formulae for
the dimension and minimum distance of any generalized Reed-Muller Code.

3. Proofs Regarding the Dimension of Codes Generated by the Ideal
I =< x1 · · ·xl >

3.1. Dimension for I =< x1 · · ·xl > whenever j = 1: k = l+1. Previous work allowed the
extension of a theorem by Richard Stanley to be applied to this class of error-correcting codes,

establishing an upper bound for dimension: k ≤
j∑

m=0

(
m+l−1

m

)
=

1∑
m=0

(
m+l−1

m

)
=
(
l−1
0

)
+
(

l
1

)
=

l+1. The dimension of l+1 refers to the number of linearly independent row vectors produced
by the matrix construction of the Eval function for generating the code. Each row corresponds
to a polynomial. Thus, the polynomials are 1, x1, . . . , xl. Thus, it suffices to show that the
row vectors v0, v1, . . . , vl produced by the respective polynomials 1, x1, . . . , xl are linearly
independent. Define ei as the point (0, 0, . . . , 0, 1, 0, . . . , 0) in Fl

1 such that all components in ei

are 0 except for the ith position. Furthermore, define e0 as the origin, (0, 0, . . . , 0, . . . , 0). Note
that regardless of the selection of q, ei for i = 0, . . . , l all evaluate to 0 on I, so ei ∈ V (I), i =
0, . . . , l. For simplicity (but without loss of generality), let e0, . . . , el correspond to the first
l+1 columns in the matrix. To show linear independence, let L = c0v0 +c1v1 + · · ·+clvl = 0.
Define vi(j) as the jth position in the ith vector, where the initial position and vector are
defined respectively as e0 and v0. L(i) is defined similarly. Examine L(0) = c0v0(0) +
c1v1(0) + · · · + clcl(0) = 0, which simplifies to c0(1) + c1(0) + · · · + cl(0) = c0(1) = c0 = 0.
Thus, c0 = 0, so it suffices to only examine L′ = c1v1 + · · · + clvl = 0. Note that for all
i > 0, L′(i) = c1v1(i)+· · ·+civi(i)+· · ·+clcl(i) = c1(0)+· · ·+ci(1)+· · ·+cl(0) = ci(1) = ci = 0,
so ci = 0 for all i > 0. Hence, the only solution to L = c0v0 + c1v1 + · · · + clvl = 0 is the
trivial solution c0 = c1 = · · · = ci = · · · = cl = 0, meaning that {v0, v1, . . . , vl} are linearly
independent. Therefore, each of the l + 1 row vectors in the matrix are linearly independent,
so k = l + 1. �

3.2. Dimension for I =< x1x2 > whenever q > 2, j = l = 2: k = 5. Since q > 2,
F2

q contains at least 3 elements, 0, 1, ω. In the matrix construction, let the first 5 columns
correspond to the points (0, 0), (1, 0), (0, 1), (ω, 0), (0, ω), and the rows correspond to the poly-
nomials 1, x1, x2, x

2
1, x

2
2. Note that these are 5 of the 6 polynomials covered by the upper

bound (which is
j∑

m=0

(
m+l−1

m

)
=

2∑
m=0

(
m+1

m

)
=
(
1
0

)
+
(
2
1

)
+
(
3
2

)
= 6; the polynomial not used is

x1x2 since all points in V (I) have at least one term a 0, so x1x2 evaluates to 0 for all points
in V (I), creating a linearly dependent row vector in the matrix). Thus, the resulting matrix
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is as follows:

(0, 0) (1, 0) (0, 1) (ω, 0) (0, ω) . . .
1 1 1 1 1 1 . . .
x1 0 1 0 ω 0 . . .
x2 0 0 1 0 ω . . .
x2

1 0 1 0 ω2 0 . . .
x2

1 0 0 1 0 ω2 . . .

.

