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Thesis:  The purpose of this paper is to understand the implications of wavelet theory 

primarily through techniques of linear algebra with minimal emphasis on Fourier 

analysis.  Much attention will be placed on the Haar wavelet (the simplest form of a 

wavelet) in one and two dimensions in order to understand its importance as a 

mathematical tool for hierarchically decomposing functions.  Image compression and 

multi-resolution analysis will also be studied in order to fully understand wavelet 

applications.   

Furthermore, on a more specific scale, given a function f, in W, we will identify elements 

in the nested subspaces that best approximate it in the L 2 norm.  We are going to 

substitute the natural basis on W and its subspaces by one given by Haar wavelets.  We 

will prove that in this new basis, the representation of f at various resolutions can be done 

by a very simple iteration process.  Moreover, the reconstruction of the original function 

from the coefficients of this representation is equally simple and fast. 

 

Introduction:  Wavelets are at the forefront of both mathematics and engineering.  By 

name, wavelets date back only to the 1980’s and essentially provide an alternative to 

classical Fourier methods for both one and two dimensional data analysis and synthesis.  

Applications of wavelets are quite diverse and include astronomy, acoustics, nuclear 

engineering, sub-band coding, signal and image processing, neurophysiology, music, 

MRI, speech discrimination, optics, fractals, turbulence, earthquake prediction, radar, 

human vision, and solving partial differential equations. Ultimately, the emergence of 

wavelets compliments our fast paced, high speed, and information based lives. 

A wave is usually referred to as an oscillating function of time and/or space.  

Fourier analysis is a type of wave analysis which expands signals in terms of sinusoids or 

complex exponentials.  A wavelet, in a broad sense, is simply a small wave “with finite 

energy, which has its energy concentrated in time or space to give a tool for the analysis 

of transient, nonstationary, or time-varying phenomenon” (Reza 2).  The wavelet still has 

the oscillating wavelike characteristics but it additionally has the ability to allow 

simultaneous time, or space, and frequency analysis.   

 The wavelet analysis procedure employs a wavelet prototype function, called 

mother wavelet. Temporal analysis is performed with a contracted high frequency version 

of the mother-wavelet, while frequency analysis is performed with a dilated, low 
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frequency version of the same wavelet. Because the original signal or function can be 

represented in terms of a wavelet expansion (using coefficients in a linear combination of 

the wavelet functions), data operations can be performed using just the corresponding 

wavelet coefficients. Smart choice of wavelet mother function results in wavelet basis 

yielding sparse data representation. In many cases wavelet coefficients get truncated 

below a threshold. This sparse coding makes wavelets an excellent tool for data 

compression. (http://www.smolensk.ru/user/sgma) 

 

          (Reza 2) 

Before we hit the ground running, so to speak, with wavelets, it is imperative that a 

fundamental mathematical framework for wavelets be established first.  The following 

will be a brief review of vector spaces, inner products and norms, and orthonormal bases, 

for each contribute greatly to wavelet theory.  An inner product is a generalization of the 

dot product for vectors in nℜ and it gives a generalized notion of perpendicularity, called 

orthogonality. As we will see later on, orthogonal wavelets as well as localized basis are 

important in their contribution to data compression.    

Recall that a vector space is a set V (whose elements are called vectors) equipped 

with two binary operations, called vector addition and scalar multiplication, for which 

certain properties hold.  If x,y∈V there is an element x+y in V called the vector sum of x 

and y.  Also, if α ∈ ℜ  (the real numbers) and x∈V there is an element α x in V, called 

the multiple of α  and x.  It is also important to note that if V is a vector space and we let 

v1, v2, v3,…, vn be elements of V we say that a linear combination of v1, v2, v3,…, vn is any 

vector of the form: 

,...2211

1

nn

n

j

jj vvvv αααα +++=∑
=

 where Rn ∈ααα ,..., 21  (Bartle 52). 

There are many other properties that addition and scalar multiplication must satisfy for V 

to be a vector space. 



