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Thesis:  The purpose of this paper is to understand the implications of wavelet theory 

primarily through techniques of linear algebra with minimal emphasis on Fourier 

analysis.  Much attention will be placed on the Haar wavelet (the simplest form of a 

wavelet) in one and two dimensions in order to understand its importance as a 

mathematical tool for hierarchically decomposing functions.  Image compression and 

multi-resolution analysis will also be studied in order to fully understand wavelet 

applications.   

Furthermore, on a more specific scale, given a function f, in W, we will identify elements 

in the nested subspaces that best approximate it in the L 2 norm.  We are going to 

substitute the natural basis on W and its subspaces by one given by Haar wavelets.  We 

will prove that in this new basis, the representation of f at various resolutions can be done 

by a very simple iteration process.  Moreover, the reconstruction of the original function 

from the coefficients of this representation is equally simple and fast. 

 

Introduction:  Wavelets are at the forefront of both mathematics and engineering.  By 

name, wavelets date back only to the 1980’s and essentially provide an alternative to 

classical Fourier methods for both one and two dimensional data analysis and synthesis.  

Applications of wavelets are quite diverse and include astronomy, acoustics, nuclear 

engineering, sub-band coding, signal and image processing, neurophysiology, music, 

MRI, speech discrimination, optics, fractals, turbulence, earthquake prediction, radar, 

human vision, and solving partial differential equations. Ultimately, the emergence of 

wavelets compliments our fast paced, high speed, and information based lives. 

A wave is usually referred to as an oscillating function of time and/or space.  

Fourier analysis is a type of wave analysis which expands signals in terms of sinusoids or 

complex exponentials.  A wavelet, in a broad sense, is simply a small wave “with finite 

energy, which has its energy concentrated in time or space to give a tool for the analysis 

of transient, nonstationary, or time-varying phenomenon” (Reza 2).  The wavelet still has 

the oscillating wavelike characteristics but it additionally has the ability to allow 

simultaneous time, or space, and frequency analysis.   

 The wavelet analysis procedure employs a wavelet prototype function, called 

mother wavelet. Temporal analysis is performed with a contracted high frequency version 

of mother-wavelet, while frequency analysis is performed with a dilated, low frequency 
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version of the same wavelet. Because the original signal or function can be represented in 

terms of a wavelet expansion (using coefficients in a linear combination of the wavelet 

functions), data operations can be performed using just the corresponding wavelet 

coefficients. Smart choice of wavelet mother function results in wavelet basis yielding 

sparse data representation. In many cases wavelet coefficients truncated below a 

threshold. This sparse coding makes wavelets an excellent tool for data compression. 

(http://www.smolensk.ru/user/sgma) 

 

          (Reza 2) 

Before we hit the ground running, so to speak, with wavelets, it is imperative that a 

fundamental mathematical framework for wavelets be established first.  The following 

will be a brief review of vector spaces, inner products and norms, and orthonormal bases, 

for each contribute greatly to wavelet theory.   

 

A “vector space” is a set in which one can add two elements, and can multiply an element 

by a real number, in such a way that certain familiar properties hold.  The following is 

more precise.  A vector space is a set V (whose elements are called vectors) equipped 

with two binary operations, called vector addition and scalar multiplication.   

If x,y∈V there is an element x+y in V called the vector sum of x and y.  Also, if α ∈ ℜ  

(the real numbers) and x∈V there is an element α x in V, called the multiple of α  and x.  

It is also important to note that if V is a vector space and we let v1, v2, v3,…, vn be elements 

of V we say that a linear combination of v1, v2, v3,…, vn is any vector of the form: 

,...2211

1

nn

n

j

jj vvvv αααα +++=∑
=

 where Rn ∈ααα ,..., 21  (Bartle 52). 

 

Now we move onto inner products and norms.  An inner product is a generalization of the 

dot product for vectors in nℜ and it gives a generalized notion of perpendicularity, called 
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orthogonality. As we will see later on, orthogonal wavelets as well as localized basis are 

important in their contribution to data compression.  If we let V be a vector space over C 

(the complex number field) then a complex inner product map ⋅〉〈⋅, : VxV →C with the 

properties of additivity, scalar homogeneity, conjugate symmetry, and positive 

definiteness.  A vector space V with a complex inner product is called a complex inner 

product space.  (Frazier 80).  Nevertheless, this study will use only the real domain. 