Since, by both examination of the matrix and by a parallel argument to the first proof, the
first row is linearly independent from the other four, only the four other row vectors need to
be shown to be linearly independent. Furthermore, the first column vector, which becomes all
0s in the absence of the first row vector, can also be removed. To show linear independence
the determinant of the resulting matrix can be taken (only 4 columns need be considered),
which is as follows:

(1, 0) (0, 1) (ω, 0) (0, ω)
x1 1 0 ω 0
x2 0 1 0 ω
x2

1 1 0 ω2 0
x2

1 0 1 0 ω2

.

The determinant of the matrix is ω2(ω−1)2 6= 0 since Fq is a field and thus an integral domain,
meaning it has no zero divisors (note to that ω 6= 0, ω 6= 1). Thus, all 5 row vectors of the
original matrix construction are linearly independent, implying that the dimension of the code
is 5. �

3.3. Dimension for I =< x1x2x3 > whenever q > 2, j = 2, l = 3: k = 10. First note

that 10 corresponds to the upper bound:
j∑

m=0

(
m+l−1

m

)
=

2∑
m=0

(
m+2

m

)
=
(
2
0

)
+
(
3
1

)
+
(
4
2

)
=

10, corresponding to the polynomials 1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3. Thus, carefully

selecting the points in V (I) in the columns (which can be ordered in any way), a part of the
matrix can be constructed (note that since q > 2, 0, 1, ω are at least in Fq):

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (ω, 0, 0) (0, ω, 0) (0, 0, ω) (1, ω, 0) (1, 0, ω) (0, 1, ω) . . .
1 1 1 1 1 1 1 1 1 1 1 . . .
x1 0 1 0 0 ω 0 0 1 1 0 . . .
x2 0 0 1 0 0 ω 0 ω 0 1 . . .
x3 0 0 0 1 0 0 ω 0 ω ω . . .
x2

1 0 1 0 0 ω2 0 0 1 1 0 . . .
x2

1 0 0 1 0 0 ω2 0 ω2 0 1 . . .
x2

3 0 0 0 1 0 0 ω2 0 ω2 ω2 . . .
x1x2 0 0 0 0 0 0 0 ω 0 0 . . .
x1x3 0 0 0 0 0 0 0 0 ω 0 . . .
x2x3 0 0 0 0 0 0 0 0 0 ω . . .

.

As in the last example, the first row is linearly independent of the other 9, so it (and the first
column) can be removed. Furthermore, note that the last three rows are linearly independent
from the other remaining 6 since their first 6 terms are 0, whereas no other row vectors exhibit
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this property. Furthermore, the last three are linearly independent by examining the bottom-
right 3-by-3 matrix,

(1, ω, 0) (1, 0, ω) (0, 1, ω)
x1x2 ω 0 0
x1x3 0 ω 0
x2x3 0 0 ω

.

Thus, all that must be examined is the six remaining row vectors; the last 3 columns listed
can also be disregarded since they are only necessary to show that the last three row vectors
are linearly independent. All that remains is a 6-by-6 matrix:

(1, 0, 0) (0, 1, 0) (0, 0, 1) (ω, 0, 0) (0, ω, 0) (0, 0, ω)
x1 1 0 0 ω 0 0
x2 0 1 0 0 ω 0
x3 0 0 1 0 0 ω
x2

1 1 0 0 ω2 0 0
x2

1 0 1 0 0 ω2 0
x2

3 0 0 1 0 0 ω2

,

which has a determinant of ω3(ω−1)3 6= 0 since there are no zero divsors in Fq. Therefore, the
middle six row vectors are linearly independent, which are linearly independent from the last
three row vectors (which are also linearly independent), all of which are linearly independent
from the first row vector. Thus, there are 10 linearly independent row vectors in the matrix
construction, implying that the dimension of the code is 10. �

3.4. Dimension for I =< x1 · · ·xl > whenever q > 2, j = 2, l ≥ 3: k = l2+l
2 + l + 1. First

note that k = l2+l
2 + l + 1 corresponds to the upper bound,

j∑
m=0

(
m+l−1

m

)
=

2∑
m=0

(
m+l−1

m

)
=(

l−1
0

)
+
(

l
1

)
+
(
l+1
2

)
= 1 + l + (l+1)!