 4 

If we let V be a vector space over ℜ  (the real number field) then we use the 

notation ⋅〉〈⋅,  for a real inner product map ⋅〉〈⋅, : VxV → ℜ .  Recall that ,  has properties 

of additivity, scalar homogeneity, conjugate symmetry, and positive definiteness.  A 

vector space V with an inner product is called an inner product space (Frazier 80).   

Here are some examples of inner product space: L 2 , where  

L 2 { }








∞<ℜ∈= ∑
∞

=

∞

=
1

2

1
,,

j

jjjj xxx , the set of all square-summable real sequences, and  

some of its subspaces L 2

N , where  L 2

N = { }{ }ℜ∈
= jjj xx
N

:
2

1
 .  With the obvious component-

wise addition and scalar multiplication, L 2 and L 2

N , are vector spaces over ℜ .  In 

applications such as signal processing, N is the number of resolutions for the wavelet 

functions. 

The next two examples review topics such as norms and orthogonality (and what 

it means to be orthonormal).  Letting V be the vector space of continuous functions on 

the interval [a,b] over the real numbers with inner product ⋅〉〈⋅, .  For u,v∈V we can 

define ∫=
b

a

dxxvxuvu )()(,  and vvv ,=  where this norm generally agrees with the 

usual notion of the length of a vector, also known as the magnitude (Frazier 82).  Some 

properties of the norm are as follows: 

00 ≡⇔=

=

+≤+

ff

fccf

gfgf

 

An extension of the norm is the distance between functions f and g which will come into 

play later when we try to find the error between two functions.  By definition, the 

distance is gf −  and is denoted ),( gfd . 

The definition of orthogonality is as follows.  Suppose V is an inner product space.  For 

u,v∈V, we say that u and v are orthogonal (written u ⊥ v) if vu, =0.  Also, if we 

suppose that V is a real inner product space we can let B be a collection of vectors in V.  

B is an orthogonal set if any two different elements of B are orthogonal.  B is an 
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orthonormal set if B is an orthogonal set and v =1 for all v∈B.  Orthogonal sets of 

nonzero vectors are linearly independent (Frazier 84). 

It is also important to note that up to this point, continuous functions have been 

used.  Discontinuous functions are a bit harder to work with but many wavelets, such as 

the Haar wavelet, are discontinuous so it is important to note the concept of “almost 

equal.”  Let f and g be piecewise continuous on [a,b].  We say that f and g are almost 

equal if there exists a finite set of points, S, such that for [ ] Sbax \,∈  we have f(x)=g(x).  

In the following case with the Haar wavelet, we are “ignoring” the points at x=-1,0,1.  

We will consider the set S the exception set.  In summary, it is a fact that if f and g are 

almost equal on [a,b] and if 0x is a point of continuity for both f and g then 

).()( 00 xgxf =  

(constructed from Heavyside function from maple) 

The following is a lemma contingent on what has just been discussed. (almost equal=a.e.) 

Lemma: If we let f,g,h be piecewise continuous on [a,b] such that f=g a.e. on [a,b] and 

g=h a.e. on [a,b], then: 

(i) f=h a.e. 

(ii) f+g=g+h a.e. 

(iii) f*g=f*h a.e. 

Proof of (i): By definition of f=g a.e. on [a,b] there exists a finite set 1S , such that 

for [ ] 1\, Sbax ∈ , f(x)=g(x).  By definition of g=h, there exists a finite set 2S such 

that for [ ] 2\, sbax ∈ , g(x)=h(x).  Now if we let ∪ 213 SSS = , it is considered to be a 

finite union since 21,SS are finite.  Let 123 \],[\],[\],[ SbaSbaSbax ⊂⊂∈ .  From 

this, f(x)=g(x) since 1\],[ Sbax ∈  and g(x)=h(x) since 2\],[ Sbax ∈ .  Therefore 

f(x)=h(x).  QED 
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The following is a lemma that will be used in our analysis of approximation and 

wavelet theory.  Let f be a piecewise continuous on [a,b] and let 0V ([a,b]) be the space of 

functions constant on [a,b] (meaning 0Vg ∈  iff ℜ∈∃c , g(x)=c for all x in [a,b]): 

