
Introduction 

 When you hear a message broadcasted on the radio, the signal is crisp and clear 

despite the convoluted signal it plays.  When you hear your voice on an answering 

machine, the voice sounds unfamiliar and different from the voice you hear when you 

speak because the telephone only transmits the lower frequencies of your voice.  When 

you listen to a CD, the songs are rich, full-bodied sounds without interference despite that 

the CD is encrypted with a multitude of information.  These are just a few examples of 

how filters improve a machine’s performance.  Digital signals are filtered using 

mathematical techniques called Fourier transforms and convolutions. 

 

Jean Baptiste Joseph Fourier (1768-1830) 

 Jean Baptiste Joseph Fourier was born in March of 1768 in Auxerre, France.  

Fourier’s mother died when he was only nine years old, and his father died one year later.  

As a boy, Fourier studied at Pallais’ school, and then in 1780, he entered École Royale 

Militaire of Auxerre.  As a student, Fourier was strong in Latin, French and Literature.  

By the age of 13, however, it was evident that mathematics was Fourier’s true love.  At 

14, Fourier completed a study of the six volumes of Bézout’s Cours de Mathématiques.  

Fourier was rewarded for his mathematical efforts with his first prize for his study of 

Bossut’s Mécanique en Général.1 

 In 1787, Fourier entered the Benedictine abbey of St. Benoit-sur-Loire to train to 

become a priest.  While discerning his possible vocation in the religious life, he was torn 

because he knew that he was better suited to be a mathematician than to be a priest.  

While at seminary, Fourier wrote his math professor from Auxerre, “Yesterday was my 
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21st birthday.  At that age, Newton and Pascal has already acquired many claims to 

immortality.”1 Not surprisingly, Fourier did not complete his training or take his religious 

vows. 

 After leaving St. Benoit’s, Fourier became a math professor at École Royale 

Militaire of Auxerre, the same school he attended as a young man.  In 1793, Fourier 

started his political career by joining his local Revolutionary Committee.  

Understandably, Fourier tried to resign from the committee after the French Revolution’s 

Reign of Terror.  Since Fourier was heavily involved in the Revolution, he was not 

allowed to resign from his committee.  Fourier spoke out against the committee and was 

imprisoned in 1794.  Fortunately, Fourier was released before heading to the guillotine.1 

 In 1794, Fourier was elected to study at École Normale in Paris—an institution 

focused on training teachers.  At the École Normale, Fourier studied under Lagrange, 

Laplace, and Monge.  Once his training was complete, Fourier taught at the Collège de 

France and then the École Polytechnique.  At the École Polytechnique, Fourier rose to the 

position of Chair of Analysis and Mechanics and was known for his excellent lectures.1 

 Fourier joined Napoleon Bonaparte’s army when they invaded Cairo in 1798 and 

served as a scientific adviser.  While in Egypt, Fourier helped found the Cairo Institute, 

serving as the Secretary during France’s occupation.  Fourier returned to France in 1801 

and resumed his position as a math professor at École Polytechnique.  Since Fourier was 

in Napoleon’s good favor from their time together in Egypt, Napoleon appointed Fourier 

the Prefect in Grenoble.  Although Fourier wanted to continue his work as a professor, he 

was in no position to refuse Napoleon.1 
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 While in Grenoble, Fourier studied the theory of heat and wrote his famous work 

On the Propagation of Heat in Solid Bodies in 1807.  Although this memoir is well-

respected now, at the time it was a very controversial piece.  In 1808, Lagrange and 

Laplace objected that Fourier claimed he could expand functions as trigonometric series.  

This method is now known as Fourier series.  Biot made a second objection as to how 

Fourier derived the heat transfer equations.1 Laplace and Poisson made similar objections 

soon thereafter.  Although Fourier’s work was not favored, he received a prize in 1811 

for his work on heat theory.  Despite this reward, Fourier’s work was not published due 

to its controversial nature.1 

 In 1817, Fourier was elected to the Académie des Sciences of Paris as the 

Secretary to the mathematical section.1 Fourier wrote his published essay Théorie 

Analytique de la Chaleur in 1822.  During his last eight years, Fourier published several 

papers on pure and applied mathematics.  Even after his death, Fourier’s work inspired 

further study of trigonometric series and the theory of functions of a real variable.1 

 

Discrete Fourier Transforms 

 Discrete Fourier Transforms (DFTs) are used to analyze and filter signals.  First 

we will look at Fourier series and Fourier transforms, which are the basis of the DFT.  