(l−1)!(2) = 1 + l + (l+1)(l)
2 = l2+l

2 + l + 1. Notice that since this
is the upper bound, the proposed dimension corresponds to all polynomials in Fl

q of degree 0,
1, and 2. Thus, it is sufficient to show that all l2+l

2 + l + 1 rows in the matrix construction of
the code are linearly independent. The matrix can be constructed as follows:

(0,...,0) (1,0,...,0) ... (0,...,0,1) (ω,0,...,0) ... (0,...,0,ω) (1,ω,0,...,0) ... (1,0,...,0,ω) ... (0,...,0,1,ω)...
1 1 1 ... 1 1 ... 1 1 ... 1 ... 1...
x1 0 1 ... 0 ω ... 0 1 ... 1 ... 0...

...
...

...
...

...
...

...
...

...
...

...
...

......
xl 0 0 ... 1 0 ... ω 0 ... ω ... ω...

x2
1 0 1 ... 0 ω2 ... 0 1 ... 1 ... 0...

...
...

...
...

...
...

...
...

...
...

...
...

......
x2

l 0 0 ... 1 0 ... ω2 0 ... ω2 ... ω2...
x1x2 0 0 ... 0 0 ... 0 ω ... 0 ... 0...

...
...

...
...

...
...

...
...

...
...

...
...

......
x1xl 0 0 ... 0 0 ... 0 0 ... ω ... 0...

...
...

...
...

...
...

...
...

...
...

...
...

......
xl−1xl 0 0 ... 0 0 ... 0 ... 0 ... 0 ω...

.

To parallel the argument for the specific case of l = 3, note that the first row vector
is linearly independent from the others since it is the only row vector with a 1 as its first
entry. Additionally, all polynomials which are the product of two distinct first-degree polyno-
mials are linearly independent from the other row vectors since the first 2l + 1 columns are
zero. Additionally, these row vectors are linearly independent since the ensuing

(
l
2

)
columns
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((1, ω, 0, . . . , 0) . . . (0, . . . , 0, 1, ω)) where chosen such that the corresponding polynomial in rep-
resenting the row vector evaluates to ω, thereby forming a smaller

(
l
2

)
by
(

l
2

)
matrix with ω

in each diagonal entry and 0s elsewhere, thereby making each of these row vectors linearly
independent. Thus, all that is left to be shown to be linearly independent are the row vec-
tors corresponding to the polynomials x1, . . . , xl, x

2
1, . . . , x

2
l . Note that the collection of row

vectors corresponding to the polynomials x1, . . . , xl are linearly independent since (removing
the first column) an upper triangular matrix with 1 in each diagonal entry is formed; the
same is true for the row vectors corresponding to x2

1, . . . , x
2
l . Note that the first group of l

row vectors are linearly independent from the second group of l row vectors since (letting xi

and x2
i represent each group, where xi is arbitrarily chosen) the row vectors corresponding to

xi and xl
i are identical (after deleting the first column) in the first l columns, but differ in

the ensuing l columns (note that a square matrix can be made deleting the first column and
all columns after the column corresponding to (0, . . . , 0, ω)). Thus, the determinant of such
a square matrix must be nonzero, and, within the matrix, no row vector is a multiple (and
thus not a linear combination) of any other row. Therefore, these 2l vectors must be linearly
independent. Therefore, all of the row vectors (all 1 +