(i) Then there exists a unique function 00 Vf ∈ such that gfff −≤− 0  for all 0Vg ∈  

(ii) The function 0f is equal to f(x)=average of f on [a,b] for all ∈x [a,b]=
ab

dttf

b

a

−

∫ )(

 

The proof is as follows: Since function in 0V are constant functions, all we need to show 

is that ℜ∈∀c  
22

cfff ave −≤− where 
ab

dttf

f

b

a
ave

−
=
∫ )(

.  We thus want to show that 

dtctfdtftf

b

a

b

a

ave

22

)()( ∫∫ −≤−  (*).  Consider the function ℜ→ℜ:Q defined by 

dtctfcQ

b

a

2

)()( ∫ −= .  Note that the left side of (*) represents ).( avefQ   We will show it is 

a quadratic function, whose graph is a parabola.  Its minimum is attained at avefc =  thus 

proving (*).  Upon studying 

dtcctftfcQ

b

a

))(2)(()( 22∫ +−= = ∫ ∫ +−
b

a

b

a

cdttfcdttf ))((2))(( 2
 

So with this, ∫ −+−=
b

a

abcdttf
dc

dQ
).(2)(2   0=

dc

dQ
when ∫ =−+−

b

a

abcdttf 0)(2)(2 thus 

occurring when 
ab

dttf

c

b

a

−
=
∫ )(

. 

The previous theorem helps us approximate functions using the natural basis.  The 

following is the main approximating theorem that allows us to replace the natural basis of 
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a function with the wavelet basis and from there we can determine the ever so important 

detail coefficients.   

Theorem 1: If we let f be a piecewise continuous function on [-1,1] and we let nV  denote 

the space of functions piecewise constant on dyadic intervals of generation n: 

  

The proof is as follows.  If we let g be an arbitrary function in nV  then we can use the 

additivity of integrals with respect to the interval of integration.  Since                             

[-1,1]= 12210 ... −n

nnnn JJJJ ∪∪∪∪  we get that 

dxxgxfdxxgxfgf

n

k
n

k J

∑ ∫∫
−

=−

−=−=−
12

0

2

]1,1[

22
))()(())()((  

If we use the previous lemma for f,g restricted to k

nJ .  By g nV∈ , we get that g is constant 

on k

nJ .  Now let c k

n =f k

nave,  be the average of f on the interval k

nJ , thus 

c
k

n = ∫−
k
nJ

n
dxxf )(

2/1

1
1

.  We get dxxgxfdxcxf
k
n

k
n JJ

k

n ∫∫ −≤− 22 ))()(())((   (**) for  

k=0,…,2 n -1, with equality if and only if k
nJ

g =constant c k

n .  Note that the function nf  

described in Theorem 1 (ii) can be represented as k
n

n

J
k

k

nn cf χ∑
−

=

=
12

0

and thus (**) can be 

written as dxxgxfdxxfxf
k
n

k
n JJ

n ∫∫ −≤− 22 ))()(())()((  (***) for k=0,…,2 n -1, with equality 
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if k
n

k
n JnJ

fg = .  Now add all of (***) with k=0,…,2 n -1 to get 

dxxgxfdxxfxf
k Jk J

n

k
n

k
n

∑ ∫∑ ∫ −≤− 22 ))()(())()((  with equality if for all k=0,…,2 n -1 

k
n

k
n JnJ

fg = thus ∫∫ −≤−
b

a

b

a

n dxxgxfdxxfxf
22 ))()(())()((  nVg ∈∀ , with equality if and 

only if nfg = .   QED 

As a note for the previous two proofs, their purpose is to simply show that there is a 

unique piecewise function that can approximate an original function better than any 

others.   

Now that some of the basics are out of the way we turn our attention to wavelets 

using signal analysis as a mode of transition.  When working in signal analysis, there are 

a number of different operations one can perform on that signal in order to translate it 

into different forms that are more suitable for different applications.  The most popular 

function is the Fourier transform that converts a signal from time versus amplitude to 

frequency versus amplitude. This transform is useful for many applications, but it is not 

based in time. To combat this problem, mathematicians came up with the short term 

Fourier transform which can convert a signal to frequency versus time. Unfortunately, 

this transform also has its shortcomings mostly that it cannot get decent resolutions for 

both high and low frequencies at the same time.   

