Linear Feedback Shift Register Sequences and
the Berlekamp Iterative Algorithm

MIDSHIPMEN 1/C Timothy Brock and Richard Rivas
December 10, 2005

Linear Feedback Shift Registers (LFSRs) are easily implemented computer
hardware devices that can be used to generate a sequence of numbers known
as a linear feedback shift register sequence. These psuedo-random sequences
can then be used in a large variety of applications including multiple access
and polling techniques, secure and privacy communications, error detecting and
correcting codes, and cryptographic systems [1]. A LFSR sequence is generated
by a LFSR by taking the output from the last stage of a given LFSR.

An example of a LFSR is given in Figure 1. This particular LFSR is of
length L. The current state of each cell is used as inputs to a mod 2 adder
and the output of the adder is used as the input to the first cell. With each
new iteration of the register, the states of each cell are shifted to the next cell
and the output of the last cell is used to create the LFSR sequence. Since the
sequence is generated in this way, the initial contents s,, s1, o, ..., sr_1, of the
L stages are the first L terms of the LFSR sequence|2]. The remainder of the
sequence is determined by the recursion

L
S5 = E Ci-Sj—1
i=1

For a given LFSR sequence, an algorithm exists which will synthesize the
smallest LFSR that is necessary to create the given sequence. The output of this
algorithm is a polynomial of degree < L and describes the feedback coefficients
(ci’s) used to create the next digit for the LFSR. This polynomial is known as
the connection polynomial



L Sj—l — Sj»2 — Sj>3 —» .. —> Sj—L —>
Output

Feedback

Figure 1. L bit Linear Feedback Shift Register

The Berelkamp Iterative Algorithm was devised to produce the minimal
LFSR to generate the sequence sg, s1,...,Sp,—1. In order to make the LFSR we
need a length L and a connection polynomial C(x), so that we will be able to
find the s,, values. The algorithm goes on to show that L, (s) is equal to L, 11(s)
using a series of checks and balances. There are six steps that the algorithm
processes through. The algorithm is simplified here as

Input: a LFSR sequence of length n

Output: a connection polynomial C(z) of the minimal LFSR

1. Initialize the algorithm by setting C(z) = 1,B(z) = 1,y = 1,b = 1,L =
0,and N = 0.

2. If N = n,then terminate, otherwise calculate the discrepancy
L
d= 5N+Zci'5N—1
i=1

3. If d =0, then y =y + 1 go to step 6

4. fd#0and 2- L > N, then calculate C(z) = C(z) —d-b~! - 2¥ - B(z),
y=1y+1gotostep 6

5. If d#0and 2- L < N, then set T'(x) = C(z),calculate C(x) = C(z) — d-
b='.2¥.B(z), L=N+1-L,and set y = land b = d, go to step 6

6. N = N + land repeat steps 2 through 6.

The sequence begins when C(z) =1,B(z) =1,y =1,b=1,L = 0,and N = 0.
In order to keep the amount of variables to a minimum, the algorithm will
generate new values for C'(z) which we will then label as C'(x) again. We could
easily use C'(x) with subscripts, but we are trying to keep the notation to a
minimum. We will cycle through the algorithm until our determined length of
the sequence is met. Our first step is to check whether our N=n . If it does



then we are to stop and the algorithm is finished. If they do not match, then
we use the following equation:

L
d=sy+ g Ci*SN-1
i1

Finding d is critical to the cycling of the algorithm. There are 3 different paths
that are met when a value for d is found; d =0; d#0and 2- L > N,and d # 0
and 2- L < N. When d = 0 then we take our y value and add 1. This new value
becomes our new y, and we skip to step 6.

y=y+1
When d # 0 and 2- L > N, we calculate our new C(z) with
C(x) —d-b~*-2¥-B(z) = C(z)

and x + 1 = z. Now that we have a new C(z) and y, we skip to step 6 and
begin the cycle again. When d # 0 and 2- L < N, a temporary variable, T'(z),
is created and used to hold the last value of C(z) before we calculate the new
C(z). In this step, several variables are updated at once

C(x)=C(z)—d-b'-2v.B(z)

N+1-L=L
B(x) =T(x)
b=d
y=1

and finally we skip to step 6. Step six simply increases our N by the formula
N = N + 1 before repeating steps 2 through 6[2].

Next we provide an example. The LFSR sequence used in this example is
110101100100011. We take the algorithm all the way out to the termination
when N = n. Though this sequence is length n = 15, we arrive at the correct
connection polynomial C(x) after only 8 iterations of the algorithm. Iterations
9 through 15 return a discrepancy d = 0 which causes the algorithm to return
the connection polynomial calculated in the previous iteration.