(
l
2

)
+ 2l = l2+1

2 + l + 1 of them) in the
matrix must be linearly independent. �

3.5. Dimension for I =< x1x2x3x4 >, whenever j = 3, q > 3, l = 4: k = 35. Of first note

is the upper bound for these parameters: k ≤
j∑

m=0

(
m+l−1

m

)
=

3∑
m=0

(
m+3

m

)
=
(
3
0

)
+
(
4
1

)
+
(
5
2

)
+
(
6
3

)
=

1 + 4 + 10 + 20 = 35. Thus, in order to show that the dimension is 35, it suffices to show
that each row vector in the matrix construction of the code (of which there are 35 for each
polynomial of degree less than or equal to 3) is linearly independent. Furthermore, careful
ordering of the columns of the matrix construction will lend themselves to a clear determination
of linear independence. Thus, the matrix construction can be as follows (note that since q > 3,
{0, 1, ω, ω2} are all at least in F3

q):

(0,0,0,0) (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (ω,0,0,0) (0,ω,0,0) (0,0,ω,0) (0,0,0,ω) (ω2,0,0,0) (0,ω2,0,0) (0,0,ω2,0) (0,0,0,ω2) ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
x1 0 1 0 0 0 ω 0 0 0 ω2 0 0 0 ...
x2 0 0 1 0 0 0 ω 0 0 0 ω2 0 0 ...
x3 0 0 0 1 0 0 0 ω 0 0 0 ω2 0 ...
x4 0 0 0 0 1 0 0 0 ω 0 0 0 ω2 ...
x2
1 0 1 0 0 0 ω2 0 0 0 ω4 0 0 0 ...

x2
2 0 0 1 0 0 0 ω2 0 0 0 ω4 0 0 ...

x2
3 0 0 0 1 0 0 0 ω2 0 0 0 ω4 0 ...

x2
4 0 0 0 0 1 0 0 0 ω2 0 0 0 ω4 ...

x3
1 0 1 0 0 0 ω3 0 0 0 ω6 0 0 0 ...

x3
2 0 0 1 0 0 0 ω3 0 0 0 ω6 0 0 ...

x3
3 0 0 0 1 0 0 0 ω3 0 0 0 ω6 0 ...

x3
4 0 0 0 0 1 0 0 0 ω3 0 0 0 ω6 ...

x1x2 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

...
...

...
...

...
...

...
...

...
...

...
...

...
... ...

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

.

Note that all polynomials which have the multiplication xixj (j 6= i) as a factor evaluate to
0 upon all of these listed points. Thus, the linear independence of the row vectors associated
with those polynomials is not contingent upon the linear independence of the first 13 row
vectors. Furthermore, note that the row vector associated with the constant polynomial is the
only row vector with a non-zero element as the initial element; thus it is linearly independent
from the other 34 row vectors and need not be considered in any further arguments. Thus, the
second through thirteenth row vectors can be considered one case. In order to show the linear
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independence of these row vectors, the determinant of the following matrix must be shown to
be non-zero (the matrix consists of the components of the second through thirteenth rows and
columns of the previous matrix):

1 0 0 0 ω 0 0 0 ω2 0 0 0
0 1 0 0 0 ω 0 0 0 ω2 0 0
0 0 1 0 0 0 ω 0 0 0 ω2 0
0 0 0 1 0 0 0 ω 0 0 0 ω2

1 0 0 0 ω2 0 0 0 ω4 0 0 0
0 1 0 0 0 ω2 0 0 0 ω4 0 0
0 0 1 0 0 0 ω2 0 0 0 ω4 0
0 0 0 1 0 0 0 ω2 0 0 0 ω4

1 0 0 0 ω3 0 0 0 ω6 0 0 0
0 1 0 0 0 ω3 0 0 0 ω6 0 0
0 0 1 0 0 0 ω3 0 0 0 ω6 0
0 0 0 1 0 0 0 ω3 0 0 0 ω6

.

