
SM472, Computational Fourier Transforms 1

Class notes for a Capstone course taught Spring 2006-2007. The text
for the course is the book Fast Fourier transform by James Walker [W1].
Examples using SAGE [S] illustrate the computations are given throughout.
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Application of FS, FTs, and DFTs (including DCTs and FFTs), are found
in

• the heat equation and the wave equation in physics,

• image compression,

• analog-to-digital conversion,

• spectroscopy (in medicine, for example),

• passive sonar (via frequency analysis),

• multiplication of very large integers (useful in cryptography),

• statistics,

among many others.
In fact, Patent number 5835392 is “Method for performing complex fast

fourier transforms (FFT’s)”, and Patent number 6609140 is “Methods and
apparatus for fast fourier transforms.” These are just two of the many patents
which refer to FFTs. Patent number 4025769 is “Apparatus for convoluting
complex functions expressed as fourier series” and Patent number 5596661
is “Monolithic optical waveguide filters based on Fourier expansion.” These
are just two of the many patents which refer to FSs. You can look these up
in Google’s Patent search engine,
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http://www.google.com/ptshp?hl=en&tab=wt&q=

to read more details. You’ll see related patents on the same page. Try
“discrete cosine transform” or “digital filters” to see other devices which are
related to the topic of this course.

1 Background on Fourier transforms

This section is not, strictly speaking, needed for the introduction of discrete
Fourier transforms, it helps put things in the right conceptual framework.

1.1 Motivation

First, let’s start with some motivation for the form of some of the defini-
tions. Let’s start with something you are very familiar with: power series
∑∞

t=0 f(t)xt, where we are writing the coefficients f(t), t ∈ N, of the power
series in a functional notation instead of using subscripts. Usually, if f(0),
f(1), f(2), ... is a given sequence then the power series

∑∞
t=0 f(t)xt is called

the generating function of the sequence2.
The continuous analog of a sum is an integral:

∞
∑

t=0

f(t)xt  

∫ ∞

0

f(t)xt dt.

Replacing x by e−s, the map

f 7−→
∫ ∞

0

f(t)xt dt =

∫ ∞

0

f(t)e−st dt,

is the Laplace transform. Replacing x by e−2iy, the map

f 7−→
∫ ∞

0

f(t)xt dt =

∫ ∞

0

f(t)e−2ity dt,

is essentially the Fourier transform (the definition below includes a factor
1√
π

for convenience). In other words, the Laplace transform and the Fourier
transform are both continuous analogs of power series.

2In fact, since power series are so well understood, often times one studies the generating
function to better understand a given sequence.
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To go a little further with this analogy, suppose we have two power series
A(x) =

∑∞
j=0 a(j)x

j and B(x) =
∑∞

k=0B(k)xk. The product is given by

A(x)B(x) = (
∑∞

j=0 a(j)x
j)(

∑∞
k=0B(k)xk)

= (a(0) + a(1)x+ a(2)x2 + ...)(b(0) + b(1)x+ b(2)x2 + ...)
= a(0)b(0) + (a(0)b(1) + a(1)b(0))x+ (a(2)b(0) + a(1)b(1) + a(0)b(2))x2 + ...
=

∑∞
m=0 c(m)xm,

where

cm =
∑

j+k=m

a(j)b(k) =

m
∑

j=0

a(j)b(m− j).

This last expression is referred to as the Dirichlet3 convolution of the aj ’s
and bk’s. Likewise, if F (s) =

∫ ∞
0
f(t)e−st dt and G(s) =

∫ ∞
0
g(t)e−st dt then

F (s)G(s) =

∫ ∞

0

(f ∗ g)(t)e−st dt,

where

(f ∗ g)(t) =

∫ t

0

f(z)g(t− z) dz.

The above integral,
∫ ∞
0
f(t)e−2ity dt, is over 0 < t < ∞. Equivalently, it

is an integral over R, but restricted to functions which vanish off (0,∞). If
you replace these functions supported on (0,∞) by any function, then we are
lead to the transform

f 7−→
∫ ∞

−∞
f(t)e−2ity dt.

This is discussed in the next section.

1.2 The Fourier transform on R

If f is any function on the real line R whose absolute value is integrable

||f ||1 =

∫

R

|f(x)| dx <∞

3Pronounced “Dear-ish-lay”.
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then we say f is L1, written f ∈ L1(R). In this case, we define the Fourier
transform of f by

F (f)(y) = f̂(y) =
1√
π

∫

R

f(x)e−2ixy dx.

This is a bounded function, written f ∈ L∞(R),

||f̂ ||∞ = sup
y∈R

|f̂(y)| <∞.

It can be shown that F (extends to a well-defined operator which) sends
any square-integrable function to another square-integrable function. In
other words,

F : L2(R) → L2(R),

where L2(R) denotes the vector space (actually, a Hilbert space) of functions
for which the L2-norm is finite:

||f ||2 = (

∫

R

|f(x)|2 dx)1/2 <∞.

Example 1 Here is an example. Let f0(x) = e−x2

. We have

f̂0(y) = 1√
π

∫

R
e−x2

e−2ixy dx

= 1√
π

∫

R
e−y2

e−(x+iy)2 dx

= 1√
π
e−y2 ∫

Im(z)=y
e−z2

dz

= 1√
π
e−y2 ∫

Im(z)=0
e−z2

dz,

where z = x+iy the last equality follows from the Residue Theorem from complex analysis.
Now, this is

= 1√
π
e−y2 ∫

Im(z)=0
e−z2

dz

= 1√
π
e−y2 ∫

R
e−x2

dx

= e−y2

.

This last line depends on

∫

R

e−x2

dx =
√
π.

(Here’s the quick proof of this:
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(
∫

R
e−x2

dx)2 =
∫

R

∫

R
e−x2

e−y2

dxdy

=
∫

R

∫

R
e−x2−y2

dxdy

=
∫ ∞

0

∫ 2π

0 e−r2

r dθdr

= 2π
∫ ∞

0 e−r2

r dr
= 2π 1

2

∫ ∞

0 e−u du = π.

Now take square-roots.)
This proves that this example satisfies

F (f0)(y) = f0(y). (1)

In other words, that the operator F has eigenvector f0 and eigenvalue λ = 1.

Exercises:

1. Verify that F (f ′)(y) = 2iyF (f)(y), for all f ∈ L1(R) ∩ C1(R).
(Hint: Integrate by parts.)

2. If f1(x) = xe−x
2

then f1 is an eigenvector of the Fourier transform with
eigenvalue λ = −i, i.e., F (f1) = −if1.
(Hint: Use (1) and the previous exercise.)

3. Let

f(x) =

{

1, |x| < 1/2,
0, |x| ≥ 1/2,

and show that f̂(y) = sin(πy)
πy

(= sinc(y)).

4. For a < 0, let

f(x) =

{

e2πax, x > 0,
0, x ≤ 0,

and show that f̂(y) = 1
(2π)((iy−a) . Similarly, let

f(x) =

{

e−2πax, x < 0,
0, x ≥ 0,

and show that f̂(y) = −1
(2π)((iy+a)

.

5. For a < 0, let f(x) = e2πa|x| and show that f̂(y) = − a
(π)((y2+a2)

.
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The following result spells out the main properties of the FT.

Theorem 2 Let f, g ∈ L1(R), with f ′ ∈ L1(R) and xf(x) ∈ L1(R).

• Linearity:

af + bg
F7−→ af̂ + bĝ,

• Scaling:

f(x/a)
F7−→ af̂(ay),

and
f(ax)

F7−→ a−1f̂(y/a),

• Shifting:

f(x− a)
F7−→ e−2πiayf̂(y),

• Modulation:
e2πiaxf(x)

F7−→ f̂(y − a),

• Inversion:

f(x) =

∫ ∞

−∞
f̂(t)e2πitx dt.

• Differentiation:

f ′(x)
F7−→ 2πiyf̂(y),

and

xf(x)
F7−→ i

2π
f̂(y).

• Parseval: For f, g ∈ L1(R) ∩ L2(R), we have

∫

R

f(x)g(x) dx =

∫

R

f̂(y)ĝ(y) dy,
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and in particular,

∫

R

|f(x)|2 dx =

∫

R

|f̂(y)|2 dy.

This can be found in Chapter 5 of Walker [W1].

1.3 Application to Laplace’s PDE

We shall use the FT to find a function w(x, t) satisfying

{

∂2w
∂x2 + ∂2w

∂t2
= 0,

w(x, 0) = f(x).

This represents the steady state temperature of a semi-infinite plate, in the
shape of the upper half-plane, where the boundary (the x-axis) is kept heated
to the temperature f(x) at the point (x, 0) for all time.

solution: Assume that for each y, w(x, y) is in L1(R), as a function of x.
Let

ŵ(u, y) =

∫

R

w(x, y)e−2πixu dx,

so

ŵ(u, 0) =

∫

R

w(x, 0)e−2πixu dx,=

∫

R

f(x)e−2πixu dx = f̂(u),

by the initial condition, and

w(x, y) =

∫

R

ŵ(u, y)e2πixu du, (2)

by the inversion formula.
By (2), we have

wxx(x, y) =

∫

R

−(2πu)2ŵ(u, y)e2πixu du,

and

wyy(x, y) =

∫

R

ŵyy(u, y)e
2πixu du,
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so

0 = wxx(x, y) + wyy(x, y) =

∫

R

(−(2πu)2ŵ(u, y) + ŵyy(u, y))e
2πixu du.

Therefore, by Laplace’s equation,

−(2πu)2ŵ(u, y) + ŵyy(u, y) = 0,

or

k′′(y) − (2πu)2k(y) = 0,

where k(y) = ŵ(u, y). This means

ŵ(u, y) = k(y) = c1e
−2π|u|y + c2e

2π|u|y,

for some constants c1, c2. Let c2 = 0 (because it works, that’s why!) and
solve for c1 using the initial condition ŵ(u, 0) = f̂(u), to get

ŵ(u, y) = f̂(u)e−2π|u|y.

Using (2) again, we have

w(x, y) =
∫

R
f̂(u)e−2π|u|ye2πixu du

=
∫

R
(
∫

R
f(z)e−2πizu dz)e−2π|u|ye2πixu du

=
∫

R
(
∫

R
e−2π|u|ye2πi(x−z)u du)f(z) dz

=
∫

R

1
π

y
y2+(x−z)2f(z) dz,

which is the convolution of f(x) withKy(x) = 1
π

y
y2+x2 . This function w(x, y) =

(f ∗Ky)(x) is the desired solution.

1.4 Application to Schödinger’s PDE

Assume f ∈ L1(R) ∩ L2(R).
We shall use the FT to find a function ψ(x, t) satisfying

{

a2 ∂2ψ
∂x2 = ∂ψ

∂t
,

ψ(x, 0) = f(x),
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where (for convenience) a2 = ih
2m

, and h is Planck’s constant. The function
ψ(x, t)|2, where ψ is the solution (or “wave function”) of the above PDE,
represents (under certain conditions on f) the probability density function
of a free particle on a semi-infinite plate, in the shape of the upper half-plane,
where the distribution on boundary (the x-axis) is determined by f(x).

solution: Assume that for each t, ψ(x, t) is in L1(R), as a function of x.
Let

ψ̂(u, t) =

∫

R

ψ(x, t)e−2πixu dx,

so

ψ̂(u, 0) =

∫

R

ψ(x, 0)e−2πixu dx,=

∫

R

f(x)e−2πixu dx = f̂(u),

by the initial condition, and

ψ(x, t) =

∫

R

ψ̂(u, t)e2πixu du, (3)

by the inversion formula. By (3), we have

ψxx(x, t) =

∫

R

−(2πu)2ψ̂(u, t)e2πixu du,

and

ψt(x, t) =

∫

R

ψ̂t(u, t)e
2πixu du,

so

0 = a2ψxx(x, t) − ψt(x, t) =

∫

R

(−a2(2πu)2ψ̂(u, t) − ψ̂t(u, t))e
2πixu du.

By Schödinger’s PDE,

−a2(2πu)2ψ̂(u, t) − ψ̂t(u, t) = 0,

or

k′(t) = −a2(2πu)2k(t),
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where k(t) = ψ̂(u, t). This means

ψ̂(u, t) = k(t) = c0e
−a2(2πu)2t,

for some constant c0. Using the above initial condition to sove for c0, we
obtain ψ̂(u, t) = f̂(u)e−a

2(2πu)2t. Using (3) again, we have

ψ(x, t) =
∫

R
f̂(u)e−a

2(2πu)2te2πixu du

=
∫

R
(
∫

R
f(z)e−2πizu dz)e−a

2(2πu)2te2πixu du

=
∫

R
(
∫

R
e−a

2(2πu)2te2πi(x−z)u du)f(z) dz
=

∫

R
Ht(x− z)f(z) dz,

which is the convolution of f(x) with Ht(x) =
∫

R
e−a

2(2πu)2te2πixu du. This
function w(x, y) = (f ∗Ht)(x) is the desired solution.

By the Plancheral formula,

∫

R
|ψ(x, t)|2 dx =

∫

R
|ψ̂(u, t)|2 du

=
∫

R
|f̂(u)e−a

2(2πu)2t|2 du
=

∫

R
|f̂(u)|2 du

=
∫

R
|f(x)|2 dx

=
∫

R
|ψ(u, 0)|2 dx,

by the initial condition. In particular,if f has L2-norm equal to 1 then so
does ψ(x, t), for each t ≥ 0.