The wavelet transform is a mechanism used to dissect or breakdown a signal into 

its constituent parts, thus enabling analysis of data in different frequency domains with 

each components resolution matched to its scale.  Alternatively this may be seen as a 

decomposition of the signal into its set of basis functions (wavelets), analogous to the use 

of sines and cosines in Fourier analysis to represent other functions.  These basis 

functions are obtained from dilations or contractions (scaling), and translations of the 

mother wavelet.  The important difference that distinguishes the wavelet transform from 

Fourier analysis is its time and frequency localization properties.  When analyzing signals 

of a non-stationary nature, it is often beneficial to be able to acquire a correlation between 

the time and frequency domains of a signal.  In contrast to the Fourier transform, the 

wavelet transform allows exceptional localization in both the time domain via 

translations of the mother wavelet, and in the scale (frequency) domain via dilations.  
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Wavelets are finite windows through which the signal can be viewed.  In order to move 

the window about the length of the signal, the wavelets can be translated about time in 

addition to being compressed, widened, or shifted.  

Mathematically, a signal, or a raw image, is a function which is piecewise 

continuous on the interval [a,b].  We want to approximate it with simpler functions 

(piecewise constants in our case) such that the approximation is the best possible, within 

the designated class of simple functions.  Yet as we extend the class of simple functions, 

the approximations can be improved.  These extended classes of functions determine a 

succession of nested linear spaces ...210 VVV ⊂⊂ . Ultimately, it comes down to the 

concept of “reusing” the part of the previous approximation to rebuild the new, better 

approximation.  So in order to increase the resolution of an image while still using the 

previous base, a better basis needs to be established.  The basis we are looking for is of 

the wavelet type. 

The concept of high and low resolution from engineering, relates to the just 

mentioned nested linear spaces.  If we start with the original space the original image or 

signal is at highest resolution.  The image is approximated with functions in 0V  or 1V etc. 

and is of low resolution and as we nest more vector spaces, the resolution continues to 

increase.  This continues until one is satisfied with the compressed or approximated 

image or until there is no clear distinction between the raw image and what the wavelet 

basis has produced.  Although the wavelet transform has come into prominence during 

the last decade, the founding principles behind wavelets can be traced back as far as 1909 

when Alfred Haar discovered another orthonormal system of functions, such that for any 

continuous function f(x), the series   

  

converges to f(x) uniformly over the interval 10 <≤ x .   

(www.wavelet.org/tutorial/gifs/haar.gif)  Here k represents the translation of the wavelet 

which is an indication of time and space.  The integer k is also the center of the dyadic 

interval while j is referred to as the scale (dyadic in nature).  W is the mother wavelet. 

So how can a signal be converted and manipulated while keeping resolution across the 

entire signal yet still be based in time? This is where wavelets come into play.     



 10 

Aforementioned, the mathematical formulation of the signal-processing concept 

of high and low resolutions uses a sequence of nested subspaces of an inner product 

space of allowable functions (i.e. allowable signals).  The functions we will be working 

with are either discrete signals or piecewise continuous functions, supported on the 

interval J=[-1,1].  Consider the dyadic subintervals of [-1,1], i.e. the intervals whose end 

points are of the form 
n

k

2
, for integer k and positive integer n, listed below by their 

“generation:” 

J 0 =J, generation zero 

J 0

1 =[-1,0], J 1

1 =[0,1], first generation, 

J 0

2 =[-1,-1/2], J 1

2 =[-1/2,0], J 2

2 =[0,1/2], J 3

2 =[1/2,1], second generation 

… 

In general; J k

n =[ ]1
2

1
,1

2 11
−

+
−

−− nn

kk
, where k=0 to k=2 n -1 

 

For practical purposes one can think of an image as and element of a vector space 

such as jV  which would be the perfectly normal image, and the approximation of the 

original image with an element of 1−jV  would be that image at a lower resolution, until 

you get to approximating the image with elements of 0V , where you just have one pixel in 

the entire image.  Considering the spaces just mentioned, 0V , 1V , …, nV , with functions 

defined on [-1,1] and piecewise constant on intervals of generations zero, generation one, 

generation n, respectively. In engineering language, these spaces are listed from low 

resolution to high resolution. These linear spaces have dimensions: dim 0V =1, dim 1V =2, 

dim 2V =4,…,dim nV =2 n  

For each vector space jV , there is an orthogonal complement called jW  and the 

basis function for this vector space is the wavelet.  