Row-reduction techniques will allow the creation of an upper triangular matrix, which has a
determinant that is easy to calculate. Let the first four rows of the above matrix be collective
called A, the next four B, and the last four C. Let operations cA + dB be defined as the
multiplication of each row in A and B by c and d, respectively and then the component-wise
addition of A and B (so the first row in A is added to the first row in B; this is analogous to
creating a new vector space). Thus, (through row-reduction) replace B by B−A, and replace
C by C−B− ω(B−C):

1 0 0 0 ω 0 0 0 ω2 0 0 0
0 1 0 0 0 ω 0 0 0 ω2 0 0
0 0 1 0 0 0 ω 0 0 0 ω2 0
0 0 0 1 0 0 0 ω 0 0 0 ω2

0 0 0 0 ω2−ω 0 0 0 ω4−ω2 0 0 0
0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2 0 0
0 0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2 0
0 0 0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2

0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3 0 0 0
0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3 0 0
0 0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3 0
0 0 0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3

.

Note that this is an upper traingular matrix, so the determinant of it is the product of the

diagonal entries: 14(ω2−ω)4(ω6−ω5−ω4 +ω3)4 = ω4(ω−1)4
(
ω3
(
(ω−1)(ω +1)(ω−1)

))4

=

ω16(ω − 1)12(ω + 1)4. Thus, the determinant is 0 if and only if ω = 0, 1,−1. However, since
q > 3, ω does not take on any of these values ({0, 1, ω, ω2} are all distinct, ruling out ω = 0, 1;
if ω = −1, then ω2 = (−1)2 = 1, another contradiction). Therefore, the determinant of the
matrix is non-zero for q > 3, implying that all of these row vectors are linearly independent.
Thus, all that must be shown is the remaining 22 row vectors to be linearly independent.
Note that for the remaining 22 row vectors, each falls into two categories: corresponding to
polynomials either consisting of two or three multiplications amond two terms (there are 18
such vectors) or to three multiplications among three terms (there 4 such vectors). These
categories can be considered different from each other since, if all 22 of the corresponding
polynomials are evaluated on points on a coordinate 2-dimensional plane in F4

q (so there are
2 0s in each point), all of the polynomials in the latter category would always be zero while
those in the former would be non-zero on some point. Thus, the latter group can be isolated
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from the other 31 row vectors in the following matrix:

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)
x1x2x3 1 0 0 0
x1x2x4 0 1 0 0
x1x3x4 0 0 1 0
x2x3x4 0 0 0 1

.

Clearly, these 4 vectors are linearly independent among each other and thus among all 35
row vectors. Hence, only the remaining 18 vectors need be examined. Examine the following
matrix of the remaining 18:

1100 1010 1001 0110 0101 0011 1ω00 10ω0 100ω 01ω0 010ω 001ω ωω200 ω0ω20 ω00ω2 0ωω20 0ω0ω2 00ωω2

x1x2 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0 0 0
x1x3 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0 0
x1x4 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0
x2x3 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0
x2x4 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0
x3x4 0 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3

x2
1x2 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0 0 0 0

x2
1x3 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0 0 0

x2
1x4 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0 0

x2
2x3 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0

x2
2x4 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0

x2
3x4 0 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4

x1x2
2 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0 0 0 0

x1x2
3 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0 0 0

x1x2
4 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0 0

x2x2
3 0 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0

x2x2
4 0 0 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0

x3x2
4 0 0 0 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5

.

Instead of explicitly transforming the matrix into an upper-traingular matrix through row-
reduction (which could easily be done by, letting C, D, E representing the first 6, next 6, and
last 6 rows by switching D and E, and then letting D be replaced by D−C and E by D−C),
the determinant can be calculated through the utilization of computing technology. The result
is ω24(ω−1)12, which is nonzero as long as ω 6= 0, 1, which is the case if q > 2, which is the case,
since q > 3. Thus, these 18 row vectors are linearly independent among themselves. Therefore,
each categorization of the 35 row vectors are linearly independent within each categorization.
Since the categorizations were created so that each category was independent of each other
(that is, every vector in one categorization was linearly independent from all vectors in all
other categorizations), each of the 35 row vectors must be linearly independent. Therefore,
the upper bound is achieved, and the dimension must be 35. �

3.6. For Sufficiently Large q, k ≥ l(j) + 1. First, some definitions are necessary. Note that
in all of the above matrices, in the rows which correspond to the monomials, for each degree
of each monomial, a diagonal submatrix was formed. For example, examine the following:

(1, 0, 0) (0, 1, 0) (0, 0, 1) (ω, 0, 0) (0, ω, 0) (0, 0, ω)
x1 1 0 0 ω 0 0
x2 0 1 0 0 ω 0
x3 0 0 1 0 0 ω
x2

1 1 0 0 ω2 0 0
x2

1 0 1 0 0 ω2 0
x2

3 0 0 1 0 0 ω2

.
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In order to allow for arbitray l to be included in the argument, consider the equivalent abbre-
viated matrix for this matrix (which is not contingent upon the choice of l):

(1) (ω)
xi 1 ω
x2

i 1 ω2
.

Thus, the points are replaced by the non-zero component of each point, and each monomial is
differentiated only by its degree. Hence, each entry in this abbreviated matrix corresponds to
an l-by-l block of the larger matrix with the entry element along the diagonal. Note that each
row vector in this l-byl block is linearly independent, so if the determinant of this abbreviated
matrix is shown to be non-zero for certain q, then each row vector in the abbreviated matrix is
linearly independent from each other, implying that each l-by-l block is linearly independent
from each other, thereby proving that the submatrix represented by the abbreviated matrix
contains all linearly independent rows.

As a short aside, note that the first row vector of the complete matrix representation of the
code (this row corresponds to the constant polynomial) is always linearly independent from the
other row vectors since it is the only row vector which has a non-zero element when evaluated
at the origin.

To continue with the argument based upon the determinant, examine how a determinant is
calculated. An entry in the first row of the matrix is multiplied by 1 or −1 and then multiplied
by the determinant of its cofactor. This process is repeated until an element from the second
to last row is multiplied by 1 or −1 and then by an element in the last row which is not in
the same column (which is the only element in its cofactor if, when cofactors were created in
previous stages, all rows and columns removed remain removed). All of these multiplications
are then added together to form the determinant. Note that in each multiplication, only one
element from each column and row is used. Therefore, in order to find the highest degree of ω
in the determinant, all that must be done is to find the way in which to maximize the exponent
of ω in the multiplications. A sketch of an arbitrary matrix reveals that this is achieved by
multiplying along the main diagonal:

(1) (ω) (ω2) (ω3) (ω4) . . .
xi 1 ω ω2 ω3 ω4 . . .
x2

i 1 ω2 ω4 ω6 ω8 . . .
x3

i 1 ω3 ω6 ω9 ω12 . . .
x4

i 1 ω4 ω8 ω12 ω16 . . .
x5

i 1 ω5 ω10 ω15 ω20 . . .
...

...
...

...
...

...
. . .

.

The reason that the main diagonal provides the highest degree is that if only one element from
each row and column can be used in the matrix in the multiplication, then it would be desirable
to have the highest degree entry in the multiplication, which is the bottom-right entry. With
the removal of the rightmost and bottommost columns, the next highest degree entry is the
bottom-right entry of the cofactor of the original bottom-right entry. Repeating this process
yields the main diagonal. A closed formula for the maximum degree (and thus the degree of the

determinant) is
j−1∑
i=0

i(i+ 1) =
j−1∑
i=1

(i2 + i) =
j−1∑
i=1

i2 +
j−1∑
i=1

i = (j−1)(2j−1)j
6 + (j−1)(j)

2 = j(j−1)(j+1)
3 .