2 Fourier series

History: Fourier series were discovered by J. Fourier, a Frenchman who
was a mathematician among other things. In fact, Fourier was Napolean’s
scientific advisor during France’s invasion of Egypt in the late 1800’s. When
Napolean returned to France, he “elected” (i.e., appointed) Fourier to be a
Prefect - basically an important administrative post where he oversaw some
large construction projects, such as highway constructions. It was during this
time when Fourier worked on the theory of heat on the side. His solution to
the heat equation is basically what we teach in the last few weeks of your
differential equations course. The exception being that our understanding of
Fourier series now is much better than what was known in the early 1800’s.
For example, Fourier did not know of the integral formulas (4), (5) for the
Fourier coefficients given below.
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Motivation: Fourier series, since series, and cosine series are all expan-
sions for a function f(x) in terms of trigonometric functions, much in the
same way that a Taylor series is an expansion in terms of power functions.
Both Fourier and Taylor series can be used to approximate a sufficient;y
“nice” function f(x). There are at least three important differences between
the two types of series. (1) For a function to have a Taylor series it must
be differentiable4, whereas for a Fourier series it does not even have to be
continuous. (2) Another difference is that the Taylor series is typically not
periodic (though it can be in some cases), whereas a Fourier series is always
periodic. (3) Finally, the Taylor series (when it converges) always converges
to the function f(x), but the Fourier series may not (see Dirichlet’s theorem
below for a more precise description of what happens).

Given a “nice” periodic function f(x) of period P , there are an with n ≥ 0
and bn with n ≥ 1 such that f(x) has (“real”) Fourier series

FSR(f)(x) =
a0

2
+

∞
∑

n=1

[an cos(
2πnx

P
) + bn sin(

2πnx

P
)].

These Fourier series coefficients are given by

an =
2

P

∫ P

0

f(x) cos(
2πnx

P
) dx, (4)

and

bn =
2

P

∫ P

0

f(x) sin(
2πnx

P
) dx. (5)

What does “nice” mean? When does the series converge? When it does
converge, what is the relationship between f and FSR(f)?

Definition 3 A function f(x) on a finite interval [a, b] is said to be of bounded

variation if there is a constanct C > 0 such that for any partition x0 = a < x1 <
... < xn−1 < xn = b of the interval (a, b), we have

n−1
∑

i=0

|f(xi+1) − f(xi)| ≤ C.

4Remember the formula for the n-th Taylor series coefficient centered at x = a -

an = f(n)(a)
n! ?
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Another characterization states that the functions of bounded variation on a
closed interval are exactly those functions which can be written as a difference
g − h, where both g and h are monotone.

Let BV ([0, P ]) denote the vector space of functions on [0, P ] of bounded vari-

ation.

Since any monotone function is Riemann integrable, so is any function
of bounded variation. The map FS is therefore well-defined on elements of
BV ([0, P ]).

Likewise, given a “nice” periodic function f(x) of period P , there are an
with n ≥ 0 and bn with n ≥ 1 such that f(x) has (“complex”) Fourier series

FS(f)(x) =

∞
∑

n=−∞
cne

2πinx
P .

These Fourier series coefficients are given by

cn =
1

P

∫ P

0

f(x)e−2πinx/P dx, (6)

for n ∈ Z.

Theorem 4 If f ∈ BV ([0, P ]) and if f has a Fourier series representation

f(x) =

∞
∑

n=−∞
cne

2πinx
P

which converges absolutely then (6) holds.

proof: By hypothesis,

∫ P

0

f(x)e−2πinx/P dx =

∫ P

0

∞
∑

m=−∞
cme

2πimx
P e−2πinx/P dx.

Interchanging the sum and the integral, this is

=
∞

∑

m=−∞
cm

∫ P

0

e2πi(m−n)x/P dx = Pcn.

�

In the above proof, we have used the fact that {e2πinx/P}n∈Z forms a
sequence of periodic orthogonal functions on the interval (0, P ).
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Example 5 Given any complex Fourier series f(t) = x(t)+iy(t), you can plot the
parametric curve (x(t), y(t), for 0 < t < P . A. Robert [R] classifies the complex
Fourier series whose parametric plot is a regular polygon. The n-gons are all
obtained by transforming in various ways (such as translations and reflections) the
basic Fourier series

f(t) =
∑

k∈Z

(1 + kn)−2eπi(1+kn)t.

Here are some examples. In the first row of the table of plots below, we plot
the partial sum

∑

|k|<N
(1 + kn)−2eπi(1+kn)t

with N = 3, n = 3, then N = 10, n = 3. The next line is with N = 3, n = 4, then
N = 10, n = 4; the last line is with N = 3, n = 5, then N = 10, n = 5.
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Here is the SAGE code which produced these examples:

sage: N = 3

sage: L = [1+5*k for k in range(-N,N)]

sage: f = lambda t: sum([10*n^(-2)*exp(n*pi*I*t) for n in L])

sage: pts = [[real(f(i/100)),imag(f(i/100))] for i in range(200)]

sage: show(list_plot(pts))

sage:
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sage: N = 10

sage: L = [1+5*k for k in range(-N,N)]

sage: f = lambda t: sum([10*n^(-2)*exp(n*pi*I*t) for n in L])

sage: pts = [[real(f(i/100)),imag(f(i/100))] for i in range(200)]

sage: show(list_plot(pts))

This code produces the pentagon pictures above. Changing the terms in the
partial FS obviously changes the graph. For instance, replacing L = [1+5*k for

k in range(-N,N)] by L = [2+5*k+k**2 for k in range(-N,N)] produces a
figure looking like a goldfish!

The relationship between the real and the complex Fourier series is as
follows: In FS(f), replace the cosine and sine terms by

cos(
2πnx

P
) =

e2πinx/P + e−2πinx/P

2
,

and

sin(
2πnx

P
) =

e2πinx/P − e−2πinx/P

2i
.

This implies FSR(f) = FS(f), where

cn =























a0
2
, n = 0,

an

2
+ bn

2i
, n > 0,

a−n

2
− b−n

2i
, n < 0.

In particular, FSR(f)(x) converges if and only if FS(f)(x) does.
Let Cm(P ) denote the vector space of all functions which are m-times

continuously differentiable and have period P .

Lemma 6 If f ∈ Cm(P ) then there is a constant A = A(f) > 0 such that
|cn| ≤ Af |n|−m, for all n 6= 0.

proof: Integrate-by-parts:

∫ P

0
f(x)e−2πinx/P dx =

(

P
−2πin

)

f(x)e−2πinx/P |x=Px=0 −
(

P
−2πin

) ∫ P

0
f ′(x)e−2πinx/P dx

=
(

P
−2πin

) ∫ P

0
f ′(x)e−2πinx/P dx,
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since f(0) = f(P ).
Now use the “trivial” estimate

|
∫ P

0

g(x)e−2πinx/P dx| ≤ P · max
0≤x≤P

|g(x)|

to get

|cn| ≤
max0≤x≤P |f ′(x)|

2π

1

n
.

The proof is completed using mathematical induction (or simply repeat this
process m− 1 more times). �

Let ℓ∞(Z) denote the space of vectors (xn)n∈Z whose coordinates xn are
bounded and let

||(xn)n∈Z|| = ||(xn)n∈Z||∞ = max
n∈Z

|xn|.

In particular, it follows that the Fourier transform defines a linear mapping

FS : C0(P ) → ℓ∞(Z),

given by sending a continuous periodic function f ∈ C0(P ) to its sequence
of Fourier series coefficients (cn(f))n∈Z ∈ ℓ∞(Z).

Theorem 7 (Jordan) If f ∈ BV ([0, P ]) then FS(f)(x) converges to f(x+)+f(x−)
2

.

proof: See §13.232 in [T].�

Perhaps more familiar is the following result, which was covered in your
Differential Equations course.

Theorem 8 (Dirichlet) If f has a finite number of maxima, a finite number
of minima, and a finite number of discontinuities on the interval (0, P ) then

FS(f)(x) converges to f(x+)+f(x−)
2

.

proof: See §13.232 in [T].�

Example 9 Let P = 2 and let f(x) = x for 0 < x ≤ 2. This is sometimes
referred to as the “sawtooth function”, due to the shape of its graph. The
Fourier coefficients are given by
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cn =
1

2

∫ 2

0

xe−πinx dx =
1

2
[
( 1

−πin
)

xe−πinx − 1

(−πin)2
e−πinx]

∣

∣

∣

x=2

x=0
=

1

−πin,

when n 6= 0, and

c0 =
1

2

∫ 2

0

x dx =
x2

4

∣

∣

∣

x=2

x=0
= 1.

The Fourier series

FS(f)(x) =
∑

n∈Z

cne
πinx = 1 − 1

πi

∑

n∈Z, n 6=0

1

n
eπinx

does not converge absolutely.

Example 10 Let P = 1 and let f(x) = 10x2(1 − x)2 for 0 < x ≤ 1. This
function belongs to C1(1).

Figure 1: Graph of f(x), 0 < x < 1.

The Fourier coefficients are given by

cn =

∫ 1

0

10x2(1−x)2e−2πinx dx = 10(
−n2π2 − 3 i nπ + 3

4 i n5π5
−(−n2π2 + 3 i nπ + 3)

4 i n5π5
),

so cn = − 30
2π4n

−4 when n 6= 0. When n = 0, we have

c0 =

∫ 1

0

10x2(1 − x)2 dx = 1/3.

18



In this case, the Fourier series

FS(f)(x) =
∑

n∈Z

cne
πinx =

1

3
− 30

2π4

∑

n∈Z, n 6=0

1

n4
e2πinx

does converge absolutely. In fact, it can even be differentiated term-by-term.
The SAGE commands

sage: f = maxima("10*x**2*(1-x)**2*exp(-2*Pi*i*x*n)")

sage: f.integral(’x’, 0, 1)

10*((i^2*n^2*Pi^2 - 3*i*n*Pi + 3)/(4*i^5*n^5*Pi^5) - (i^2*n^2*Pi^2 + 3*i*n*Pi + 3)*%e^-(2*i*n*Pi)/(4*i^5*n^5*Pi^5))

were used to compute the Fourier coefficients above.

2.1 Sine series and cosine series

Recall, to have a Fourier series you must be given two things: (1) a period
P = 2L, (2) a function f(x) defined on an interval of length 2L, usually we
take −L < x < L (but sometimes 0 < x < 2L is used instead). The Fourier
series of f(x) with period 2L is

f(x) ∼ a0

2
+

∞
∑

n=1

[an cos(
nπx

L
) + bn sin(

nπx

L
)],

where an and bn are as in (4), (5).
First, we discuss cosine series. To have a cosine series you must be given

two things: (1) a period P = 2L, (2) a function f(x) defined on the interval
of length L, 0 < x < L. The cosine series of f(x) with period 2L is

f(x) ∼ a0

2
+

∞
∑

n=1

an cos(
nπx

L
),

where an is given by

an =
2

L

∫ L

0

cos(
nπx

L
)f(x) dx.

The cosine series of f(x) is exactly the same as the Fourier series of the even
extension of f(x), defined by

feven(x) =

{

f(x), 0 < x < L,
f(−x), −L < x < 0.
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Next, we define sine series. To have a sine series you must be given two
things: (1) a “period” P = 2L, (2) a function f(x) defined on the interval of
length L, 0 < x < L. The sine series of f(x) with period 2L is

f(x) ∼
∞

∑

n=1

bn sin(
nπx

L
),

where bn is given by

bn =
2

L

∫ L

0

sin(
nπx

L
)f(x) dx.

The sine series of f(x) is exactly the same as the Fourier series of the odd
extension of f(x), defined by

fodd(x) =

{

f(x), 0 < x < L,
−f(−x), −L < x < 0.

One last definition: the symbol ∼ is used above instead of = because of
the fact that was pointed out above: the Fourier series may not converge to
f(x) at every point (recall Dirichlet’s Theorem 8).

Example 11 If f(x) = 2 + x, −2 < x < 2, is extended periodically to R with
period 4 then L = 2. Without even computing the Fourier series, we can evaluate
the FS using Dirichlet’s theorem (Theorem 8 above).

Question: Using periodicity and Dirichlet’s theorem, find the value that the
Fourier series of f(x) converges to at x = 1, 2, 3. (Ans: f(x) is continuous at 1, so

the FS at x = 1 converges to f(1) = 3 by Dirichlet’s theorem. f(x) is not defined at 2.

It’s FS is periodic with period 4, so at x = 2 the FS converges to f(2+)+f(2−)
2 = 0+4

2 = 2.

f(x) is not defined at 3. It’s FS is periodic with period 4, so at x = 3 the FS converges to
f(−1)+f(−1+)

2 = 1+1
2 = 1.)

The formulas for an and bn enable us to compute the Fourier series coefficients
a0, an and bn. These formulas give that the Fourier series of f(x) is

f(x) ∼ 4 +
∞
∑

n=1

−4
nπ cos (nπ)

n2π2
sin(

nπx

2
).

The Fourier series approximations to f(x) are

S0 = 2, S1 = 2 +
4

π
sin(

πx

2
), S2 = 2 + 4

sin
(

1
2 π x

)

π
− 2

sin (π x)

π
, ...
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The graphs of each of these functions get closer and closer to the graph of f(x)
on the interval −2 < x < 2. For instance, the graph of f(x) and of S8 are given
below:

0

1

2

3

4

–4 –3 –2 –1 1 2 3 4

x

Figure 2: Graph of f(x) and a Fourier series partial sum approximation of
f(x).

Notice that f(x) is only defined from −2 < x < 2 yet the Fourier series is not only
defined everywhere but is periodic with period P = 2L = 4. Also, notice that S8

is not a bad approximation to f(x), especially away from its jump discontinuities.

Example 12 This time, let’s consider an example of a cosine series. In this case,
we take the piecewise constant function f(x) defined on 0 < x < 3 by

f(x) =

{

1, 0 < x < 2,
−1, 2 ≤ x < 3.