 (davis.wpi.edu) 
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And for each 0 ≤ i ≤ 2 3 -1, we get an induced (dyadically) dilated and translated 

scaling function: )2/2()( 333
ixxi −= φφ .  These eight functions form a basis for the vector 

space V 3 of piecewise constant functions on [0,1) with possible breaks at 1/8, 2/8, 

3/8,…,7/8.  It is important to note that 3

0φ is 1 on [0,1/8) only, 3

1φ is 1 on [1/8, 2/8) only, 

and so on.  The following figure shows three of these basis functions together with a 

typical element of V 3 .  The last plot shows the unique element of,  

 (Mulachy) 

Now we make an introduction to the Haar wavelet.  Alfred Haar (1885-1933) was a 

Hungarian mathematician who worked in analysis studying orthogonal systems of 

functions, partial differential equations, Chebyshev approximations and linear 

inequalities. Although the wavelets discussed in this paper had their origins in the early 

work of Haar, the subject has only really gathered momentum in the last decade.  The 

Haar measure, Haar wavelet, and Haar transform are named in his honor.  

 (O'Connor, Robertson 1) 
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The piecewise functions that make up the Haar wavelet and their graphs are as follows: 

 

(Mulachy) 

Given a function f, in W, we have identified elements in the nested subspaces that best 

approximate it in the L 2 norm.  We are going to substitute the natural basis on W and its 

subspaces by one given by Haar wavelets.  In this new basis, the representation of f at 

various resolutions can be done by a very simple iteration process.  The Haar wavelet can 

be considered to be a special type of step function that can in turn be thought of as a 

linear combination of dyadically dilated and translated unit step functions on [-1,1].  Note 

that the function φ satisfies a scaling equation of the form φ (x)= )2( ixc
Zi i −∑ ∈

φ where in 

this case the only nonzero c i ’s are c 0 =c 1 =1, i.e. ).12()2( −+ xx φφ  

(Reza 4) 
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Fig.3. First 7 wavelets from Haar wavelet basis.    (www.smolensk.ru/user/sgma) 

Wavelet theory is based on analyzing signals to their components by using a set of basis 

functions.  As seen above, one important characteristic of the wavelet basis functions is 

that they relate to each other by simple scaling and translation and that they recursively 

build upon eachother.  The original wavelet function, known as the mother wavelet (i.e. 

the Haar mother wavelet), which is generally designed based on some desired 

characteristics associated to that function, is used to generate all basis functions.  In most 

wavelet transform applications, it is required that the original signal be synthesized from 

the wavelet coefficients (the process of determining these coefficients will be discussed 

later).  In general the goal of most modern wavelet research is to create a mother wavelet 

function that will give an “informative, efficient, and useful description of the signal of 

interest” (Reza 1).  Some wavelets, simply based on their nature, are more suitable for 

particular applications than others.  For example the Daubachy wavelet is suited for 

signals (such as noise signals) with sharp spikes and peaks and in some cases 

discontinuities. 

As an extension, the wavelet transform is a two-parameter expansion of a signal in terms 

of a particular wavelet basis functions or wavelets.  If we let ψ (t) represent the mother 

wavelet then all other wavelets are obtained by simple scaling and translation of ψ (t) as 

follows: )2(2)( 2/

, ktt
jj

kj −= ψψ  where 2 2/j  keeps the norm of the basis function equal 

to 1 (orthonormal property) i.e. ψψψ
ψ

ψ 2/22
2/1

1 jj

j
=== .  The scaling is discrete 

and dyadic meaning a=2 j− and the translation is discretized with respect to each scale by 

using Tk
j−= 2τ .  In this case, the wavelet basis functions are obtained by 
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)2(2)( 2/

, kTtt
jj

kj −= ψψ where k,j Z∈ (integers) and T is the original size of the interval.  