Thus, this is the degree of the determinant (a check using the Sage program: for j = 5, adding
the exponents of each occurence gives the degree of the determinant to be 40; the formula
given above concurs). By a somewhat parallel argument, the minimum degree of the terms in
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the determinant can also be found. To minimize the degree, the leftmost entry in the bottom
row must be chosen; the same is true for the cofactor of this element. Continuing yields the

secondary diagonal. A closed formula for the minimum degree is
j∑
1

(j − i)i = j
j∑
1

i−
j∑
1

i2 =

j j(j+1)
2 − j(j+1)(2j+1)

6 = j(j−1)(j+1)
6 . The importance of knowing this minimum degree is that,

letting the minimum degree be z, ωz can be factored out of the determinant (in other words
[letting the determinant be expressed as a polynomial with ω being considered the unknown],
ω is a zero of the determinant with multiplicity z). Another check using the Sage program is
that both the program and the closed formula give the degree of ω to be 20 for j = 5. After this
factorization, the new maximum degree is j(j−1)(j+1)

3 − j(j−1)(j+1)
6 = j(j−1)(j+1)

6 . Throwing
out the ωz term is justified in the course of proving the determinant is non-zero because for
the determinant to be zero due to that term, ω would have to equal 0, which would indicate
the finite field Fq is of size 1 (q = 1), which clearly is not the case (let q > 1). Hence, there can
be as many as j(j−1)(j+1)

6 other zeros in the determinant by an extension of the Fundamental
Theorem of Algebra to finite fields. Therefore, by selecting q to fulfill q > j(j−1)(j+1)

6 , there
will be more elements of the finite field than zeros, so let ω be an element which is not a zero
of the determinant, directly implying that the determinant is not zero. Therefore, since this
abbreviated matrix represented l(j) row vectors (there are j rows, each representing an l-by-l
block), all l(j) row vectors (plus the row vector corresponding to the constant polynomial) are
linearly independent. Therefore, as long as q is sufficiently large, k ≥ l(j) + 1. �
sage: James Berg, SM450A Final Project

sage: def matrix_code_generator(j):

... """

... A function designed to create the abbreviated sub-matrix of

a matrix for the code corresponding to the coordinate hyperplane

arrangement. The sub-matrix corresponds exclusively to

polynomials consisting of one variable raised to a power.

The input is j, the upper bound on the polynomials used in generation.

... EXAMPLES: See below for j=1,...,10

... INPUT: j

... OUTPUT: factored determinant of the abbreviated sub-matrix

... """

... w=var(’w’)

... row=[0]*j

... for k in range(j):

... row[k]=w^k

... CodeMatrix=[[0]*j]*j

... for l in range(j):

... newrow=[0]*j

... for k in range(j):

... newrow[k]=w^k

... for m in range(j):

... newrow[m]=row[m]**(l+1)

... CodeMatrix[l]=newrow

... CodeMatrixlist=[0]*(j**2)

... for n in range(j):

... for p in range(j):

... CodeMatrixlist[n+j*p]=CodeMatrix[p][n]

... MS=MatrixSpace(PolynomialRing(ZZ,w),j,j)

... Code_matrix=MS.matrix(CodeMatrixlist)

... determinant=det(Code_matrix)

... factored_det=determinant.factor()

... return factored_det

sage: def matrix_code_echelon(j):

... """

... A function designed to create the abbreviated sub-matrix

of a matrix for the code corresponding to the coordinate

hyperplane arrangement. The sub-matrix corresponds exclusively to

polynomials consisting of one variable raised to a power.

The input is j, the upper bound on the polynomials used in generation.