We see therefore L = 3. The formula above for the cosine series coefficients gives
that

21



f(x) ∼ 1

3
+

∞
∑

n=1

4
sin

(

2
3 nπ

)

nπ
cos(

nπx

3
).

The first few partial sums are

S2 = 1/3 + 2

√
3 cos

(

1
3 π x

)

π
,

S3 = 1/3 + 2

√
3 cos

(

1
3 π x

)

π
−

√
3 cos

(

2
3 π x

)

π
, ...

Also, notice that the cosine series approximation S10 is an even function but f(x)
is not (it’s only defined from 0 < x < 3). As before, the more terms in the cosine
series we take, the better the approximation is, for 0 < x < 3. For instance, the
graph of f(x) and of S10 are given below:
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1
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x

Figure 3: Graph of f(x) and a cosine series approximation of f(x).

Roughly speaking, the more (everywhere) differentiable the function is, the
faster the Fourier series converges and, therefore, the better the partial sums of
the Fourier series will approximate f(x).

Example 13 Finally, let’s consider an example of a sine series. In this case, we
take the piecewise constant function f(x) defined on 0 < x < 3 by the same
expression we used in the cosine series example above.

Question: Using periodicity and Dirichlet’s theorem, find the value that the
sine series of f(x) converges to at x = 1, 2, 3. (Ans: f(x) is continuous at 1, so

the FS at x = 1 converges to f(1) = 1. f(x) is not continuous at 2, so at x = 2 the SS

converges to f(2+)+f(2−)
2 = f(−2+)+f(2−)

2 = −1+1
2 = 0. f(x) is not defined at 3. It’s SS is

periodic with period 6, so at x = 3 the SS converges to fodd(3−)+fodd(3+)
2 = −1+1

2 = 0.)

The formula above for the sine series coefficients give that

f(x) ∼
∞
∑

n=1

2
cos (nπ) − 2 cos

(

2
3 nπ

)

+ 1

nπ
sin(

nπx

3
).
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The partial sums are

S2 = 2
sin (1/3π x)

π
+ 3

sin
(

2
3 π x

)

π
,

S3 = 2
sin

(

1
3 π x

)

π
+ 3

sin
(

2
3 π x

)

π
− 4/3

sin (π x)

π
, ...

These partial sums Sn, as n → ∞, converge to their limit about as fast as those
in the previous example. Instead of taking only 10 terms, this time we take 40.
Observe from the graph below that the value of the sine series at x = 2 does seem
to be approaching 0, as Dirichlet’s Theorem predicts. The graph of f(x) with S40

is

–1

–0.5

0.5

1

–6 –4 –2 2 4 6

x

Figure 4: Graph of f(x) and a sine series approximation of f(x).
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2.2 Exercises in Fourier series using SAGE

1. Let

f(x) =







2, 3/2 ≤ x ≤ 3,
0, 0 ≤ x ≤ 3/2,
−1, −3 < x < 0,

period 6.

• Find the Fourier series of f(x) and graph the function the FS
converges to, −3 ≤ x ≤ 3.

• Write down the series in summation notation and compute the
first 3 non-zero terms.

solution: Of course the Fourier series of f(x) with period 2L is

f(x) ∼ a0

2
+

∞
∑

n=1

[an cos(
nπx

L
) + bn sin(

nπx

L
)],

where an and bn are

an =
1

L

∫ L

−L
cos(

nπx

L
)f(x) dx,

bn =
1

L

∫ L

−L
sin(

nπx

L
)f(x) dx.

Generally, the following functions compute the Fourier series coeffi-
cients of f(x):

def fourier_series_cos_coeff(fcn,n,L): # n>= 0

lowerlimit = -L

upperlimit = L

an = maxima(’tldefint(%s*cos(%s*n*x/%s),x,%s,%s)/L’%(fcn,maxima(pi),L,lowerlimit,upperlimit))

return str(an).replace("%","")

def fourier_series_sin_coeff(fcn,n,L): # n > 0

lowerlimit = -L

upperlimit = L

bn = maxima(’tldefint(%s*cos(%s*n*x/%s),x,-%s,%s)/L’%(fcn,maxima(pi),L,lowerlimit,upperlimit))

return str(bn).replace("%","")

However, Maxima’s support for piecewise defined functions is rudimen-
tary and the above functions will not give us what we want. So we
compute them “by hand” but with some help from SAGE [S] (and
Maxima, whichis included with SAGE):
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## n > 0 FS cosine coeff

fcn = 2; lowerlimit = 3/2; upperlimit = 3; L = 3

an1 = maxima(’tldefint(%s*cos(%s*n*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); an1

# 6*sin(%pi*n)/(%pi*n) - 6*sin(%pi*n/2)/(%pi*n)

fcn = -1; lowerlimit = -3; upperlimit = 0; L = 3

an2 = maxima(’tldefint(%s*cos(%s*n*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); an2

# -3*sin(%pi*n)/(%pi*n)

an = (an1+an2)/L

# (3*sin(%pi*n)/(%pi*n) - 6*sin(%pi*n/2)/(%pi*n))/3

In other words, for n > 0, an = 2 sin(πn/2)
πn

.

## n = 0 FS cosine coeff

fcn = 2; lowerlimit = 3/2; upperlimit = 3; L = 3

an1 = maxima(’tldefint(%s*cos(%s*0*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); an1

# 3

fcn = -1; lowerlimit = -3; upperlimit = 0; L = 3

an2 = maxima(’tldefint(%s*cos(%s*0*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); an2

# -3

an = (an1+an2)/L

# 0

In other words, a0 = 0.

## n > 0 FS sine coeff

fcn = 2; lowerlimit = 3/2; upperlimit = 3; L = 3

bn1 = maxima(’tldefint(%s*sin(%s*n*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); bn1

# 6*cos(%pi*n/2)/(%pi*n) - 6*cos(%pi*n)/(%pi*n)

fcn = -1; lowerlimit = -3; upperlimit = 0; L = 3

bn2 = maxima(’tldefint(%s*sin(%s*n*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); bn2

# 3/(%pi*n) - 3*cos(%pi*n)/(%pi*n)

bn = (bn1+bn2)/L

# ( - 9*cos(%pi*n)/(%pi*n) + 6*cos(%pi*n/2)/(%pi*n) + 3/(%pi*n))/3

In other words, bn = 1−3(−1)n+2 cos(πn/2)
πn

.

The Fourier series is therefore

f(x) ∼
∞

∑

n=1

[(2
sin(πn/2)

πn
) cos(

nπx

3
)+(

1 − 3(−1)n + 2 cos(πn/2)

πn
) sin(

nπx

3
)],

sage: Pi = RR(pi)

sage: bn = lambda n:( - 9*cos(Pi*n)/(Pi*n) + 6*cos(Pi*n/2)/(Pi*n) + 3/(Pi*n))/3

sage: bn(1); bn(2); bn(3)

1.2732395447351628

-0.63661977236758127

0.42441318157838753

sage: an = lambda n:2*(sin(Pi*n/2))/(Pi*n)

sage: an(1); an(2); an(3)

0.63661977236758138

0.000000000000000038981718325193755

-0.21220659078919379
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Here are the first few numerical values of these coefficients:

a1 = 2
π

= 0.6366197723675813...,
a2 = 0,
a3 = − 2

3π
= −0.2122065907891937...,

b1 = 4
π

= 1.273239544735162...,
b2 = −2

π
= −0.6366197723675812...,

b3 = 4
π3

= 0.4244131815783875... .

Figure 5: Graph of Fourier series of f(x).
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2. Let

f(x) =

{

2, 3/2 ≤ t ≤ 3,
0, 0 ≤ t ≤ 3/2,

• Find the Cosine series of f(x) (period 6) and graph the function
the CS converges to, −3 ≤ x ≤ 3.

• Write down the series in summation notation and compute the
first 3 non-zero terms.

solution: Of course the Cosine series of f(x) with period 2L is

f(x) ∼ a0

2
+

∞
∑

n=1

an cos(
nπx

L
),

where an is

an =
2

L

∫ L

0

cos(
nπx

L
)f(x) dx.

A simple Python program:

def cosine_series_coeff(fcn,n,L): # n>= 0

lowerlimit = 0

upperlimit = L

an = maxima(’2*tldefint(%s*cos(%s*n*x/%s),x,%s,%s)/L’%(fcn,maxima(pi),L,lowerlimit,upperlimit))

return str(an).replace("%","")

It was noted above that this program will not help us, for the type of
function we are dealing with here. So, we have SAGE do the compu-
tations “piece-by-piece”:

## n > 0

fcn = 2; lowerlimit = 3/2; upperlimit = 3; L = 3

an1 = maxima(’tldefint(%s*cos(%s*n*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); an1

# 6*sin(%pi*n)/(%pi*n) - 6*sin(%pi*n/2)/(%pi*n)

an = (2/L)*an1

an

# 2*(6*sin(%pi*n)/(%pi*n) - 6*sin(%pi*n/2)/(%pi*n))/3

In other words, an = 4 sin(πn/2)
πn

. To find the 0-th coefficient, use the
commands

## n = 0

an1 = maxima(’tldefint(%s*cos(%s*0*x/%s),x,%s,%s)’%(fcn,maxima(pi),L,lowerlimit,upperlimit)); an1

# 3

an = (2/L)*an1

an

# 2

# a0 = 2
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or the command

sage: f1 = lambda x:2

sage: f2 = lambda x:0

sage: f = Piecewise([[(0,3/2),f2],[(3/2,3),f1]])

sage: f.cosine_series_coefficient(0,3)

2

In other words, a0 = 2.

The Cosine series is therefore

f(x) ∼ 1 +
∞

∑

n=1

(4
sin(πn/2)

πn
) cos(

nπx

3
).

sage: an = lambda n:4*sin(Pi*n/2)/(Pi *n)

sage: an(1); an(2); an(3)

1.2732395447351628

0.000000000000000077963436650387510

-0.42441318157838759

So, a1 = 4
π

= 1.273239544735162..., a2 = 0, a3 = − 4
3π

.

29



Figure 6: Graph of Cosine series of f(x).

3. Let

f(x) =

{

2, 3/2 ≤ t ≤ 3,
0, 0 ≤ t ≤ 3/2,

• Find the Sine series of f(x) (period 6) and graph the function the
FS converges to, −6 ≤ x ≤ 6.

• Write down the series in summation notation and compute the
first 3 non-zero terms.

We leave this one as an exercise for the reader!
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2.3 Application to the heat equation

The heat equation with zero ends boundary conditions models the tempera-
ture of an (insulated) wire of length L:

{

k ∂
2u(x,t)
∂x2 = ∂u(x,t)

∂t

u(0, t) = u(L, t) = 0.

Here u(x, t) denotes the temperature at a point x on the wire at time t.
The initial temperature f(x) is specified by the equation

u(x, 0) = f(x).

Method:

• Find the sine series of f(x):

f(x) ∼
∞

∑

n=1

bn(f) sin(
nπx

L
),

• The solution is

u(x, t) =

∞
∑

n=1

bn(f) sin(
nπx

L
) exp(−k(nπ

L
)2t).

Example 14 Let
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f(x) =

{

−1, 0 ≤ x ≤ 3/2,
2, 3/2 < x < 3.

Then L = 3 and

bn(f) =
2

3

∫ 3

0
f(x) sin(nπx/3) dx.

Thus

f(x) ∼ b1(f) sin(xπ/3)+b2(f) sin(2xπ/3)+ ... =
2

π
sin(πx/3))− 6

π
sin(2πx/3)+ ... .

The function f(x), and some of the partial sums of its sine series, looks like
Figure 7.

Figure 7: f(x) and two sine series approximations, S10, S30.
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As you can see, taking more and more terms gives functions which better and
better approximate f(x).

sage: R = PolynomialRing(QQ,"x"); x = R.gen()

sage: f1 = -x^0; f2 = 2*x^0

sage: f = Piecewise([[(-3,-3/2),-f2],[(-3/2,0),-f1],[(0,3/2),f1],[(3/2,3),f2]])

sage: fs10 = f.fourier_series_partial_sum(10,3)

sage: FS10 = lambda t:RR(sage_eval(fs10.replace("x",str(t))))

sage: Pfs10 = plot(FS10,-3,3)

sage: Pf = f.plot()

sage: show(Pf+Pfs10)

sage: fs30 = f.fourier_series_partial_sum(30,3)

sage: FS30 = lambda t:RR(sage_eval(fs30.replace("x",str(t))))

sage: Pfs30 = plot(FS30,-3,3)

sage: show(Pf+Pfs10+Pfs30)

The solution to the heat equation, therefore, is

u(x, t) =

∞
∑

n=1

bn(f) sin(
nπx

L
) exp(−k(nπ

L
)2t).

The heat equation with insulated ends boundary conditions models the
temperature of an (insulated) wire of length L:

{

k ∂
2u(x,t)
∂x2 = ∂u(x,t)

∂t

ux(0, t) = ux(L, t) = 0.

Here ux(x, t) denotes the partial derivative of the temperature at a point x on
the wire at time t. The initial temperature f(x) is specified by the equation
u(x, 0) = f(x).

Method:

• Find the cosine series of f(x):

f(x) ∼ a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
),

• The solution is

u(x, t) =
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
)) exp(−k(nπ

L
)2t).
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Example 15 Let

f(x) =

{

−1, 0 ≤ x ≤ 3/2,
2, π/2 < x < 3.