 The Fourier series for g is defined by the right side of the following 

correspondence: 2 
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Provided the function g has period P and the Fourier coefficients {cn} for g are defined 

by:  
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 Given a function f for which 
1

f is finite, the Fourier transform is denoted by f̂  

and is defined as a function of u by 
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 Specifically, DFTs are used in signal processing to analyze the frequencies 

contained in a sampled signal.  For more information on Sampling, please refer to 

Midshipman Kelly Nelan’s Capstone paper. 
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Convolution Theorem 

Convolution Theorem
2: If { }

ju  and { }
jv  are sequences of period N with DFTs { }kU  

 and{ }kV , respectively, then the Discrete Fourier Transform of the convolution of u 

 and vj is the product of Uk and Vk; also written the DFT of{ }jvu ∗  is{ }kk VU ⋅ . 
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Now, the last sum in the brackets can be rewritten as follows: 
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Which proves that the Discrete Fourier Transform of { }
jvu ∗  is { }kk VU ⋅ . 

 

Corollary to the Convolution Theorem: The inverse DFT of { }kk VU ⋅  is { }
jvu ∗ . 

 

Filters 

 A filter is a system which transmits or rejects a set range of frequencies.3 For 

example, when we listen to a certain signal, its low frequencies may come through 

clearly, but its high frequencies cloud the signal with irrelevant information, called 

“noise.”  When we reduce the noise, our signal transmits clearly without the unwanted 

interference.  A filter reduces unnecessary frequencies to give us the best signal.5 

 There are three kinds of filters: low-pass filters, high-pass filters, and band-pass 

filters.  Low-pass filters only pass low frequencies but reduce frequencies higher than the 

cut-off frequency.  High-pass filters only pass high frequencies but reduce frequencies 

that are lower than the cut-off frequency.  Band-pass filters reduce very low and very 

high frequencies but pass a middle range band of frequencies.  The desired range of 

frequencies that the filter passes is called the passband. 
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 Filters are used in common applications such as subwoofers, radio transmitters, 

sound effects, CD players, virtual reality systems, and telephones.4   

 

Analyzing a Filter 

 To better understand filters, we will look at a specific example.  The stock market 

is a continuously changing database.  If we look at closing prices from one day at a time, 

we can analyze this data over a long period of time.  The graph below shows the daily 

closing prices for a stock over a 300 day period.  We analyze a filter of this data, which is 

be found by averaging the stock prices. 
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 When comparing the two graphs, they have the same general shape.  The graph 

below, however, is smoother than the graph above.  It appears that we have a low-pass 

filter.  Let us analyze this filter. 
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 Let yn equal the output of our filter and xn equal the input.  To find yn, we will 

average the past 20 days of data.  The point xn represents data from a single day.   

The following equations define our filter: 
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Note that yn is the convolution of xn and bn.  Therefore, by the convolution theorem, its 

Fourier transform is defined as BXY nnn
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In this example, let N = 20 and
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 Using the Maple program to produce a graph, we get the above figure.  This is a 

graph of the Bj s from our calculations.  There is a spike on the graph where the 

frequencies are between ( )5,5− .  From ( )5,50 −−  and ( )50,5  the signal is decreasing 

asymptotically to zero.  This graph shows that Bj lets the low frequencies ( )5,5−  pass, 

and the high frequencies ( )5,50 −−  and ( )50,5  are reduced to zero.  Therefore, this 

graph represents a low-pass filter. 



 10 

Designing a Filter 

 Designing a filter is similar to analyzing a filter.  When we analyzed the filter in 

the last example, we started with the bk values and found the Discrete Fourier Transform 

function Bj.  Similarly, to design a filter, we will start with the desired Bk function and use 

a DFT inversion to find the bj values. 

                                       
          -100   -80       -60       -40    -20     0      20        40        60        80        100 
 
 The graph above represents our desired Bk graph for a sample size of 100.  This 

graph passes 20% of the signal and suppresses 80% of the signal.  The portion of this 

graph from ( )10,10−  is part of the signal that is passed; the value here is 1.  From 

( )90,10  is where the signal is to be suppressed, so these values are 0.  N represents one 

period of the signal; in this example, N = 100 since we will only analyze one period.  

Because we will use an inverse DFT, our N will go from [0, 99].   