... EXAMPLES: See below for j=1,...,5

... INPUT: j

... OUTPUT: echelon form of the abbreviated sub-matrix

... """

... w=var(’w’)
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... row=[0]*j

... for k in range(j):

... row[k]=w^k

... CodeMatrix=[[0]*j]*j

... for l in range(j):

... newrow=[0]*j

... for k in range(j):

... newrow[k]=w^k

... for m in range(j):

... newrow[m]=row[m]**(l+1)

... CodeMatrix[l]=newrow

... CodeMatrixlist=[0]*(j**2)

... for n in range(j):

... for p in range(j):

... CodeMatrixlist[n+j*p]=CodeMatrix[p][n]

... MS=MatrixSpace(PolynomialRing(ZZ,w),j,j)

... Code_matrix=MS.matrix(CodeMatrixlist)

... echelon=Code_matrix.echelon_form()

... return echelon

sage: matrix_code_generator(1)

1

sage: matrix_code_echelon(1)

[1]

sage: matrix_code_generator(2)

(w - 1) * w

sage: matrix_code_echelon(2)

[ 1 w]

[ 0 w^2 - w]

sage: matrix_code_generator(3)

(w + 1) * (w - 1)^3 * w^4

sage: matrix_code_echelon(3)

[ 1 w w^2]

[ 0 w^2 - w w^4 - w^2]

[ 0 0 w^6 - w^5 - w^4 + w^3]

sage: matrix_code_generator(4)

(w + 1)^2 * (w - 1)^6 * w^10 * (w^2 + w + 1)

sage: matrix_code_echelon(4)

[ 1 w w^2 w^3]

[ 0 w^2 - w w^4 - w^2 w^6 - w^3]

[ 0 0 w^6 - w^5 - w^4 + w^3 w^9 - w^7 - w^6 + w^4]

[ 0 0 0 w^12 - w^11 - w^10 + w^8 + w^7 - w^6]

sage: matrix_code_generator(5)

(w + 1)^4 * (w - 1)^10 * w^20 * (w^2 + 1) * (w^2 + w + 1)^2

sage: matrix_code_echelon(5)

[ 1 w w^2 w^3 w^4]

[ 0 w^2 - w w^4 - w^2 w^6 - w^3 w^8 - w^4]

[ 0 0 w^6 - w^5 - w^4 + w^3 w^9 - w^7 - w^6 + w^4 w^12 - w^9 - w^8 + w^5]

[ 0 0 0 w^12 - w^11 - w^10 + w^8 + w^7 - w^6 w^16 - w^14 - w^13 - w^12 + w^11 + w^10 + w^9 - w^7]

[ 0 0 0 0 w^20 - w^19 - w^18 + 2*w^15 - w^12 - w^11 + w^10]

sage: matrix_code_generator(6)

(w + 1)^6 * (w - 1)^15 * w^35 * (w^2 + 1)^2 * (w^2 + w + 1)^3 * (w^4 + w^3 + w^2 + w + 1)

sage: matrix_code_generator(7)

(w + 1)^9 * (w - 1)^21 * w^56 * (w^2 - w + 1) * (w^2 + 1)^3 * (w^2 + w + 1)^5 * (w^4 + w^3 + w^2 + w + 1)^2

sage: matrix_code_generator(8)

(w + 1)^12 * (w - 1)^28 * w^84 * (w^2 - w + 1)^2 * (w^2 + 1)^4 * (w^2 + w + 1)^7 * (w^4 + w^3 + w^2 + w + 1)^3 * (w^6 + w^5 + w^4 + w^3 + w^2 + w + 1)

sage: matrix_code_generator(9)

(w + 1)^16 * (w - 1)^36 * w^120 * (w^2 - w + 1)^3 * (w^2 + 1)^6 *

(w^2 + w + 1)^9 * (w^4 + 1) * (w^4 + w^3 + w^2 + w + 1)^4 *

(w^6 + w^5 + w^4 + w^3 + w^2 + w + 1)^2

sage: matrix_code_generator(10)

(w + 1)^20 * (w - 1)^45 * w^165 * (w^2 - w + 1)^4 * (w^2 + 1)^8 *

(w^2 + w + 1)^12 * (w^4 + 1)^2 * (w^4 + w^3 + w^2 + w + 1)^5 *

(w^6 + w^3 + 1) * (w^6 + w^5 + w^4 + w^3 + w^2 + w + 1)^3
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