 

We will take a quick look at the set of all square-summable real sequences such that 

L 2

N = { }
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,:  .  With the obvious component-wise 

addition and scalar multiplication, L 2

N  is a vector space over ℜ where N consists of the 

natural numbers.  N is also the number of resolutions that one could possibly obtain using 

wavelet theory.  

 

The next two review topics will be norms and orthogonality (and what it means to be 

orthonormal).  Letting V be a vector space over the real numbers with an inner product 

⋅〉〈⋅,  and v∈V we can define vvv ,=  and ∫=
b

a

dxxvxuvu )()(, .  For nℜ this norm 

agrees with the usual notion of the length of a vector also known as the magnitude 

(Frazier 82).  Some properties of the norm are as follows: 

00 ≡⇔=

=

+≤+

ff

fccf

gfgf

 

An extension of the norm is the distance between functions f and g which will come into 

play later when we try to find the error between two functions.  By definition, the 

distance is gf −  and is denoted ),( gfd . 

The definition of orthogonality is as follows.  Suppose V is an inner product space.  For 

u,v∈V, we say that u and v are orthogonal (written u ⊥ v) if vu, =0.  Also, if we 

suppose that V is a real inner product space we can let B be a collection of vectors in V.  

B is an orthogonal set if any two different elements of B are orthogonal.  B is an 
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orthonormal set if B is an orthogonal set and v =1 for all v∈B.  Orthogonal sets of 

nonzero vectors are linearly independent (Frazier 84). 

 

It is also important to note that up to this point, continuous functions have been used.  

Discontinuous functions are a bit harder to work with but many wavelets, such as the 

Haar wavelet, are discontinuous so it is important to note the concept of “almost equal.”  

Let f and g be piecewise continuous on [a,b].  We say that f and g are almost equal if 

there exists a finite set of points, S, such that for [ ] Sbax \,∈ .  In the following case with 

the Haar wavelet, we are “ignoring” the points at x=-1,0,1.  We will consider the set S the 

exception set.  In summary, it is a fact that if f and g are almost equal on [a,b] and if 0x is 

a point of continuity for both f and g then ).()( 00 xgxf =  

(constructed from Heavyside function from maple) 

The following is a lemma contingent on what has just been discussed. (almost equal=a.e.) 

 If we let f,g,h be piecewise continuous on [a,b] such that f=g a.e. on [a,b] and 

g=h a.e. on [a,b], then: 

(i) f=h a.e. 

(ii) f+g=g+h a.e. 

(iii) f*g=f*h a.e. 

Proof of (i): By definition of f=g a.e. on [a,b] there exists a finite set 1S , such that 

for [ ] 1\, Sbax ∈ , f(x)=g(x).  By definition of g=h, there exists a finite set 2S such 

that for [ ] 2\, sbax ∈ , g(x)=h(x).  Now if we let ∪ 213 SSS = , it is considered to be a 

finite union since 21,SS are finite.  Let 123 \],[\],[\],[ SbaSbaSbax ⊂⊂∈ .  From 

this, f(x)=g(x) since 1\],[ Sbax ∈  and g(x)=h(x) since 2\],[ Sbax ∈ .  Therefore 

f(x)=h(x).  QED 
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Now that some of the basics are out of the way we turn our attention to wavelets using 

signal analysis as a mode of transition.  When working in signal analysis, there are a 

number of different functions one can perform on that signal in order to translate it into 

different forms that are more suitable for different applications.  The most popular 

function is the Fourier transform that converts a signal from time versus amplitude to 

frequency versus amplitude. This transform is useful for many applications, but it is not 

based in time. To combat this problem, mathematicians came up with the short term 

Fourier transform which can convert a signal to frequency versus time. Unfortunately, 

this transform also has its shortcomings mostly that it cannot get decent resolutions for 

both high and low frequencies at the same time.   