 Therefore the desired Bk’s are: 
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To find the bj values, we must use a DFT inversion.  We have already defined the DFT 

inversion as: 
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We will use Maple to compute the first six values of bj: 

   b0 = 0.20 

   b1 = 0.1870363000 - 0.00587785253 i 

   b2 = 0.1511661045 - 0.009510565 i 

   b3 = 0.1006112702 - 0.009510565 i 

   b4 = 0.0465279936 - 0.005877852 i 

   b5 = - 0.00000000025 

By analyzing the bj values, we can assume that since the imaginary values are so small, 

they are negligible and we will only use the real values.  Also, since the value of b5 is 

very small and all values of bn for 5≥n are even smaller, we will assume that all values 
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of bn for 5≥n are zero.  Interestingly, if we compute the same bj values with N = 10,000, 

this larger sample results in approximately the same real parts, but even more minuscule 

imaginary parts. 

 This analysis proves that we only need to use the values b0, b1, b2, b3, and b4 to 

write the function that represents this filter.  In the example where we analyzed a filter, 

we knew that yn was the convolution of xn and bn.  Similarly when we design this filter, 

we must convolute the xn and bn values; the yn output is a convolution which is the 

function representing our filter: 

443322110 −−−−
⋅+⋅+⋅+⋅+⋅= nnnnnn xbxbxbxbxby + (the zero terms) 

Ideally, when you add the bj values in the yn equation, their sum should equal 1.  We are 

only using the values b0, b1, b2, b3, and b4 since they had significant values, but their sum 

does not equal 1.  To best approximate the yn function we must normalize the bj values.  

To normalize these values, we will find the actual sum of the bj values, and divide each bj 

by its sum. 

685.043210 ≅++++ bbbbb  

When we divide each bj value by its normalizing number, we get 
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Substituting the computed bj values into this equation gives the function 

4321 685.0

0465.0

685.0

1006.0

685.0

1512.0

685.0

1870.0

685.0

20.0
−−−−

⋅+⋅+⋅+⋅+⋅= nnnnn
n

xxxxxy  

4321 0679.01469.02207.02730.02918.0
−−−−

⋅+⋅+⋅+⋅+⋅= nnnnn
n

xxxxxy  

This yn equation represents the output of our filter in a similar way to the averaging    

low-pass filter on Page 8. 
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Famous Filters 

 The two filters above are generic and simple compared to more complex, famous 

filters.  Several mathematicians have left their mark by designing a filter that performs a 

specific task.  For example, some filters use a method of arithmetic means to approximate 

the best signal, while other filters best approximate a step-function through a series of 

harmonics.  We will look at two famous filters: the Cesàro filter and the de la Vallée 

Poussin filter. 

 

Cesàro Filter 

 The Cesàro filter is also known as the method of arithmetic means. 2  Given a 

function with Fourier series partial sums { }∞
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If we fix a value n, where n = 0, ±1, ±2,…, ±M, then we count how often  

Cn appears in the sums of (3) and obtain 
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We found SM by multiplying the coefficients in SM by the filter factors, 
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 The Gibbs phenomenon is a situation where the partial sums of the Fourier series 

seem to interlace around the graph of the step function.  Since the functions oscillate from 

being above and below the step function, we find an average (or mean) to best 

approximate the function.   

                

          Figure 1                                        Figure 2                                        Figure 3 
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 Figures 1, 2, and 3 show a signal experiencing the Gibbs Phenomenon.  The shape 

of the filtered signal is nearly that of the desired step function, but will never be a smooth 

step function. 

 

The figure above shows the Cesàro filter suppressing the Gibbs phenomenon. 2 

 
 

de la Vallée Poussin filter 

 The de la Vallée Poussin (dlVP) filter is very similar to the Cesàro filter, but the 

dlVP filter uses only the upper half of partial sums to find the best approximation for a 

step function.2 

 If we have an even number of harmonics, 2M, then we define V2M by 
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First, we rewrite (1) by using the definition of Sk: 
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 In Figure 4.12, we compare a Cesàro filter and a de la Vallée Poussin filter.2 We 

graphed a dlVP filtered Fourier series partial sum for a step function. By analyzing the 

graphs we can see that dlVP filtering gives a closer approximation to the original step 

function than the Cesàro filter. 

 

Conclusion 

 When tasked to write a Capstone paper, the thought of writing a minimum of 15 

pages about mathematics was daunting, to say the least.  Choosing one of the seven 

possible topics relating to Fourier series was like playing mathematical Russian roulette; I 

had no previous knowledge about any of my topic choices and I could only hope to 

choose a topic that I would comprehend. Thankfully, “Filters and Fourier Transforms” 

turned out to have real-life applications that I understood and I was able to learn about 

Fourier series and Fourier transforms in the process.  I enjoyed analyzing and designing 

filters with my Capstone advisor, Professor Richard Maruszewski, and I was able to 

associate the concepts of Fourier transforms to my filter examples. 
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