1. C(z) =1,B(z) =1,y =1,b=1,L =0, N = 0 # 15 = n, find the
discrepancy
0
d:SQ—FZCi'SO,i:SO:l
i=1

compare 2- L to N
2. L=2-0=0<0=N



go to step 5, calculate C(z)

T(x)=C(z)=1

Clx)=C(z)—d-b -2V - Blz)=1-1-1" -2 1=1-2
L=N+1-L=0+1-0=1
B(z)=T(z)=1
b=d=1
y=1
go to step 6, increase N
N=N+1=0+1=1

.C(x)=1—z,Bx)=1,y=1,b=1,L=1, N =1 # 15 = n, find the
discrepancy

1
d281+zci'5171‘251+01~80:1—|—1~1:0
=1

sinced =0,y =y+1=1+1= 2, and we skip to step 6 in order to
increase NV
N=N+1=14+1=2

.Cx)=1—z,Bx)=1,y=2,b=1,L=1, N =2 # 15 = n, find the
discrepancy

1
d:SQ-i-ZCi'Sg_i282+01'81=0+1-1:1
=1

compare 2 - L and N
2.L=2.1=2<2=N
go to step 5, calculate C(x)

Tx)=C(z)=1-=x
Clz)=Cz)—d-b' - 2¥ . Blz)=1-2)—1-1""-2%> 1=1—2 —2?
L=N+4+1-L=241-1=2
Bzx)=T(x)=1—=x
b=d=1
y=1

go to step 6, increase NV

N=N+1=2+4+1=3



4. C(x)=1—-z—2*,B(x)=1-2,y=1,b=1,L =2, N =3 # 15 =n,

find the discrepancy

2

d:Sg—FZCi'ngi:Sg+01'82+62'51:1+1'0+1'1:O

i=1
sinced =0,y =y+1=1+1= 2, and we skip to step 6 in order to
increase N

N=N+1=34+1=4

5. C(z)=1—-2—-2%, Bx)=1—-2,y=2,b=1,L =2, N=4# 15 =n,
find the discrepancy

2
d284+20i-54,1:.94—|—61-53+02-52:0—|—1~1—|—1~O:1
i=1

compare 2 - L and N
2. L=2-2=4<4=N
go to step 5, calculate C(x)
T(x)=C(z)=1—x—2?

C(z) =C(z)—d-b" a¥-B(x) = (1-z—2*)—-1-1" 2* (1-2) =1—2—23
L=N+1-L=4+4+1-2=3
Bz)=T(z)=1—-z —2?
b=d=1
y=1

go to step 6, increase N

N=N+1=44+1=5

6. C(z)=1—2—23, B(x) =1-a—2%2,y=1,b=1,L =3, N =5#15=n,
find the discrepancy

3
d:S5+ZCi'85_i:S5+Cl'84+02'83+63-82 =1+1-04+0-14+1-0=1
=1

compare 2 - L and N
2:-L=2-3=6>5=N
go to step 4, calculate C(x)
C(z) =C(z)—d-b'-2¥-B(z) = 1—2—2*)—1-1" ot (1—2—2?) = 1427
y=y+1=1+1=2
go to step 6, increase NV

N=N+1=54+1=6



7.C(x)=1+22, Bx)=1—-2—2%,y=2,b=1,L =3, N=6#15=n,
find the discrepancy

3
d:SG—FZCi'SGfi286+01'S5+02'S4+63-53 =140-141-040-1=1
=1

compare 2- L and N
2. L=2-3=6<6=N

go to step 5, calculate C(x)

T(x) =C(x) =1+ 22
C(z) = C(z)—d-b~ -2¥-B(z) = (1+2?) 11" 2 (1—z—2?) = 14+23+2?

L=N+1-L=6+1-3=4
B(z) =T(z) =1+ 2*
b=d=1
y=1

go to step 6, increase NV

N=N+1=6+1=7

8. Cx)=1+23+2* Blx)=1+2%,y=1,b=1,L =4, N=T7#15=n,
find the discrepancy

4
d= S7+Z Ci*S7_i = S7+cC1-S¢+Co-S5+cC3:-S4+¢4-83 = 04+0-140-1+1-04+1-1 =1
=1

compare 2- L and N
2.L=2-4=6>7=N
go to step 4, calculate C(x)
O(z) = C(x)—d-b~'2¥-B(z) = (1+2*+2*)~1-17 Lot (142?) = 1—2+2?

y=y+1=14+1=2

go to step 6, increase NV

N=N+1=74+1=38



9.

10.

11.

12.

13.