Then L = π and

an(f) =
2

3

∫ 3

0
f(x) cos(nπx/3)dx,

for n > 0 and a0 = 1.
Thus

f(x) ∼ a0

2
+a1(f) cos(x/3)+a2(f) cos(2x/3)+...1/2− 6

π
cos(πx/3)+

2

π
cos(3πx/3)+... .

The piecewise constant function f(x), and some of the partial sums of its cosine
series, looks like Figure 8.

Figure 8: f(x) and two cosine series approximations.
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sage: R = PolynomialRing(QQ,"x"); x = R.gen()

sage: f1 = -x^0; f2 = 2*x^0

sage: f = Piecewise([[(-3,-3/2),f2],[(-3/2,3/2),f1],[(3/2,3),f2]])

sage: fs10 = f.fourier_series_partial_sum(10,3)

sage: FS10 = lambda t:RR(sage_eval(fs10.replace("x",str(t))))

sage: fs30 = f.fourier_series_partial_sum(30,3)

sage: FS30 = lambda t:RR(sage_eval(fs30.replace("x",str(t))))

sage: Pf = f.plot()

sage: Pfs30 = plot(FS30,-3,3)

sage: Pfs10 = plot(FS10,-3,3)

sage: show(Pf+Pfs10+Pfs30)

As you can see, taking more and more terms gives functions which better and
better approximate f(x).

The solution to the heat equation, therefore, is

u(x, t) =
a0

2
+

∞
∑

n=1

an(f) cos(
nπx

L
) exp(−k(nπ

L
)2t).

Explanation:
Where does this solution come from? It comes from the method of sepa-

ration of variables and the superposution principle. Here is a short explana-
tion. We shall only discuss the “zero ends” case (the “insulated ends” case
is similar).

First, assume the solution to the PDE k ∂
2u(x,t)
∂x2 = ∂u(x,t)

∂t
has the “factored”

form

u(x, t) = X(x)T (t),

for some (unknown) functions X, T . If this function solves the PDE then it
must satisfy kX ′′(x)T (t) = X(x)T ′(t), or

X ′′(x)

X(x)
=

1

k

T ′(t)

T (t)
.

Since x, t are independent variables, these quotients must be constant. In
other words, there must be a constant C such that

T ′(t)

T (t)
= kC, X ′′(x) − CX(x) = 0.
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Now we have reduced the problem of solving the one PDE to two ODEs
(which is good), but with the price that we have introduced a constant which
we don’t know, namely C (which maybe isn’t so good). The first ODE is
easy to solve:

T (t) = A1e
kCt,

for some constant A1. To obtain physically meaningful solutions, we do not
want the temperature of the wire to become unbounded as time increased
(otherwise, the wire would simply melt eventually). Therefore, we may as-
sume here that C ≤ 0. It is best to analyse two cases now:

Case C = 0: This implies X(x) = A2 + A3x, for some constants A2, A3.
Therefore

u(x, t) = A1(A2 + A3x) =
a0

2
+ b0x,

where (for reasons explained later) A1A2 has been renamed a0
2

and A1A3 has
been renamed b0.

Case C < 0: Write (for convenience) C = −r2, for some r > 0. The ODE
for X implies X(x) = A2 cos(rx) + A3 sin(rx), for some constants A2, A3.
Therefore

u(x, t) = A1e
−kr2t(A2 cos(rx) + A3 sin(rx)) = (a cos(rx) + b sin(rx))e−kr

2t,

where A1A2 has been renamed a and A1A3 has been renamed b.
These are the solutions of the heat equation which can be written in

factored form. By superposition, “the general solution” is a sum of these:

u(x, t) = a0
2

+ b0x+
∑∞

n=1(an cos(rnx) + bn sin(rnx))e
−kr2nt

= a0
2

+ b0x+ (a1 cos(r1x) + b1 sin(r1x))e
−kr21t

+(a2 cos(r2x) + b2 sin(r2x))e
−kr22t + ...,

(7)

for some ai, bi, ri. We may order the ri’s to be strictly increasing if we like.
We have not yet used the IC u(x, 0) = f(x) or the BCs u(0, t) = u(L, t) =

0. We do that next.
What do the BCs tell us? Plugging in x = 0 into (7) gives
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0 = u(0, t) =
a0

2
+

∞
∑

n=1

ane
−kr2nt =

a0

2
+ a1e

−kr21t + a2e
−kr22t + ... .

These exponential functions are linearly independent, so a0 = 0, a1 = 0,
a2 = 0, ... . This implies

u(x, t) = b0x+
∑

n=1

bn sin(rnx)e
−kr2nt = b0x+b1 sin(r1x)e

−kr21t+b2 sin(r2x)e
−kr22t+... .

Plugging in x = L into this gives

0 = u(L, t) = b0L+
∑

n=1

bn sin(rnL)e−kr
2
nt.

Again, exponential functions are linearly independent, so b0 = 0, bn sin(rnL)
for n = 1, 2, .... In other to get a non-trivial solution to the PDE, we don’t
want bn = 0, so sin(rnL) = 0. This forces rnL to be a multiple of π, say
rn = nπ/L. This gives

u(x, t) =

∞
∑

n=1

bn sin(
nπ

L
x)e−k(

nπ
L

)2t = b1 sin(
π

L
x))e−k(

π
L

)2t+b2 sin(
2π

L
x))e−k(

2π
L

)2t+...,

(8)
for some bi’s. This was discovered by Fourier.

There is one remaining condition which our solution u(x, t) must satisfy.
What does the IC tell us? Plugging t = 0 into (8) gives

f(x) = u(x, 0) =

∞
∑

n=1

bn sin(
nπ

L
x) = b1 sin(

π

L
x)) + b2 sin(

2π

L
x)) + ... .

In other words, if f(x) is given as a sum of these sine functions, or if we can
somehow express f(x) as a sum of sine functions, then we can solve the heat
equation. In fact there is a formula for these coefficients bn (which Fourier
did not know at the time):

bn =
2

L

∫ L

0

f(x) cos(
nπ

L
x)dx.

It is this formula which is used in the solutions above.
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Example 16 Let k = 1, let

f(x) =

{

−1, 0 ≤ x ≤ 3/2,
2, 3/2 < x < 3.

and let g(x) = 0. Then L = 3 and

bn(f) = 2
3

∫ 3
0 f(x) sin(nπx3 )dx

= −2 2 cos(nπ)−3 cos(1/2nπ)+1
nπ .

Thus
f(x) ∼ b1(f) sin(xπ/3) + b2(f) sin(2xπ/3) + ...

= 2
π sin(πx/3)) − 6

π sin(2πx/3) + ... .

The function f(x), and some of the partial sums of its sine series, looks like Figure
7. The solution is

u(x, t) =
∑∞

n=1 bn(f) sin(nπx3 )

= 2
π sin(πx/3))e−(π/3)2t − 6

π sin(2πx/3)e−(2π/3)2t + ... . .
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Figure 9: Plot of f(x) and u(x, t), for t = 0.0, 0.3, 0.6, 0.9. The first plot uses
the partial sums S50 of the FS for f(x); the second plot uses the Césaro-
filtered partial sums SC50 of the FS for f(x).

The following SAGE code for the plot above is very time-consuming:

sage: f1 = lambda x:-2

sage: f2 = lambda x:1

sage: f3 = lambda x:-1

sage: f4 = lambda x:2
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sage: f = Piecewise([[(-3,-3/2),f1],[(-3/2,0),f2],[(0,3/2),f3],[(3/2,3),f4]])

sage: N = 50

sage: t = 0.0; F = [RR(exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: P0 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.3; F = [RR(exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: P1 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.6; F = [RR(exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: P2 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.9; F = [RR(exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: P3 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: P = f.plot(rgbcolor=(0.8,0.1,0.3), plot_points=40)

sage: show(P+P0+P1+P2)

sage: N = 50

sage: t = 0.0; F = [RR((1-j/N)*exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: Pc0 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.3; F = [RR((1-j/N)*exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: Pc1 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.6; F = [RR((1-j/N)*exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: Pc2 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.9; F = [RR((1-j/N)*exp(-(j*pi/3)^2*t)) for j in range(N)]

sage: Pc3 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: show(P+Pc0+Pc1+Pc2)

2.4 Application to Schödinger’s equation

The one-dimensional Schrödinger equation for a free particle is

ik
∂2ψ(x, t)

∂x2
=
∂ψ(x, t)

∂t
,

where k > 0 is a constant (involving Planck’s constant and the mass of
the particle) and i =

√
−1 as usual. The solution ψ is called the wave

function describing instantaneous “state” of the particle. For the analog
in 3 dimensions (which is the one actually used by physicists - the one-
dimensional version we are dealing with is a simplified mathematical model),
one can interpret the square of the absolute value of the wave function as the
probability density function for the particle to be found at a point in space.
In other words, |ψ (x, t)|2 dx is the probability of finding the particle in the
“volume dx” surrounding the position x, at time t.

If we restrict the particle to a “box” then (for our simplied one-dimensional
quantum-mechanical model) we can impose a boundary condition of the form
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ψ(0, t) = ψ(L, t) = 0,

and an initial condition of the form

ψ(x, 0) = f(x), 0 < x < L.

Here f is a function (sometimes simply denoted ψ(x)) which is normalized
so that

∫ L

0

|f(x)|2 dx = 1.

If |ψ (x, t)|2 represents a pdf of finding a particle “at x” at time t then
∫ L

0
|f(x)|2 dx represents the probability of finding the particle somewhere

in the “box” initially, which is of course 1.

Method:

• Find the sine series of f(x):

f(x) ∼
∞

∑

n=1

bn(f) sin(
nπx

L
),

• The solution is

ψ(x, t) =

∞
∑

n=1

bn(f) sin(
nπx

L
) exp(−ik(nπ

L
)2t).

Each of the terms

ψn(x, t) = bn sin(
nπx

L
) exp(−ik(nπ

L
)2t).

is called a standing wave (though in this case sometimes bn is chosen so that
∫ L

0
|ψn(x, t)|2 dx = 1).

Example 17 Let

f(x) =

{

−1, 0 ≤ x ≤ 1/2,
1, 1/2 < x < 1.
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Then L = 1 and

bn(f) =
2

1

∫ 1

0
f(x) sin(

nπx

1
)dx =

1

nπ
(−1 + 2 cos(

nπ

2
) − cos(nπ)).

Thus

f(x) ∼ b1(f) sin(πx) + b2(f) sin(2πx) + ...
=

∑

n
1
nπ (−1 + 2 cos(nπ2 ) − cos(nπ)) · sin(nπx) .

Taking more and more terms gives functions which better and better approxi-
mate f(x). The solution to Schrödinger’s equation, therefore, is

ψ(x, t) =

∞
∑

n=1

1

nπ
(−1 + 2 cos(

nπ

2
) − cos(nπ)) · sin(nπx) · exp(−ik(nπ)2t).

Explanation:
Where does this solution come from? It comes from the method of separa-

tion of variables and the superposution principle. Here is a short explanation.

First, assume the solution to the PDE ik ∂
2ψ(x,t)
∂x2 = ∂ψ(x,t)

∂t
has the “fac-

tored” form

ψ(x, t) = X(x)T (t),

for some (unknown) functions X, T . If this function solves the PDE then it
must satisfy kX ′′(x)T (t) = X(x)T ′(t), or

X ′′(x)

X(x)
=

1

ik

T ′(t)

T (t)
.

Since x, t are independent variables, these quotients must be constant. In
other words, there must be a constant C such that

T ′(t)

T (t)
= ikC, X ′′(x) − CX(x) = 0.

Now we have reduced the problem of solving the one PDE to two ODEs
(which is good), but with the price that we have introduced a constant which
we don’t know, namely C (which maybe isn’t so good). The first ODE is
easy to solve:
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T (t) = A1e
ikCt,

for some constant A1. It remains to “determine” C.
Case C > 0: Write (for convenience) C = r2, for some r > 0. The ODE

for X implies X(x) = A2 exp(rx) +A3 exp(−rx), for some constants A2, A3.
Therefore

ψ(x, t) = A1e
−ikr2t(A2 exp(rx)+A3 exp(−rx)) = (a exp(rx)+b exp(−rx))e−ikr2t,

where A1A2 has been renamed a and A1A3 has been renamed b. This will
not match the boundary conditions unless a and b are both 0.

Case C = 0: This implies X(x) = A2 + A3x, for some constants A2, A3.
Therefore

ψ(x, t) = A1(A2 + A3x) = a + bx,

where A1A2 has been renamed a and A1A3 has been renamed b. This will
not match the boundary conditions unless a and b are both 0.

Case C < 0: Write (for convenience) C = −r2, for some r > 0. The ODE
for X implies X(x) = A2 cos(rx) + A3 sin(rx), for some constants A2, A3.
Therefore

ψ(x, t) = A1e
−ikr2t(A2 cos(rx) + A3 sin(rx)) = (a cos(rx) + b sin(rx))e−ikr

2t,

where A1A2 has been renamed a and A1A3 has been renamed b. This will
not match the boundary conditions unless a = 0 and r = nπ

L

These are the solutions of the heat equation which can be written in
factored form. By superposition, “the general solution” is a sum of these:

ψ(x, t) =
∑∞

n=1(an cos(rnx) + bn sin(rnx))e
−ikr2nt

= b1 sin(r1x)e
−ikr21t + b2 sin(r2x)e

−ikr22t + ...,
(9)

for some bn, where rn = nπ
L

. Note the similarity with Fourier’s solution to
the heat equation.

There is one remaining condition which our solution ψ(x, t) must satisfy.
We have not yet used the IC ψ(x, 0) = f(x). We do that next.

Plugging t = 0 into (9) gives
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f(x) = ψ(x, 0) =

∞
∑

n=1

bn sin(
nπ

L
x) = b1 sin(

π

L
x)) + b2 sin(

2π

L
x)) + ... .