The wavelet transform is a mechanism used to dissect or breakdown a signal into 

its constituent parts, thus enabling analysis of data in different frequency domains with 

each components resolution matched to its scale.  Alternatively this may be seen as a 

decomposition of the signal into its set of basis functions (wavelets), analogous to the use 

of sines and cosines in Fourier analysis to represent other functions.  These basis 

functions are obtained from dilations or contractions (scaling), and translations of the 

mother wavelet.  The important difference that distinguishes the wavelet transform from 

Fourier analysis is its time and frequency localization properties.  When analyzing signals 

of a non-stationary nature, it is often beneficial to be able to acquire a correlation between 

the time and frequency domains of a signal.  In contrast to the Fourier transform, the 

wavelet transform allows exceptional localization in both the time domain via 

translations of the mother wavelet, and in the scale (frequency) domain via dilations.  

Although the wavelet transform has come into prominence during the last decade, 

the founding principles behind wavelets can be traced back as far as 1909 when Alfred 

Haar discovered another orthonormal system of functions, such that for any continuous 

function f(x), the series   

  

converges to f(x) uniformly over the interval .   

(www.wavelet.org/tutorial/gifs/haar.gif)  Here k represents the translation of the wavelet 
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which is an indication of time and space.  The integer k is also the center of the dyadic 

interval while j is referred to as the scale (dyadic in nature).  W is the mother wavelet. 

So how can a signal be converted and manipulated while keeping resolution 

across the entire signal yet still be based in time? This is where wavelets come into play.  

Wavelets are finite windows through which the signal can be viewed.  In order to move 

the window about the length of the signal, the wavelets can be translated about time in 

addition to being compressed, widened, or shifted.  The main problem that is being 

worked with in this paper is when we are given a function f which is piecewise 

continuous on [a,b].  We then want to approximate it with simpler functions (piecewise 

constants in our case) such that the approximation is the best possible, within the 

designated class of simple functions.  Yet as we extend the class of simple functions, the 

approximations can be improved.  Ultimately, it comes down to the concept of “reusing” 

the part of the previous approximation to rebuild the new, better approximation.  So in 

order to increase the resolution of an image while still using the previous base, a better 

basis needs to be established.  The basis we are looking for is of the wavelet type. 

The first component to wavelet and multiresolution analysis are vector spaces.  The 

concept of high and low resolution comes into play when discussing vector spaces.  If we 

start with the original space, the image is of low resolution and as we nest more vector 

spaces, the resolution continues to increase.  This continues until one is satisfied with the 

compressed or approximated image or until there is no clear distinction between the raw 

image and what the wavelet basis has produced.  The basis of each of these vector spaces 

is the scale function for the wavelet.  

Aforementioned, the mathematical formulation of the signal-processing concept 

of high and low resolutions uses a sequence of nested subspaces of an inner product 

space of allowable functions (i.e. allowable signals).  The functions we will be working 

with are either discrete signals or piecewise continuous functions, supported on the 

interval J=[-1,1].  Consider the dyadic subintervals of [-1,1], i.e. the intervals whose end 

points are of the form k/2n, for integer k and positive integer n, listed below by their 

“generation:” 

J 0 =J, generation zero 

J 0

1 =[-1,0], J 1

1 =[0,1], first generation, 

J 0

2 =[-1,-1/2], J 1

2 =[-1/2,0], J 2

2 =[0,1/2], J 3

2 =[1/2,1], second generation 

… 
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In general; J k

n =[ ]1
2

1
,1

2 11
−

+
−

−− nn

kk
, where k=0 to k=2 n -1 

 

For practical purposes one can think of an image as a vector space such as jV  

which would be the perfectly normal image, and 1−jV  would be that image at a lower 

resolution until you get to 0V  where you just have one pixel in the entire image.  

Considering the spaces just mentioned, 0V , 1V , …, nV , with functions defined on [-1,1] 

and piecewise on intervals of generations zero, generation one, generation n, respectively. 

In engineering language, these spaces are listed from low resolution to high resolution. 