The integer k represents translation of the wavelet function and is an indication of time or 

space in wavelet transform.  Integer j, on the other hand, is an indication of the wavelet 

frequency or spectrum shift.  It is referred to as the scale.  The following are two different 

scaled versions of a wavelet along with the mother wavelet. 

(Reza 3) 

Another aspect of the wavelet transform is that the localization or compactness of 

the wavelet increases as frequency or scale increases.  In other words, higher scale 

corresponds to finer localization and vice versa (Reza 3).  The paper titled Wavelet 

Characteristics: What Wavelet should I Use, written by Ali M. Reza provides elegant 

illustrations of the fundamentals of wavelets as well as multi-resolution analysis.  She 

states that the multiresolution formulation needs two closely related basic functions.  “In 

addition to the wavelet )(tψ , there is a need for another basic function called the scaling 

function which is denoted )(tφ .”  The two-parameter wavelet expansion for a signal 

designated as x(t) is given by the following decomposition series: 

∑∑
=

+=
k

N

n

knknkjk tdtctx
0

,,, )()()(
0

ψφ  

The coefficients you see, kc , are referred to as approximation coefficients at scale 0j , 

and the set of knd ,  considered to be detail coefficients.  The relationship of these wavelet 

coefficients to the original signal (for real and orthogonal wavelets) are given as: 

dtttxc

dtttxd

kjk

kjkj

)()(

)()(

,

,,

0∫
∫

=

=

φ

ψ
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Other examples of newly developed wavelets are shown in the following figure: 

 

The following “images” of a cat show the fundamental transition between an 

original image and the final compressed image.  It begins with substituting the normal 

basis for the image with the Haar wavelet basis.  From this, we then find the coefficients 

that best approximate the original image through the means of the basis.  Then the 

coefficients are quantized, or averaged.  This is where the true concept of image 

compression comes into play.  The goal is to drop or filter the largest amount of 

coefficients possible yet still be able to create a reconstructed image that is represented by 

fewer coefficients still similar to the raw image.  The images show how the Haar 

transform can be used in image compression: 

 

 
1. Original image  2. Haar coefficients 
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3. Quantized coefficients 4. Reconstructed image 
 

An example of a practical application of the use of wavelet theory and analysis is 

seen in FBI fingerprint compression.  Between 1924 and today, the US Federal Bureau of 

Investigation has collected about 30 million sets of fingerprints.  Eventually, the need for 

a digitization and compression standard was needed.  The fingerprint images are digitized 

at a resolution of 500 pixels per inch with 256 levels of gray-scale information per pixel.  

A single fingerprint itself is about 700,000 pixels and needs about .6 megabytes of 

storage while a pair of hands requires about 6 megabytes of storage.  At a price of $900 

per gigabyte for hard-disk storage and with about 200 terabytes of data to store, the FBI 

would have to pay about 200 million dollars to store uncompressed images.  Application 

of wavelet analysis could bring this number way down (Graps11).  

It is important to understand that wavelets are used in a series expansion of 

signals or functions much the same way a Fourier series used the wave or sinusoid to 

represent a signal or function.  The big distinction between Fourier analysis and wavelet 

analysis is that for the Fourier series, sinusoids are chosen as basis functions, then the 

properties of the resulting expansion are examined.  For wavelet analysis, one poses the 

desired properties and then derives the resulting basis functions (Burrus xi).  

Additionally, in wavelet analysis, the scale that is used to look at data is of particular 

importance.  Wavelet algorithms process data at different scales or resolutions.  If we 

look at a signal with a large “window,” we would notice gross features.  Similarly, if we 

look at a signal with a small “window,” we would notice detailed features.  The result in 

wavelet analysis is to see both the forest and the trees and be able to transfer this data 

quickly and efficiently.  This is why wavelet analysis along with data or image 

compression is so unique and beneficial in our fast paced lives. 
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