In other words, if f(x) is given as a sum of these sine functions, or if we
can somehow express f(x) as a sum of sine functions, then we can solve
Schrödinger’s equation. In fact there is a formula for these coefficients bn:

bn =
2

L

∫ L

0

f(x) cos(
nπ

L
x)dx.

It is this formula which is used in the solutions above.

2.5 Application to the wave equation

The wave equation with zero ends boundary conditions models the motion
of a (perfectly elastic) guitar string of length L:

{

α2 ∂
2w(x,t)
∂x2 = ∂2w(x,t)

∂t2

w(0, t) = w(L, t) = 0.

Here w(x, t) denotes the displacement from rest of a point x on the string at
time t. The initial displacement f(x) and initial velocity g(x) are specified
by the equations

w(x, 0) = f(x), wt(x, 0) = g(x).

Method:

• Find the sine series of f(x) and g(x):

f(x) ∼
∞

∑

n=1

bn(f) sin(
nπx

L
), g(x) ∼

∞
∑

n=1

bn(g) sin(
nπx

L
).

• The solution is

w(x, t) =

∞
∑

n=1

(bn(f) cos(
αnπt

L
) +

Lbn(g)

nπα
sin(

αnπt

L
)) sin(

nπx

L
).
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A special case: When there is no initial velocity then g = 0 and the
solution to the wave equation, therefore, is

w(x, t) =
∞

∑

n=1

bn(f) cos(
αnπt

L
) sin(

nπx

L
).

Example 18 Let α = 1, let

f(x) =

{

−1, 0 ≤ x ≤ π/2,
2, π/2 < x < π.

and let g(x) = 0. Then L = π, bn(g) = 0, and

bn(f) = 2
π

∫ π
0 f(x) sin(nx)dx

= −2 2 cos(nπ)−3 cos(1/2nπ)+1
nπ .

Thus
f(x) ∼ b1(f) sin(x) + b2(f) sin(2x) + ...

= 2
π sin(x) − 6

π sin(2x) + 2
3π sin(3x) + ....

The function f(x), and some of the partial sums of its sine series, looks like Figure
7. The solution is

w(x, t) =
∑∞

n=1 bn(f) cos(nt) sin(nx)

= 2
π cos(t) sin(x) − 6

π cos(2t) sin(2x) + 2
3π cos(3t) sin(3x) + ... .
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Figure 10: Plot of f(x) and w(x, t), for t = 0.0, 0.3, 0.6, 0.9. The first plot
uses the partial sums S25 of the FS for f(x); the second plot uses the Césaro-
filtered partial sums SC25 of the FS for f(x).

The following SAGE code for the plot above is very time-consuming:

sage: f1 = lambda x:-2

sage: f2 = lambda x:1

sage: f3 = lambda x:-1

sage: f4 = lambda x:2
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sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]])

sage: N = 25

sage: t = 0.0; F = [RR(cos((j+1)*t)) for j in range(N)]

sage: P0 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.3; F = [RR(cos((j+1)*t)) for j in range(N)]

sage: P1 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.6; F = [RR(cos((j+1)*t)) for j in range(N)]

sage: P2 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.9; F = [RR(cos((j+1)*t)) for j in range(N)]

sage: P3 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: P = f.plot(rgbcolor=(0.8,0.1,0.3), plot_points=40)

sage: show(P+P0+P1+P2)

sage: f1 = lambda x:-2

sage: f2 = lambda x:1

sage: f3 = lambda x:-1

sage: f4 = lambda x:2

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]])

sage: N = 25

sage: t = 0.0; F = [RR((1-j/N)*cos((j+1)*t)) for j in range(N)]

sage: P0 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.3; F = [RR((1-j/N)*cos((j+1)*t)) for j in range(N)]

sage: P1 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.6; F = [RR((1-j/N)*cos((j+1)*t)) for j in range(N)]

sage: P2 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: t = 0.9; F = [RR((1-j/N)*cos((j+1)*t)) for j in range(N)]

sage: P3 = f.plot_fourier_series_partial_sum_filtered(N,pi,F,-4,4)

sage: P = f.plot(rgbcolor=(0.8,0.1,0.3), plot_points=40)

sage: show(P+P0+P1+P2)

3 The Discrete Fourier transform

Let us first “discretize” the integral for the k-th coefficient of the Fourier
series and use that as a basis for defining the DFT. Using the “left-hand
Riemann sum” approximation for the integral using N subdivisions, we have

ck = 1
P

∫ P

0
f(x)e−2πikx/P dx

≈ 1
P

∑N−1
j=0 f(Pj/N)e−2πikPj

N
/P

(

P
N

)

= 1
N

∑N−1
j=0 f(Pj/N)e−2πikj/N .

(10)
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This motivates the following definition.

Definition 19 The N -point discrete Fourier transform (or DFT) of the vector
~f = (f0, ..., fN−1) ∈ CN is

DFT (~f)k = f̂k =

N−1
∑

j=0

fje
−2πikj/N =

N−1
∑

j=0

fjW
kj
,

where W = e2πi/N .
The normalized N -point discrete Fourier transform (or NDFT) of the vector

~f = (f0, ..., fN−1) ∈ CN is

NDFT (~f)k =
1√
N

N−1
∑

j=0

fje
−2πikj/N =

1√
N

N−1
∑

j=0

fjW
kj
.

Note that the powers of W are N equally distributed points on the unit
circle.

Both the DFT and NDFT define linear transformations CN → CN and
therefore can be described by matrices. If we regard the vector ~f as a column
vector then the matrix for the DFT is:

FN =

















1 1 . . . 1

1 W . . . W
N−1

1 W
2

. . . W
2(N−1)

...
...

...
...

1 W
N−1

. . . W
(N−1)(N−1)

















.

Note that this is a symmetric matrix. Similarly, the matrix for the NDFT is:

GN =
1√
N

















1 1 . . . 1

1 W . . . W
N−1

1 W
2

. . . W
2(N−1)

...
...

...
...

1 W
N−1

. . . W
(N−1)(N−1)

















.

Example 20 Let N = 10. The DFT of

~f = (1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10) ∈ C10

48



is
F10

~f = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0). The DFT of

~f = (1/10, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ C10

is F10
~f = (1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10).

This was computed using the SAGE commands

sage: J = range(10)

sage: A = [1/10 for j in J]

sage: s = IndexedSequence(A,J)

sage: s.dft()

Indexed sequence: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

indexed by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

There is an analog of the orthogonality used in Theorem 4 above.

Lemma 21 We have

N−1
∑

j=0

W
kj

=

{

N, N |k,
0, otherwise.

Before proving this algebraically, I claim that this is “geometrically ob-
vious.” To see this, recall that the average of any N points in the plane -
whether written as vectors or as complex numbers - is simply the “center
of gravity” of points, regarded as equally weighted point masses. The sum
above is (if N does not divide k) the “center of gravity” of a collection of
point masses which are equi-distributed about the unit circle. This center of
gravity must be the origin. On the other hand, if N |k then all the points are
concentrated at 1, so the total mass is N in that case.

proof: If W
k 6= 1 then we have

N−1
∑

j=0

W
kj

=
W

Nk − 1

W
k − 1

= 0.

If W
k

= 1 then we
∑N−1

j=0 W
kj

= N . Note W
k

= 1 if and only if N |k. �
As a corollary of this lemma, we see that the complex matrix FN is

“orthogonal” (this is a technical term we need to define). A real square
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matrix is called orthogonal if row i is orthogonal to column j for all i 6= j.
Here when we say two real vectors are orthogonal of course we mean that
they are non-zero vectors and that their dot product is 0. The definition
for complex matrices is a bit different. We first define on CN the Hermitian
inner product (or just inner product, for short):

〈~x, ~y〉 =
N−1
∑

j=0

xjyj.

We say two complex vectors are orthogonal if they are non-zero and their
inner product is zero. A complex square matrix is called orthogonal if row i
is orthogonal to column j for all i 6= j.

Lemma 22 FN is orthogonal.

proof: The k-th row of FN is the vector (W
(k−1)j

)j=0,...,N−1, and the com-

plex conjugate of this vector is the vector (W (k−1)j)j=0,...,N−1 = (W
−(k−1)j

)j=0,...,N−1,
so

〈(row k of FN), (row ℓ of FN)〉 =

N−1
∑

j=0

W
((k−1)−(ℓ−1))j

= 0,

provided W
k−ℓ 6= 1, which is true if and only if N does not divide k − ℓ. �

Note that this matrix FN is not “real orthogonal”:

(row k of FN) · (row ℓ of FN) =

N−1
∑

j=0

W
(k−1)+(ℓ−1)j

= 0,

if and only if N does not divide k + ℓ− 2, by Lemma 21.
Here’s another matrix calculation based on Lemma 21: If ~ek denotes

the standard basis vector of CN whose k-th coordinate is 1 and all other
coordinates are 0, then

DFT (~ek) = (FN)k = kth column of FN ,

so
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DFT (DFT (~ek)) = DFT (kth column of FN ),

=











(1st row of FN ) · (kth column of FN)
(2nd row of FN) · (kth column of FN)

...
(N th row of FN ) · (kth column of FN)











=











(1st row of FN ) · (kth row of FN)
(2nd row of FN) · (kth row of FN )

...
(N th row of FN ) · (kth row of FN)











,

since the matrix FN is symmetric. The “almost orthogonality of the rows of
FN” discussed above implies that this last vector of dot products is = N~e−k,
where by −k in the subscript of we mean the representative of the residue
class of −k (mod N) in the interval 0 ≤ −k ≤ N − 1.

The motivation behind the definition of the normalized DFT is the fol-
lowing computation:

NDFT (NDFT (~f))k = 1√
N

∑N−1
j=0 NDFT (f)jW

kj

= 1
N

∑N−1
ℓ=0 fℓ

∑N−1
j=0 W

(k+ℓ)j

= f−k,

(11)

where of course by −k in the subscript of f−k we mean the representative
of the residue class of −k (mod N) in the interval 0 ≤ −k ≤ N − 1.
To be precise, if neg : CN → CN denotes the negation operator, send-
ing (f0, f1, ..., fN−1) to (f−0, f−1, ..., f1−N) then NDFT 2 = neg. Note that

neg flips the last N − 1 coordinates of ~f about their midpoint. For ex-
ample, if N = 5 then neg(1, 2, 3, 4, 5) = (1, 5, 4, 3, 2) and if N = 6 then
neg(2, 1, 3,−1, 4, 7) = (2, 7, 4,−1, 3, 1).

Because of the computation (11), it follows that

NDFT−1(~f)k = NDFT (~f)−k =
1√
N

N−1
∑

j=0

fjW
−kj

=
1√
N

N−1
∑

j=0

fjW
kj, (12)
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or NDFT−1 = neg ◦NDFT = NDFT ◦ neg. Likewise,

DFT−1(~f)k =
1

N

N−1
∑

j=0

fjW
−kj

=
1

N

N−1
∑

j=0

fjW
kj, (13)

or DFT−1 = N−1 · neg ◦DFT = N−1 ·DFT ◦ neg.

Example 23 Let N = 4, so

F4 =









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i









,

and let ~f = (1, 0, 0, 1). We compute

NDFT (~f) =
1√
4
F4
~f =

1

2









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

















1
0
0
1









=









1
(1 + i)/2

0
(1 − i)/2









.

Call this latter vector ~g. We compute

NDFT ◦ neg(~g) =
1

2









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

















1
(1 + i)/2

0
(1 − i)/2









=
1

2









2
0
0
2









= ~f,

as desired.

3.1 Eigenvalues and eigenvectors of the DFT

We shall take an aside to try to address the problem of computing eigenvalues
and eigenvectors of DFT = FN , at least in a special case. This shall not be
used in other parts of the course - think of this as “for your cultural benefit”.

It also follows from this computation (11) that NDFT 4 acts as the iden-
tity. If A is any square matrix satisfying Am = I then any eigenvalue λ
of A must be an m-th root of unity (indeed, A~v = λ~v, for some non-zero
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eigenvector ~v, so ~v = Am~v = Am−1A~v = Am−1λ~v = λAm−1~v = ... = λm~v,
so λm = 1). Due to this fact, it follows that the only possible eigenvalues of
NDFT are 1,−1, i,−i.

It is not hard to describe the eigenspaces intrinsically. Let

V = {f : Z/NZ → C},
so V ∼= CN via f 7−→ (f(0), f(1), ..., f(N − 1)). Let

Veven = {f ∈ V | f(−k) = f(k), ∀k ∈ Z/NZ}

denote the subspace of even functions and

Vodd = {f ∈ V | f(−k) = −f(k), ∀k ∈ Z/NZ}

the subspace of odd functions. Note that the restriction of NDFT to Veven
is order 2: for all f ∈ Veven, we have NDFT 2(f) = f . Likewise, for all
f ∈ Vodd, we have NDFT 2(f) = −f . Let

E1 = {NDFT (f) + f | f ∈ Veven},
E−1 = {NDFT (f) − f | f ∈ Veven},
E−i = {iNDFT (f) + f | f ∈ Vodd},
Ei = {iNDFT (f) − f | f ∈ Vodd}.

In this notation, for each λ ∈ {±1,±i}, Eλ is the eigenspace of GN having
eigenvalue λ. Moreover, according to Good5 [G], the columns of the matrix

Mλ = I + λGN + λ2G2
N + λ3G3

N (14)

form a basis for Eλ.
Note that the eigenvalues of the DFT = FN are not the same as those of

NDFT = GN since GN = 1√
N
FN . The eigenvalues of the DFT must belong

to
√
N,−

√
N, i

√
N,−i

√
N .