These linear spaces have dimensions: dim 0V =1, dim 1V =2, dim 2V =4,…,dim nV =2 n  

For each vector space jV , there is an orthogonal complement called jW  and the 

basis function for this vector space is the wavelet.  (davis.wpi.edu) 

  (davis.wpi.edu) 

Another theorem to be discussed is the following: let f be a piecewise continuous on [a,b] 

and let 0V ([a,b]) be the space of functions constant on [a,b] (meaning 0Vg ∈  iff ℜ∈∃c , 

g(x)=c for all x in [a,b]): 

(i) Then there exists a unique function 00 Vf ∈ such that gfff −≤− 0  for all 0Vg ∈  

(ii) The function 0f is equal to f(x)=average of f on [a,b] for all ∈x [a,b]=
ab

dttf

b

a

−

∫ )(
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The proof is as follows: Since function in 0V are constant functions, all we need to show 

is that ℜ∈∀c  
22

cfff ave −≤− where 
ab

dttf

f

b

a
ave

−
=
∫ )(

.  We thus want to show that 

dtctfdtftf

b

a

b

a

ave

22

)()( ∫∫ −≤−  (*).  Consider the function ℜ→ℜ:Q defined by 

dtctfcQ

b

a

2

)()( ∫ −= .  Note that the left side of (*) represents ).( avefQ   We will show it is 

a quadratic function, whose graph is a parabola.  Its minimum is attained at avefc =  thus 

proving (*).  Upon studying 

dtcctftfcQ

b

a

))(2)(()( 22∫ +−= = ∫ ∫ +−
b

a

b

a

cdttfcdttf ))((2))(( 2
 

So with this, ∫ −+−=
b

a

abcdttf
dc

dQ
).(2)(2   0=

dc

dQ
when ∫ =−+−

b

a

abcdttf 0)(2)(2 thus 

occurring when 
ab

dttf

c

b

a

−
=
∫ )(

 

Now we make an introduction to the Haar wavelet.  Alfred Haar (1885-1933) was a 

Hungarian mathematician who worked in analysis studying orthogonal systems of 

functions, partial differential equations, Chebyshev approximations and linear 

inequalities. Although the wavelets discussed in this paper had their origins in the early 

work of Haar, the subject has only really gathered momentum in the last decade.  The 

Haar measure, Haar wavelet, and Haar transform are named in his honor.  

 (O'Connor, Robertson 1) 
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The piecewise functions that make up the Haar wavelet and their graphs are as follows: 

 

(Mulachy) 

Given a function f, in W, we will identify elements in the nested subspaces that best 

approximate it in the L 2 norm.  We are going to substitute the natural basis on W and its 

subspaces by one given by Haar wavelets.  In this new basis, the representation of f at 

various resolutions can be done by a very simple iteration process.  The Haar wavelet can 

be considered to be a special type of step function that can in turn be thought of as a 

linear combination of dyadically dilated and translated unit step functions on [-1,1].  It is 

important to note that the function φ satisfies a scaling equation of the form 

φ (x)= )2( ixc
Zi i −∑ ∈

φ where in this case the only nonzero c i ’s are c 0 =c1 =1, i.e. 

).12()2( −+ xx φφ  

For each 0 ≤ i ≤ 2 3 -1, we get an induced (dyadically) dilated and translated scaling 

function: )2()( 33
ixxi −= φφ .  These eight functions form a basis for the vector space 

V 3 of piecewise constant functions on [0,1) with possible breaks at 1/8, 2/8, 3/8,…,7/8.  It 

is important to note that 3

0φ is 1 on [0,1/8) only, 3

1φ is 1 on [1/8, 2/8) only, and so on.  The 

following figure shows three of these basis functions together with a typical element of 

V 3 .  The last plot shows the unique element of,  
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 (Mulachy) 

One of the reasons Haar wavelets are of preference when discussing wavelet theory, is 

not only because it is the simplest, but it is the only “orthogonal wavelet that has a 

symmetric analysis and synthesis filters” (Reza 4).  

(Reza 4) 

 

Fig.3. First 7 wavelets from Haar wavelet basis.    (www.smolensk.ru/user/sgma) 

Wavelet theory is based on analyzing signals to their components by using a set of basis 

functions.  As seen above, one important characteristic of the wavelet basis functions is 

that they relate to each other by simple scaling and translation and that they recursively 

build upon eachother.  The original wavelet function, known as the mother wavelet (i.e. 

the Haar mother wavelet), which is generally designed based on some desired 
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characteristics associated to that function, is used to generate all basis functions.  In most 

wavelet transform applications, it is required that the original signal be synthesized from 

the wavelet coefficients (the process of determining these coefficients will be discussed 

later).  In general the goal of most modern wavelet research is to create a mother wavelet 

function that will give an “informative, efficient, and useful description of the signal of 

interest” (Reza 1).  Some wavelets, simply based on their nature, are more suitable for 

particular applications than others.  For example the Daubachy wavelet is suited for 

signals (such as noise signals) sharp spikes and peaks and in some cases discontinuities.   

