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Who Was Fourier??

 Noticeably gifted by age 14
 Priest or Mathematician?
 Math it is
 Taught at the Collège de 

France 
 Joined Napoleon’s Army
 OIC of discoveries in Egypt
 Poisson and Biot



  

What is Fourier Analysis?

Fourier analysis allows a system to 
be separated or decomposed into 
components made up of simpler 
inputs. 

For example, a function f(t) is a 
function in time but via a Fourier 
transform becomes f(w) , where 
omega is a frequency



  

Convolution:

Steward describes convolution as 
“the distribution of one function in 
accordance with the law specified by 
another function (85).” 



  

Convolution cont.

Overlaps that are a result of 
spreading and smearing of a function



  

Definition of Convolution

∗

∗ =

1 1
If f and g are two functions, with f  and g  finite, the  of f and g is 

denoted by  f g and is defined by:
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Convolution Theorem
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:  The Fourier Transform of the convolution of two functions f and g is the 

multiplication of the Fourier transform of f with the Fourier transform of g.
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Using the inverse Fourier Transform:
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Now interchange the integrals and add the exponents: pg. 177

i us i usf s e ds g u e du

π− − −

− −

−

=

= ∗

1 2 ( )

1

ﾈﾈ ﾈ(f g)() ()[ () ] 

ﾈThis is the integral of (),  with the variable (x-s) so we get g(x-s) for that integral.
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 Change the sum exponentials to a product of exponentials
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Parseval’s Equality

Energy Conservation Statement
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We define sin( ) as the Fourier sine series for the function g,

where g  (finite), if and only if  is convergent. Thus introducing
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In physics, the relation is normally written as:
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