Recall that for the Fourier transform on R the number λ = 1 was an
eigenvalue. The calculation there cannot be “discretized” since we had to

5Good’s definition of the NDFT is slightly different than ours. Essentially, where we
have a weighted sum over powers of W , he has a weighted sum over powers of W . That
changes the matrix Mλ slightly, so the one above is correct for us I think.
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use the Residue Theorem from complex analysis. We have to take another
approach.

Let Z/NZ = {0, 1, 2, ..., N−1}. This is a set but if we perform arithmetic
(such as addition and multiplication) mod N , then this can regarded as an
abelian group.

First, assume that there is a function

ℓ : Z/NZ → Z/NZ (15)

with the property that ℓ(jk) = ℓ(j)ℓ(k), for all j 6= 0 and k 6= 0, and ℓ(0) = 0.
Let us also assume that the set

kZ/NZ = {jk (mod N) | j = 0, 1, ..., N − 1}
which is a subset of Z/NZ, is the same as the set Z/NZ:

kZ/NZ = Z/NZ, 0 < k < N. (16)

We will worry about whether this function exists or not and whether this
set-theoretic property of true or not later. For now, let’s compute the first
component of it’s DFT:

FDT (~ℓ)1 =

N−1
∑

j=0

g(j)e−2πij/N ,

where ~ℓ = (ℓ(0), ℓ(1), ..., ℓ(N − 1)) = (0, ℓ(1), ..., ℓ(N − 1)). Now make the
substitution j = j′k, for some k 6= 0.

We have

FDT (~ℓ)1 =
∑N−1

j=0 ℓ(j)e−2πij/N

=
∑N−1

j′=0 ℓ(j
′k)e−2πij′k/N

=
∑N−1

j′=0 ℓ(j
′)ℓ(k)e−2πij′k/N

= ℓ(k)
∑N−1

j=0 ℓ(j)e−2πijk/N

= ℓ(k)DFT (~ℓ)k.

Putting these together, we get

DFT (~ℓ) = DFT (~ℓ)1 · ~ℓ.
In other words, ~ℓ is an eigenvector with eigenvalue DFT (~ℓ)1.
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Example 24 In general. let ζN denote a primitive N-th root of unity, for
example ζN = e−2πi/N = W . The smallest field containing the rationals, Q,
and this N-th root of unity is called the cyclotomic field, and is commonly
denoted by Q(ζN). As a set, Q(ζN) is simply the set of “polynomials in ζN
with coefficients in Q of degree ≤ N − 1”.

Let N = 5 and ~ℓ = (0, 1,−1,−1, 1). It can be checked that this defines a
function as in (15).

We first check explicitly that assumption (16) is true:

Z/5Z = [0, 1, 2, 3, 4]
2Z/5Z = [0, 2, 4, 1, 3]
3Z/5Z = [0, 3, 1, 4, 2]
4Z/5Z = [0, 4, 3, 2, 1]

Let

F5 =













1 1 1 1 1
1 ζ5 ζ2

5 ζ3
5 ζ4

5

1 ζ2
5 ζ4

5 ζ5 ζ3
5

1 ζ3
5 ζ5 ζ4

5 ζ2
5

1 ζ4
5 ζ3

5 ζ2
5 ζ5













where ζ4
5 = −ζ3

5 − ζ2
5 − ζ5 −1. The characteristic polynomial of this matrix is

p5(x) = (x−
√

5)(x+
√

5)2(x2 + 5).

The roots of this polynomial are of course the eigenvalues: ±
√

5,±i
√

5. Of
course, the matrix F5 has eigenvectors with vector components in C. We
shall try to express their components, if we can, algebraically in terms of
the powers of the ζ5. This is not a matter of necessity for us, but it can
be convenient for doing certain calculations. For example, you don’t have to
worry about round-off errors messing up a calculation if you have an algebraic
expression.

It turns out that
√

5 = −2ζ3
5 − 2ζ2

5 − 1, and −
√

5 = 2ζ3
5 + 2ζ2

5 + 1, can
both be written as a linear combination of powers of ζ5, so it may come as
no surprise that the components of their eigenvectors also can be written as
a linear combination of powers of ζ5. In other words, if the eigenvalue is in
Q(ζ5) then one might expect to find eigenvector with components in Q(ζ5).

On the other hand, ±i
√

5 do not belong to Q(ζ5). So, we should expect
that the eigenvectors in this case have components lying in some extension of
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in Q(ζ5). It turns out, all the eigenvectors have components in Q(ζ20), the
field extension of Q generated by the 20-th roots of unity.

The eigenspace of λ1 =
√

5 is 2-dimensional, with basis

(1, 0,−ζ3
5 − ζ2

5 − 1,−ζ3
5 − ζ2

5 − 1, 0), (0, 1,−1,−1, 1),

where −ζ3
5 − ζ2

5 − 1 = 0.6180... . The eigenspace of λ2 = −
√

5 is 1-
dimensional, with basis

(1,
1

2
ζ3
5 +

1

2
ζ2
5 ,

1

2
ζ3
5 +

1

2
ζ2
5 ,

1

2
ζ3
5 +

1

2
ζ2
5 ,

1

2
ζ3
5 +

1

2
ζ2
5),

where 1
2
ζ3
5 + 1

2
ζ2
5 = −0.8090... . The eigenspace of λ3 = i

√
5 is 1-dimensional,

with basis

(0, 1, ζ7
20+ζ

6
20−ζ5

20−ζ4
20+ζ

3
20−2ζ20−1,−ζ7

20−ζ6
20+ζ

5
20+ζ

4
20−ζ3

20+2ζ20+1,−1),

where ζ7
20 + ζ6

20 − ζ5
20 − ζ4

20 + ζ3
20 − 2ζ20 − 1 = −3.520... . The eigenspace of

λ4 = i
√

5 is 1-dimensional, with basis

(0, 1,−ζ7
20+ζ

6
20+ζ

5
20−ζ4

20−ζ3
20+2ζ20−1, ζ7

20−ζ6
20−ζ5

20+ζ
4
20+ζ

3
20−2ζ20+1,−1),

where −ζ7
20 + ζ6

20 + ζ5
20 − ζ4

20 − ζ3
20 + 2ζ20 − 1 = 0.2840... .

For example,

F5
~ℓ = F5













0
1
−1
−1
1













=













0
−2ζ3

5 − 2ζ2
5 − 1

2ζ3
5 + 2ζ2

5 + 1
2ζ3

5 + 2ζ2
5 + 1

−2ζ3
5 − 2ζ2

5 − 1













= (2ζ3
5 + 2ζ2

5 + 1)~ℓ.

In fact, 2ζ3
5 +2ζ2

5 +1 = −
√

5 ≈ −2.236.... In other words, ~ℓ = (0, 1,−1,−1, 1)
is an eigenvector of F5 with eigenvalue λ = −

√
5.

The SAGE [S] code used to help with this calculation:

----------------------------------------------------------------------

| SAGE Version 1.7.1, Release Date: 2007-01-18 |

| Type notebook() for the GUI, and license() for information. |

----------------------------------------------------------------------

sage: quadratic_residues(5)
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[0, 1, 4]

sage: quadratic_residues(7)

[0, 1, 2, 4]

sage: MS = MatrixSpace(CyclotomicField(5),5,5)

sage: V = VectorSpace(CyclotomicField(5),5)

sage: v = V([0,1,-1,-1,1])

sage: z = CyclotomicField(5).gen()

sage: F5 = MS([[1,1,1,1,1],[1,z,z^2,z^3,z^4],[1,z^2,z^4,z^6,z^8],[1,z^3,z^6,z^9,z^(12)],[1,z^4,z^8,z^(12),z^(16)]])

sage: latex(F5)

\left(\begin{array}{rrrrr}

1&1&1&1&1\\

1&zeta5&zeta5^{2}&zeta5^{3}&-zeta5^{3} - zeta5^{2} - zeta5 - 1\\

1&zeta5^{2}&-zeta5^{3} - zeta5^{2} - zeta5 - 1&zeta5&zeta5^{3}\\

1&zeta5^{3}&zeta5&-zeta5^{3} - zeta5^{2} - zeta5 - 1&zeta5^{2}\\

1&-zeta5^{3} - zeta5^{2} - zeta5 - 1&zeta5^{3}&zeta5^{2}&zeta5

\end{array}\right)

sage: F5*v

(0, -2*zeta5^3 - 2*zeta5^2 - 1, 2*zeta5^3 + 2*zeta5^2 + 1, 2*zeta5^3 + 2*zeta5^2 + 1, -2*zeta5^3 - 2*zeta5^2 - 1)

sage: a = 2*z^3 + 2*z^2 + 1

sage: a^2

5

sage: exp(pi*I)

-1.00000000000000 + 0.00000000000000323829504877970*I

sage: zz=exp(2*pi*I/5)

sage: aa = 2*zz^3 + 2*zz^2 + 1

sage: aa

-2.23606797749979 + 0.0000000000000581756864903582*I

sage: zz=exp(-2*pi*I/5)

sage: aa = 2*zz^3 + 2*zz^2 + 1

sage: aa

-2.23606797749979 - 0.0000000000000588418203051332*I

sage: MS = MatrixSpace(CyclotomicField(5),5,5)

sage: z = CyclotomicField(5).gen()

sage: F5 = MS([[1,1,1,1,1],[1,z,z^2,z^3,z^4],[1,z^2,z^4,z^6,z^8],[1,z^3,z^6,z^9,z^(12)],[1,z^4,z^8,z^(12),z^(16)]])

sage: F5.fcp()

(x + -2*zeta5^3 - 2*zeta5^2 - 1) * (x + 2*zeta5^3 + 2*zeta5^2 + 1)^2 * (x^2 + 5)

sage: F5.fcp()

(x + -2*zeta5^3 - 2*zeta5^2 - 1) * (x + 2*zeta5^3 + 2*zeta5^2 + 1)^2 * (x^2 + 5)

sage: z^4

-zeta5^3 - zeta5^2 - zeta5 - 1

sage: MS.identity_matrix()

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

sage: A = F5 - (-2*z^3 - 2*z^2 - 1)*MS.identity_matrix()

sage: A.kernel()

Vector space of degree 5 and dimension 2 over Cyclotomic Field of order 5 and degree 4

Basis matrix:

[ 1 0 -zeta5^3 - zeta5^2 - 1 -zeta5^3 - zeta5^2 - 1 0]

[ 0 1 -1 -1 1]

sage: A.kernel().basis()

[

(1, 0, -zeta5^3 - zeta5^2 - 1, -zeta5^3 - zeta5^2 - 1, 0),

(0, 1, -1, -1, 1)

]

sage: -z^3 - z^2 - 1==z+z^4

True

sage: A = F5 + (-2*z^3 - 2*z^2 - 1)*MS.identity_matrix()

sage: A.kernel().basis()

[

(1, 1/2*zeta5^3 + 1/2*zeta5^2, 1/2*zeta5^3 + 1/2*zeta5^2, 1/2*zeta5^3 +

1/2*zeta5^2, 1/2*zeta5^3 + 1/2*zeta5^2)

]

sage: zz+zz^4

0.618033988749874 + 0.0000000000000115463194561016*I

sage: 4*(zz+zz^4)

2.47213595499949 + 0.0000000000000461852778244065*I

sage: (zz+zz^4)^2

0.381966011250079 + 0.0000000000000142720357376695*I

sage: (zz+zz^4)^4
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0.145898033750295 + 0.0000000000000109028651262724*I

sage: (zz+zz^4)^5

0.0901699437494591 + 0.00000000000000842292652849006*I

sage: (zz+zz^4+1)^2

2.61803398874982 + 0.0000000000000373646746498727*I

sage: 1/2*zz^3 + 1/2*zz^2

-0.809016994374949 - 0.0000000000000147104550762833*I

sage: MSI = MatrixSpace(CyclotomicField(20),5,5)

sage: z20 = CyclotomicField(20).gen()

sage: z5 = z20^4

sage: I in CyclotomicField(20)

False

sage: z4 = z20^5

sage: z4^4

1

sage: z4

zeta20^5

sage: z4^3

-zeta20^5

sage: F5I = MS([[1,1,1,1,1],[1,z5,z5^2,z5^3,z5^4],[1,z5^2,z5^4,z5^6,z5^8],[1,z5^3,z5^6,z5^9,z5^(12)],[1,z5^4,z5^8,z5^(12),z5^(16)]])

sage: A = F5I + z4*(-2*z5^3 - 2*z5^2 - 1)*MSI.identity_matrix()

sage: A.kernel().basis()

[

(0, 1, zeta20^7 + zeta20^6 - zeta20^5 - zeta20^4 + zeta20^3 - 2*zeta20 - 1,

-zeta20^7 - zeta20^6 + zeta20^5 + zeta20^4 - zeta20^3 + 2*zeta20 + 1, -1)

]

sage: a = z20^7 + z20^6 - z20^5 - z20^4 + z20^3 - 2*z20 - 1

sage: a^5

165*zeta20^7 + 125*zeta20^6 - 105*zeta20^5 - 125*zeta20^4 + 45*zeta20^3 - 210*zeta20 - 193

sage: a in CyclotomicField(5)

False

sage: zz20=exp(-2*pi*I/20)

sage: zz20^5

0.00000000000000127675647831893 - 1.00000000000000*I

sage: A = F5I - z4*(-2*z5^3 - 2*z5^2 - 1)*MSI.identity_matrix()

sage: A.kernel().basis()

[

(0, 1, -zeta20^7 + zeta20^6 + zeta20^5 - zeta20^4 - zeta20^3 + 2*zeta20 - 1,

zeta20^7 - zeta20^6 - zeta20^5 + zeta20^4 + zeta20^3 - 2*zeta20 + 1, -1)