As an extension, the wavelet transform is a two-parameter expansion of a signal in terms 

of a particular wavelet basis functions or wavelets.  If we let ψ (t) represent the mother 

wavelet then all other wavelets are obtained by simple scaling and translation of ψ (t) as 

follows:  )][()/1()(,
a

t
ata

τ
ψψ τ

−
= .  The scaling is discrete and dyadic meaning 

a=2 j− and the translation is discretized with respect to each scale by using Tk
j−= 2τ .  In 

this case, the wavelet basis functions are obtained by )2(2)( 2/

, kTtt
jj

kj −= ψψ where 

k,j Z∈ (integers).  The integer k represents translation of the wavelet function and is an 

indication of time or space in wavelet transform.  Integer j, on the other hand, is an 

indication of the wavelet frequency or spectrum shift.  It is referred to as the scale.  The 

following are two different scaled versions of a wavelet along with the mother wavelet. 

 

(Reza 3) 

Another aspect of the wavelet transform is that the localization or compactness of 

the wavelet increases as frequency or scale increases.  In other words, higher scale 

corresponds to finer localization and vice versa (Reza 3).  The paper titled Wavelet 

Characteristics: What Wavelet should I Use, written by Ali M. Reza provides elegant 
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illustrations of the fundamentals of wavelets as well as multi-resolution analysis.  She 

states that the multiresolution formulation needs two closely related basic functions.  “In 

addition to the wavelet )(tψ , there is a need for another basic function called the scaling 

function which is denoted )(tφ .”  The two-parameter wavelet expansion for a signal 

designated as x(t) is given by the following decomposition series: 

∑∑
=

Ψ+=
k

N

n

knknkjk tdtctx
0

,,, )()()(
0

φ  

The coefficients you see, kc , are referred to as approximation coefficients at scale 0, and 

the set of knd ,  considered to be detail coefficients.  The relationship of these wavelet 

coefficients to the original signal (for real and orthogonal wavelets) are given as: 

dtttxc

dtttxd

kjk

kjkn

)()(

)()(

,

,,

0∫
∫

=

Ψ=

φ
 

Other examples of newly developed wavelets are shown in the following figure: 
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The following “images” of a cat show the fundamental transition between an original 

image and the final compressed image.  It begins with substituting the normal basis for 

the image with the Haar wavelet basis.  From this, we then find the coefficients that best 

approximate the original image through the means of the basis.  Then the coefficients are 

quantized, or averaged.  This is where the true concept of image compression comes into 

play.  The goal is to drop or filter the largest amount of coefficients possible yet still be 

able to create a reconstructed image that is represented by fewer coefficients still similar 

to the raw image.  The images show how the the Haar transform can be used in lossy 

image compression: 

 

 
1. Original image  2. Haar coefficients 

 

 
3. Quantized coefficients 4. Reconstructed image 

 

 It is important to understand that wavelets are used in a series expansion of 

signals or functions much the same way a Fourier series used the wave or sinusoid to 

represent a signal or function.  The big distinction between Fourier analysis and wavelet 

analysis is that for the Fourier series, sinusoids are chosen as basis functions, then the 

properties of the resulting expansion are examined.  For wavelet analysis, one poses the 

desired properties and then derives the resulting basis functions (Burrus xi).  

Additionally, in wavelet analysis, the scale that is used to look at data is of particular 
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importance.  Wavelet algorithms process data at different scales or resolutions.  If we 

look at a signal with a large “window,” we would notice gross features.  Similarly, if we 

look at a signal with a small “window,” we would notice detailed features.  The result in 

wavelet analysis is to see both the forest and the trees and be able to transfer this data 

quickly and efficiently.  This is why wavelet analysis along with data or image 

compression is so unique and beneficial in our fast paced lives. 
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