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Thesis:  To examine the applications of Fourier transforms and convolutions in 
Fourier optics with specific interest devoted to the Fourier lens.  The immense 
properties of Fourier transformations coupled with convolutions are an integral part 
of Fourier optics.  Several properties of Fourier transforms such as are reviewed and 
directly related to actual optical demonstrations in the laboratory. 
 
Nevertheless, before delving into the complex realm of Fourier optics, there is a 
certain amount of mathematical introduction and explanation required.  The 
theorems, definitions, and proofs provided introduce the fundamentals necessary for 
expansion from theoretical to practical.  But who was Fourier? 
 

 
Joseph Fourier had been quite gifted in mathematics early in his teenage years.  
However, he had decided embark upon the journey of priesthood in France.  
However, he was very conflicted between mathematics and religion and would 
ultimately deny his religious vows.  Fourier became entangled in the French 
revolution and found himself placed in prison awaiting the guillotine.  But, he was 
eventually freed.  Fourier then began teaching at the Collège de France and worked 
side by side with Lagrange and Laplace.  After teaching Fourier joined Napoleon’s 
Army and was in charge of discoveries in Egypt.  While in Egypt, Fourier was able 
to derive the heat equation.  After his military service, which was closely dictated 
by Napoleon until his defeat, he returned to France and continued his research.   
Fourier was not without controversy.  In fact, Jean-Baptiste Biot had attempted to 
claim the discovery  of Fourier’s heat theory and Poisson disputed his methods.  

 
http://www-history.mcs.st-andrews.ac.uk/history/Posters2/Fourier.html 

                        
 

What is Fourier analysis?  Fourier analysis allows a system to be separated or 
decomposed into components made up of simpler inputs.  The individual inputs have 
a response associated with them and the combination of all the inputs is the total 
response (Goodman 7).   The process described above is referred to as convolution or 
superposition in a linear system.  Throughout the paper the term convolution should 
be synonymous with superposition. 
 
Still confused as to what convolution really is? 
 
Steward explains convolution as, “the distribution of one function in accordance with 
the law specified by another function (Steward 85).”  Essentially, each ordinate of a 
function is multiplied by another function and summed (Steward 85).  Nevertheless, 
the functions are assumed linear and invariant or “stationary” because 
transformations do not change the function (length preserving) (Steward 102).  
Convolutions are overlaps that are the result of spreading or smearing of one function 
using the rule or operation of another.  But, convolutions are tremendously powerful 
because of the properties they possess.  
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In optics, convolution in real space is interchangeable with multiplication in 
diffraction (Fourier space, frequency space, or diffraction space) (Steward 87). 
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Now, complete a change of variables and let (x-s) = :
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As shown, the convolution is the sum of the multiplication of two functions f(s) and 
P(x-s) in our example before the proof.  However, P(x-s) is shifted by -s.  Convolution 
is an incredible tool used in both mathematics and physics because of the power it 
possesses.  Convolution functions allow complex functions to be broken down and 
reassembled to give the total picture.  Nevertheless, all the power does not rest in 
convolution alone, but jointly between convolution and Fourier transforms because in 
our context, they are tightly interlaced. 
 
What is a Fourier transform?  A Fourier transform takes a function that is dependent 
with respect to one variable (usually time and position in optics) and transforms that 
function into a function dependent upon another variable (usually frequency in 
optics).  However, the caveat is that Fourier transforms are used with Lebesgue 
integrable functions.  Physicists normally refer to the Fourier transform as the 
Fourier spectrum and tend to look at its two-dimensional version because light is 
generally examined in the X-Y plane (Goodman-5,86).   
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The applications of Fourier transformations and convolutions are deeply rooted optics 
and acoustics, providing the foundation for Fraunhofer diffraction of scalar waves.  It 
applies to acoustics and optics when the scalar approximation is valid.  Therefore, 
there is some advantage in representing the Fourier transformation in terms of 
frequency (υ ) and time (t).  The frequency and time version of the Fourier transform 
is yet another powerful tool has immense capabilities in optics.  In optics, light is 
expressed as a function of space for diffraction and with a Fourier transformation, the 
function of space becomes a function of frequency.  The Fourier transform provides a 
way to describe the content of the plane waves.  For example, in optics the Fourier 
transform represents a light signal as a sum of plane waves focused at a point on a 
screen.  Even more interesting at the moment is that plane waves are normally 

explained with Gaussian functions (
2

a ax
eπ

− ) because the Fourier transform of a 

Gaussian function is another Gaussian function.  Note the derivation below to see for 
yourselves. 
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techniques and because it is analytic and can be represented by a power series.
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Frequency and time dependent version of Fourier transform for use with optics :

 

With the Fourier transform defined, the inverse seems to follow naturally.  The 
inverse Fourier transform is actually the Fourier transform with positive exponent 
(Walker 160). 
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As aforementioned, convolution and Fourier transforms are interrelated in our 
context.  However, with a slight modification to the definition of convolution, the 
relation is easily and noticeable and applicable.  Be aware, that convolution is also 
referred to as “the folding product” and “composition product” by physicists 
(Steward 82).  
 
Nevertheless, Fourier transforms have four very important properties which allow for 
simplification and useful manipulation in both physics and mathematics.   
The properties are linearity, scaling, shifting, and modulation, which are defined 
below. 
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