]

sage: -zz^3 - zz^2 - 1

0.618033988749899 + 0.0000000000000294209101525666*I

sage: 1/2*zz^3 + 1/2*zz^2

-0.809016994374949 - 0.0000000000000147104550762833*I

sage: -zz20^7 + zz20^6 + zz20^5 - zz20^4 - zz20^3 + 2*zz20 - 1

0.284079043840412 + 0.000000000000000222044604925031*I

sage: zz20^7 + zz20^6 - zz20^5 - zz20^4 + zz20^3 - 2*zz20 - 1

-3.52014702134020 - 0.00000000000000222044604925031*I

sage: [j for j in range(5)]

[0, 1, 2, 3, 4]

sage: [j*2%5 for j in range(5)]

[0, 2, 4, 1, 3]

sage: [j*3%5 for j in range(5)]

[0, 3, 1, 4, 2]

sage: [j*4%5 for j in range(5)]

[0, 4, 3, 2, 1]

sage: F5.fcp()

(x + -2*zeta5^3 - 2*zeta5^2 - 1) * (x + 2*zeta5^3 + 2*zeta5^2 + 1)^2 * (x^2 + 5)

sage: -2*zz^3 - 2*zz^2 - 1

2.23606797749979 + 0.0000000000000588418203051332*I

sage:

The table below lists the multiplicity of the eigenvalues of FN , for some
small values of N :
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mult. of mult. of mult. of mult. of

N
√
N −

√
N i

√
N −i

√
N

4 2 1 0 1
5 2 1 1 1
6 2 2 1 1
7 2 2 1 2
8 3 2 1 2
9 3 2 2 2
10 3 3 2 2
11 3 3 2 3
12 4 3 2 3
13 4 3 3 3

In general, the multiplicity of λ = ǫ
√
N is equal to the rank of Mλ/

√
N in

(14). According to Good [G], this is

√
N −

√
N i

√
N −i

√
N

[1
4
(N + 4)] [1

4
(N + 2)] [1

4
(N − 1)] [1

4
(N + 1)]

Here is the SAGE code verifying the last line of the first table above:

sage: p = 13

sage: MS = MatrixSpace(CyclotomicField(p),p,p)

sage: z = CyclotomicField(p).gen()

sage: zz = exp(-2*pi*I/p)

sage: r = lambda k: [z^(j*k) for j in range(p)]

sage: F = MS([r(k) for k in range(p)])

sage: F.fcp()

(x + -2*zeta13^11 - 2*zeta13^8 - 2*zeta13^7 - 2*zeta13^6 - 2*zeta13^5 - 2*zeta13^2 - 1)^3 *

(x + 2*zeta13^11 + 2*zeta13^8 + 2*zeta13^7 + 2*zeta13^6 + 2*zeta13^5 + 2*zeta13^2 + 1)^4 * (x^2 + 13)^3

sage: 2*zz^11 + 2*zz^8 + 2*zz^7 + 2*zz^6 + 2*zz^5 + 2*zz^2 + 1

-3.60555127546399 - 0.00000000000000177635683940025*I

Here is an example of such a function. Let p be a prime number and
let ℓ(j) = 1 if j is a non-zero square mod p and −1 is j is a non-zero non-
square mod p and ℓ(0) = 0. This is called the Legendre function or the
quadratic residue symbol. It turns out that (since the product of two squares
is a square and the product of a square with a non-square is a non-square)
that ℓ(jk) = ℓ(j)ℓ(k), for all non-zero j, k. Also, it can be checked that, for
any 0 < k < p, the set of multiples of k mod p is the same as the set of all
integers mod p:

{jk | j ∈ Z/pZ}.
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Therefore, the assumptions made in (15) and (16) above hold. The eigenval-
ues are sometimes called Gauss sums but we shall not discuss them further.
Further information are available in the excellent papers by Good [G] and
McClellan and Park [MP].

3.2 The DFT and the coefficients of the FS

We saw in (10) the approximation which motivated the definition of the DFT.

If f is a “nice” function on (0, P ) and if ~f = (f( 0
N
P ), f( 1

N
P ), ..., f(N−1

N
P ))

is the vector of sampled values of f then

FS(f)k ≈
1

N
DFT (~f)k, (17)

where k ranges over {0, 1, ..., N − 1}. Based on the approximation in (10),
one expects that the estimate (17) is only good when k/N is “small”.

Example 25 Let f(x) = e−x for 0 < x < 1, extended periodically to R with
period P = 1. The graph looks something like:

Figure 11: Graph of f(x), −1 < x < 2.

We compute its k-th Fourier series coefficient:

ck =
1

P

∫ P

0

f(x)e−2πikx/P dx =

∫ 1

0

e−xe−2πikx dx =

∫ 1

0

e−x−2πikx dx =
1 − e−1

1 + 2πik
,
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for all k ∈ Z. Now, let

~f = (f0, f1, ..., fN−1) = (1, e−1/N , e−2/N , ..., e−(N−1)/N )

be the vector of sampled values. We compute its k-th DFT component:

DFT (~f)k =
∑N−1

j=0 fje
−2πikj/N

=
∑N−1

j=0 e−j/Ne−2πikj/N

=
∑N−1

j=0 (e(−1−2πik)/N )j

= 1−e−1−2πik

1−e(−1−2πik)/N

= 1−e−1

1−e(−1−2πik)/N .

The estimate (17) simply asserts in this case that

1

N

1 − e−1

1 + 2πik
≈ 1 − e−1

1 − e(−1−2πik)/N
.

Is this true?
If we use the approximation

e−x = 1 − x+
1

2
x2 + ...

we see that, for “small” (−1 − 2πik)/N , 1 − e(−1−2πik)/N ≈ 1
N

(1 + 2πik).
With N = 10, even the first few values aren’t very close.

k ck DFT (~f)k |ck −DFT (~f)k|
0 0.63212 0.664253 0.03213
1 0.01561 - 0.09811i 0.04775 - 0.09478i 0.03231
2 0.003977 - 0.04998i 0.03615 - 0.04319i 0.03288
3 0.001774 - 0.03344i 0.03401 - 0.02287i 0.03392

Here is the list plot of the values of |ck −DFT (~f)k|
and here is the histogram plot:
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Figure 12: List plot of |ck −DFT (~f)k|, k = 0, ..., 9.

You can see from these graphs that the larger k/N gets, the worse the
approximation is.

When N = 100 the approximation is about 10 times better, as is to be
expected.

k ck DFT (~f)k |ck −DFT (~f)k|
0 0.6321 0.6352 0.003173
1 0.01561 - 0.09812*I 0.01878 - 0.09808*I 0.003165
2 0.003977 - 0.04998*I 0.007143 - 0.04992*I 0.003166
3 0.001774 - 0.03344i 0.004939 - 0.03334*I 0.003167

Here is the list plot of the values of 10|ck−DFT (~f)k| (the error has been
scaled up by a factor of 10 so that the plot comes out nicer):
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Figure 13: Histogram of |ck −DFT (~f)k|, k = 0, ..., 9.

Figure 14: List plot of |ck −DFT (~f)k|, k = 0, ..., 99.

Here is the SAGE code for the N = 10 case:

sage: CC5 = ComplexField(15)

sage: N = 10
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sage: ck = lambda k:(1-exp(-1))/(1+2*pi*I*k)

sage: dftk = lambda k:(1/N)*(1-exp(-1))/(1-exp((-1-2*pi*I*k)/N))

sage: [CC5(ck(j)) for j in range(N)]

[0.6321,

0.01561 - 0.09812*I,

0.003977 - 0.04998*I,

0.001774 - 0.03344*I,

0.0009991 - 0.02511*I,

0.0006397 - 0.02010*I,

0.0004444 - 0.01675*I,

0.0003265 - 0.01436*I,

0.0002500 - 0.01257*I,

0.0001976 - 0.01117*I]

sage: [CC5(dftk(j)) for j in range(N)]

[0.6642,

0.04775 - 0.09479*I,

0.03615 - 0.04319*I,

0.03401 - 0.02287*I,

0.03334 - 0.01024*I,

0.03318 - 0.00000000000000005104*I,

0.03334 + 0.01024*I,

0.03401 + 0.02287*I,

0.03615 + 0.04318*I,

0.04775 + 0.09478*I]

sage: [abs(CC5(ck(j))-CC5(dftk(j))) for j in range(N)]

[0.03213,

0.03231,

0.03288,

0.03392,

0.03560,

0.03825,

0.04256,

0.05021,

0.06631,

0.1161]

sage: L = [abs(CC5(ck(j))-CC5(dftk(j))) for j in range(N)]

sage: show(list_plot(L))

sage: J = range(N)

sage: s = IndexedSequence(L,J)

sage: (s.plot_histogram()).save("histogram-dftk-vs-ck10.png",xmin=-1,xmax=10,ymin=-0.5,ymax=0.5)

Let’s try one more example.

Example 26 Let f(x) = x2 for 0 < x < 1, extended periodically to R with
period P = 1. The graph looks something like:

You can enter this function and plot it’s values, for −1 < x < 2, in SAGE

using the commands

sage: f0 = (x+1)^2; f1 = x^2; f2 = (x-1)^2

sage: f = Piecewise([[(-1,0),f0],[(0,1),f1],[(1,2),f2]])

sage: show(f.plot())

We compute, for k 6= 0,

ck =

∫ 1

0

x2e−2πikx dx =
1

2k2π2
+

1

2kπ
i

The value for k = 0 is c0 = 1
3
.

Here is the plot of the real part of the partial sum
∑10

−10 cke
2πikx:
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Figure 15: Graph of f(x), −1 < x < 2.

Figure 16: Graph of S10(x), −1 < x < 2.

sage: c = lambda k : I*((2*k^2*pi^2 - 1)/(4*k^3*pi^3) + 1/(4*k^3*pi^3)) + 1/(2*k^2*pi^2)

sage: ps = lambda x: 1/3+sum([(c(k)*exp(2*I*pi*k*x)).real() for k in range(-10,10) if k!=0])

sage: show(plot(ps,-1,2))
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3.3 The DFT and convolutions

This section is based, not on Walker’s book [W1] but on material in Frazier’s
well-written book [F].

Let Z/NZ denote the abelian group of integers mod N , and let

VN = {f | f : Z/NZ → C}.
This is a C-vector space which we can identify with the vector space CN via
the map f 7−→ (f(0), f(1), ..., f(N−1)), VN → CN . You can visualize Z/NZ

as a circle with N equally spaced points and functions on Z/NZ as “weights”
on each of these points:

66



Figure 17: Circle representing Z/NZ.

Define convolution by

VN × VN → VN
(f, g) 7−→ f ∗ g, (18)

where

(f ∗ g)(k) =
∑

ℓ∈Z/NZ

f(ℓ)g(k − ℓ).

In other words, if ~f = (f0, f1, ..., fN−1) and ~g = (g0, g1, ..., gN−1) then ~f ∗ ~g is
another vector, whose k-th coordinate is given by

(~f ∗ ~g)k =
∑

ℓ∈Z/NZ

fℓgk−ℓ,

where are subscripts are computed modN and represented in the set {0, 1, ..., N−
1} This binary operation on VN is commutative. In other words, f ∗g = g∗f :
if ℓ′ = k − ℓ then
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(f ∗ g)(k) =
∑

ℓ∈Z/NZ

f(ℓ)g(k − ℓ) =
∑

ℓ∈Z/NZ

f(k − ℓ′)g(ℓ′).

We will be done once we show that (for each k ∈ Z/NZ) as ℓ ranges over
all of Z/NZ, so does ℓ′ = k − ℓ. But if ℓ′ misses something in Z/NZ, say x,
then k − ℓ 6= x for all ℓ ∈ Z/NZ, and so ℓ 6= k − x. This is a contradiction,
so

∑

ℓ∈Z/NZ
f(ℓ)g(k − ℓ) =

∑

ℓ′∈Z/NZ
f(k − ℓ′)g(ℓ′) = (g ∗ f)(k), as desired.

Example 27 Here is a SAGE session for computing the convolution:

sage: F = CyclotomicField(16)

sage: J = range(16)

sage: A = [F(0) for i in J]; A[0] = F(1); A[1] = F(1); A[2] = F(1); A[3] = F(1)

sage: z = F.gen()

sage: B = [z^(i) for i in J]

sage: sA = IndexedSequence(A,J)

sage: sB = IndexedSequence(B,J)

sage: sA.convolution(sB)

[1,

zeta16 + 1,

zeta16^2 + zeta16 + 1,

zeta16^3 + zeta16^2 + zeta16 + 1,

zeta16^4 + zeta16^3 + zeta16^2 + zeta16,

zeta16^5 + zeta16^4 + zeta16^3 + zeta16^2,

zeta16^6 + zeta16^5 + zeta16^4 + zeta16^3,

zeta16^7 + zeta16^6 + zeta16^5 + zeta16^4,

zeta16^7 + zeta16^6 + zeta16^5 - 1,

zeta16^7 + zeta16^6 - zeta16 - 1,

zeta16^7 - zeta16^2 - zeta16 - 1,

-zeta16^3 - zeta16^2 - zeta16 - 1,

-zeta16^4 - zeta16^3 - zeta16^2 - zeta16,

-zeta16^5 - zeta16^4 - zeta16^3 - zeta16^2,

-zeta16^6 - zeta16^5 - zeta16^4 - zeta16^3,

-zeta16^7 - zeta16^6 - zeta16^5 - zeta16^4,

-zeta16^7 - zeta16^6 - zeta16^5,

-zeta16^7 - zeta16^6,

-zeta16^7,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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Let ζ = ζN denote a primitive N th root of unity in F (W , in the notation
above, is one good choice). Recall, for g ∈ VN , the discrete Fourier transform
of g was defined by

g∧(λ) =
∑

ℓ∈Z/NZ

g(ℓ)ζℓλ, λ ∈ Z/NZ.