Clx)=1-a+a2* Blx)=1+2%y=2,b=1,L=4, N=8+#15=n,
find the discrepancy
4
d= 58—|—Z C;i-88—j = Sg+c1-S7+c2-56+C3-85+Cc4-54 = 0+1-04+0-14+0-14+-1-0 =0
i=1
sinced =0,y =y+1=2+1= 3, and we skip to step 6 in order to

increase N
N=N+1=8+1=9

Clx)=1-a+a2* Blx)=1+2%y=3,b=1,L=4, N=9+#15=n,
find the discrepancy
4
d= 59—|—Z Ci*S9—; = Sg+c1-Sg+ca-s7+cz-sg+ca-ss = 1+1.04+0-04-0-1+1-1 =0
i=1
sinced =0,y =y+1=3+1= 4, and we skip to step 6 in order to

increase N

Clx)=1-a+2*, B(x)=1+2%,y=4,b=1,L =4, N=10# 15 =n,

find the discrepancy
4

d= 510—|—Z Ci*810—i — 510—|—Cl'59+CQ'88—|—03'S7—|—C4'86 = 0—|—11+00+00+11 =0
i=1

sinced =0,y =y+1=4+1 =25, and we skip to step 6 in order to

increase N
N=N+1=10+1=11

Clx)=1-a+2* B(x)=1+2%,y=5b=1,L=4, N=11#15=n,

find the discrepancy
4

d = 511—|—Z C;*S11—¢ = 511+Cl'510+02'59—|—63'88+C4'S7 = 0+10+01+00+10 = 0
i=1

sinced =0,y =y+1=5+1= 6, and we skip to step 6 in order to

increase N
N=N+1=11+1=12

Clx)=1-a+2*, B(x)=1+2%,y=6,b=1,L =4, N=12#15=n,

find the discrepancy
4

d= 512+Z Ci*S12—; = S12+C1°511+C2-510+C3-S9+¢4-88 = 0+1:0+0-0+0-1+1-0 =0
i=1

sinced =0,y=y+1=6+1=7, and we skip to step 6 in order to

increase N
N=N+1=12+1=13



14. C(x) =1—2+a* B(x)=1+2%,y=7,b=1,L=4, N =13 # 15 =n,
find the discrepancy
4
d= 813+Z Ci*S13—; = S13+cC1:S19+C2-811+¢3:S10+C4-S9 = 14+1-0+0-040-0+1-1 =0
i=1
sinced =0,y =y+1=7+1= 8, and we skip to step 6 in order to
increase N
N=N+1=13+1=14

15. C(z)=1—a+2*, Bzx) =1+2%, y=8,b=1,L=4, N =14 # 15 = n,
find the discrepancy
4
d = 514—|—Z Ci*S14—¢ = 514—|—Cl'513—|—02'512—|—03'511+C4'510 = 1—|—11—|—00—|—00—|—10 = 0
i=1
sinced =0,y =y+1=8+1=9, and we skip to step 6 in order to
increase N
N=N+1=14+1=15

16. C(x) =1—a+a2* Blx) =1+2%2,y=9,b=1,L =4 N=15=n
terminate the algorithm

At this pint the algorithm outputs the last value of L and C(x) which are L = 4
and C(z) = 1—z+2* . The algorithm terminates since N = n. Figure 2 depicts
the minimal LFSR found in this example. Since the coefficients (c1, 2, c3,¢4)
of the connection polynomial C(z) = 1 — z + z*are (1,0,0,1) we know that
the inputs for the mod 2 adder are taken off the first and forth registers. Since
L = 4, we know that the LFSR must have a minimum of four registers.

L S. > S. — SJ"3 —> S j-4 >
Output

Feedback MOD

ADDER

Figure 2. The minimal LFSR with C(x)=1-x+x"~4 and L = 4.

A wuser friendly, graphical application of this algorithm is posted on the fol-
lowing website: http://ihome.ust.hk/“trippen/Cryptography /BM/frameset.html.
This website allows the user to input a LFSR sequence of any length n and then
step through the Berlekamp Iterative Algorithm while displaying which step
of the algorithm is currently being calculated. The output is the connection
polynomial C(z) and a picture representation of the minimal LFSRJ[3].



References

[1] Solomon W. Golomb, Shift Register Sequences. Aegean Park Press La-
guna Hills, CA, USA 1981.

[2] James L. Massey, “Shift-Register Synthesis and BCH Decoding.” TEEE
Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969.

[3] Javascript ~ written by  Samee  Ullah  Khan, Sven  Till,
Gerhard Trippen, and Antoine Vigneron found at
http://ihome.ust.hk/~trippen/Cryptograph/BM /frameset.html