Also, we defined the inverse discrete Fourier transform of G by

G∨(ℓ) =
1

N

∑

λ∈Z/NZ

G(λ)ζ−ℓλ, ℓ ∈ Z/NZ.

A basic and very useful fact about the Fourier transform is that the
Fourier transform of a convolution is the product of the Fourier transforms.
Here’s the proof:

(f ∗ g)∧(λ) =
∑

ℓ∈Z/NZ

∑

k∈Z/NZ
f(k)g(ℓ− k)ζℓλ

=
∑

k∈Z/NZ
f(k)

∑

ℓ∈Z/NZ
g(ℓ− k)ζℓλ

=
∑

k∈Z/NZ
f(k)ζkλ

∑

ℓ′∈Z/NZ
g(ℓ′)ζℓ

′λ

= f∧(λ)g∧(λ).

In coordinate notation:

DFT (~f ∗ ~g)k = DFT (~f)kDFT (~g)k,

for all 0 ≤ k ≤ N − 1.

Definition 28 For h ∈ VN , define Mh : VN → VN by

Mh(f) = (hf∧)∨.

If × denotes the componentwise product of two vectors,

(a0, a1, ..., aN−1) × (b0, b1, ..., bN−1) = (a0b0, a1b1, ..., aN−1bN−1),

then, in coordinate notation,

M~h(
~f) = DFT−1(~h×DFT (~f)),

for ~f,~h ∈ CN . A linear transformation T : VN → VN of the form T = Mh,
for some h ∈ VN , is called a Fourier multiplier operator.
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In other words, a Fourier multiplier operator (represented in the standard
basis) is a linear transformation of the form F−1

N DFN , where D is an N ×N
diagonal matrix. Note that the product of two Fourier multiplier operators
is a Fourier multiplier operator: Mh1Mh2 = Mh1h2.

Stereo systems and FMOs: Here is one way in which Fourier multiplier oper-
ators can be thought of in terms of Dolby stereo (this is a grossly over-simplied
description but you will get the idea). Dolby cuts off the high frequencies, often
which are crackles and pops and other noise in the channel, making the music
sound nicer. How does it do that? If f ∈ VN represents the digital sample of the
sound, DFT (f) = f∧ represents the frequencies of the sound. To cut off the high
frequencies, multiply DFT (f) by some (“low-pass filter”) h ∈ VN which is 0 on
the high frequencies and 1 on the rest: you get hf∧. To recover the sound from
this, take the inverse DFT, (hf∧)∨. This is the same sound, but without the high
frequencies. This “filtered sound” is an example of a Fourier multiplier operator.

The following result appears as Theorem 2.19 of [F]. It characterizes the
Fourier multiplier operators.

Theorem 29 Let T : VN → VN denote a linear operator. The following are
equivalent:

1. T is translation invariant.

2. The matrix A representing T in the standard basis is circulant.

3. T is a convolution operator.

4. T is a Fourier multiplier operator.

5. The matrix B representing T in the Fourier basis is diagonal.

We shall define all these terms (convolution operator, etc) give some ex-
amples, and prove this theorem.

Remark 1 As a consequence of the proof below, we shall show that, for all f, g ∈
VN ,

f ∗ g = (g∧f∧)∨.

Let M(N) denote the number of multiplications required to compute the DFT on
VN . The above identity implies that the number of multiplications required to
compute the convolution f ∗ g is at most 2 ·M(N) + 1. We shall see in §6.1 that
M(N) ≤ N(log2(N) + 2). (This remark shall be applied in §6.2 below.)
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Definition 30 • Let τ : VN → VN denote the translation map: (τf)(x) =
f(x+ 1) (addition in Z/NZ). Note

τ : (x0, x1, ..., xn−1) 7−→ (x1, x2, ..., xN−1, x0).

• We say an operator T is translation invariant if the diagram

VN
τ−−−→ VN

T





y
T





y

VN
τ−−−→ VN

commutes. (This phrase will be explained below.)

• Define the convolution operator6 associated to g,

Tg : VN → VN ,

by Tg(f) = f ∗ g.

Remark 2 Here is a remark on the grammar used in the diagramatical
definition of translation invariance above. The phrase “diagram commutes”
is a fancy way to say that, for each f ∈ VN (picking an element in the copy
of VN in the upper left hand corner), the element T (τ(f)) ∈ VN (mapping
from the upper left corner along the top arrow and down the right arrow
τ(f) 7−→ T (τ(f))) is equal to the element τ(T (f)) (mapping down the left
arrow and along the bottom arrow), as functions on Z/NZ. In other words,
T is translation invariant if and only if, for all k ∈ Z/NZ and all f ∈ VN ,
we have T (τ(f))(k) = τ(T (f))(k).

Example 31 Let’s look again at the operator neg : VN → VN , which sends
f(k) to f(−k). Is this translation invariant? To answer this, we must see
whether or not (τ(negf))(k) = (neg(τf))(k), for each k ∈ Z/NZ and each
f ∈ VN . We have, for example, (τ(negf))(0) = (negf))(1) = f(−1) =
f(N − 1) and (neg(τf))(0) = (τf)(−0) = (τf)(0) = f(1). In general, these
two coordinares are different, so neg is not translation invariant7.

6As usual, the term “operator” is reserved for a linear transformation from a vector
space to itself.

7 However, if you restrict neg to the subspace of VN of functions f for which f(N−ℓ) =
f(ℓ) then it is translation invariant (in fact, on this subspace, it is the identity).
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Lemma 32 The convolution operator Tg is translation invariant. In other
words, the diagram

VN
τ−−−→ VN

Tg





y

Tg





y

VN
τ−−−→ VN

commutes, for all g ∈ VN .

In terms of the above theorem, this lemma says “3 =⇒ 1”.

proof: Recall

Tg(f)(k) =
∑

ℓ∈Z/NZ

f(ℓ)g(k − ℓ),

for k ∈ Z/NZ. We have

Tg(τ(f))(k) = (τ(f) ∗ g)(k)
=

∑

ℓ∈Z/NZ
(τf)(ℓ)g(k − ℓ)

=
∑

ℓ∈Z/NZ
f(ℓ+ 1)g(k − ℓ)

=
∑

ℓ′∈Z/NZ
f(ℓ′)g(k + 1 − ℓ′) (ℓ′ = ℓ+ 1)

= Tg(f)(k + 1) = τ(Tg(f))(k).

�

Definition 33 An N ×N matrix A is circulant if and only if

Ak,ℓ = Ak+1(mod N), ℓ+1 (mod N),

for all 0 ≤ k ≤ N − 1, 0 ≤ ℓ ≤ N − 1.

In other words, to go from one row to the next in a circulant matrix, just
“rotate” or cyclically permute the rows. In particular, (setting k = ℓ = 1)
A1,1 = A2,2 = ... = AN,N , so all the diagonal entries must be the same.

Example 34 Let N = 5. The matrix
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C =













1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1













is circulant.

Lemma 35 A linear transformation T : VN → VN is translation invariant
if and only if the matrix representing it in the standard basis is circulant.

In terms of the above theorem, this lemma says “1 ⇐⇒ 2”.

proof: Since T : VN → VN is linear, with respect to the standard vasis it
is represented by an N ×N matrix

Tf = A~f, A = (Ai,j),

where ~f = t(f(0), f(1), ..., f(N−1)). In other words, T (f)(k) =
∑

ℓ∈Z/NZ
Ak,ℓf(ℓ),

for k ∈ Z/NZ. For k ∈ Z/NZ, we have

T (τ(f))(k) =
∑

ℓ∈Z/NZ
Ak,ℓ(τf)(ℓ)

=
∑

ℓ∈Z/NZ
Ak,ℓf(ℓ+ 1)

=
∑

ℓ′∈Z/NZ
Ak,ℓ′−1f(ℓ′),

where the 2nd subscript ofAi,j is taken modN . Changing the dummy variable
ℓ′ to ℓ, this becomes

T (τ(f))(k) =
∑

ℓ∈Z/NZ

Ak,ℓ−1f(ℓ).

On the other hand,

τ(T (f))(k) =
∑

ℓ∈Z/NZ

Ak+1,ℓf(ℓ).

Comparing coefficients, it follows that the linear transformation T is transla-
tion invariant if and only if its matrixA satisfies: Ak,ℓ = Ak+1 (mod N), ℓ+1 (mod N),
for all 0 ≤ k ≤ N − 1, 0 ≤ ℓ ≤ N − 1. But this is true if and only if A is
circulant. �
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Example 36 Let N = 5 and let T : V5 → V5 be defined by

T (f)(k) = (C ~f)k,

where C is as in Example 34 and ~f is the column vector ~f = (f(0), f(1), f(2), f(3), f(4)),
for f ∈ V5. Here is an example:

k 0 1 2 3 4
f(k) 1 0 1 0 0
τf(k) 0 1 0 1 0
Tf(k) 4 7 5 8 6

τ(Tf)(k) 6 4 7 5 8
T (τf)(k) 6 4 7 5 8

We see in this example that Tτ(f) = τT (f), consistent with the fact
“(2) =⇒ (1)”.

Lemma 37 If a linear transformation T : VN → VN is translation invariant
then it is a convolution map.

In terms of the above theorem, this lemma says “1 =⇒ 3”.

proof: Let T denote a translation invariant linear operator. Define g ∈
VN by g(k) = A0,−k (mod N), k ∈ Z/NZ. Then

T (f)(0) =
∑

ℓ∈Z/NZ

A0,ℓf(ℓ) =
∑

ℓ∈Z/NZ

g(−ℓ)f(ℓ),

for all f ∈ VN . Replacing f by a translation (mod N) (note g is periodic
with period N) gives

T (f)(k) = τk(T (f))(0) = T (τkf)(0)
=

∑

ℓ∈Z/NZ
g(−ℓ)τkf(ℓ)

=
∑

ℓ∈Z/NZ
g(−ℓ)f(ℓ+ k)

=
∑

ℓ′∈Z/NZ
g(k − ℓ′)f(ℓ′) (ℓ′ = ℓ+ k)

=
∑

ℓ∈Z/NZ
g(k − ℓ)f(ℓ),

for all f ∈ VN . In other words, T is a convolution map. �
Using the above lemmas, we see the connection between maps given by

circulant matrices and convolution operators.
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Lemma 38 If T : VN → VN is a convolution operator then, represented in
the Fourier basis, T is diagonal.

This says (3) =⇒ (5).

proof: By hypothesis, T = Tg, for some g ∈ VN . Let us compute the
action of Tg on the function bk ∈ VN , where bk(ℓ) = e2πikℓ/N . We have

Tg(bj)(k) =
∑

ℓ∈Z/NZ
e2πijℓ/Ng(k − ℓ)

=
∑

ℓ′∈Z/NZ
e2πij(k−ℓ

′)/Ng(ℓ′)

= e2πijk/Ng∧(j) = g∧(j)bj(k),

so Tg(bj) = g∧bj . If T is represented by A = (Aj,k), in the Fourier basis, then

T (bj) =
∑

j

Aj,kbk,

for 0 ≤ j ≤ N − 1. Since the {bj}N−1
j=0 are linearly independent (they are a

basis, after all!), we may compare coefficients to conclude: Aj,j = g∧(j) for
all j and Aj,k = 0 if j 6= k. In other words, A is diagonal, as desired. �

In terms of the above theorem, this computation proves “3 =⇒ 5”.

Lemma 39 T : VN → VN is a convolution operator if and only if T is a
Fourier multiplier operator.

This says (3) ⇐⇒ (4).

proof: Suppose T : VN → VN is a convolution operator, say T = Tg,
for some g ∈ VN . Let h = g∧ denote the inverse discrete Fourier transform
of g. The claim is that Tg = Mh, where Mh is defined as in Definition 28.
Since the Fourier transform of the convolution is the product of the Fourier
transforms, for each f ∈ VN , we have (f ∗g)∧ = f∧g∧. Taking inverse Fourier
transforms of both sides gives

Tg(f) = f ∗ g = (g∧f∧)∨ = Mg∧(f).

Therefore, if T is a convolution operator then it is also a Fourier multiplier
operator.

Conversely, suppose T is a Fourier multiplier operator, say T = Mh, for
some h ∈ VN . Let g = h∨. The claim is that Tg = Mh. The proof of this
case also follows from the identity (f ∗ g)∧ = f∧g∧. �
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Lemma 40 If T : VN → VN is diagonal, represented in the Fourier basis,
then T is translation invariant.

This says (5) =⇒ (1).

proof: By hypothesis, there are constants γi ∈ C such that T (bℓ)(k) =
γℓbℓ(k), for each ℓ with 0 ≤ ℓ ≤ N − 1 and each k ∈ Z/NZ. Therefore, if
f ∈ VN is expressed in terms of the Fourier basis as f(x) =

∑

ℓ cℓbℓ(x) (for
cℓ ∈ C) then

T (f)(k) =
∑

ℓ

cℓγℓbℓ(k), k ∈ Z/NZ.

Now we compute

τ(Tf)(k) = Tf(k + 1) =
∑

ℓ

cℓγℓbℓ(k + 1) =
∑

ℓ

e−2πiℓ/Ncℓγℓbℓ(k),

and

τf(k) =
∑

ℓ

cℓτbℓ(k) =
∑

ℓ

cℓbℓ(k + 1) =
∑

ℓ

e−2πiℓ/Ncℓbℓ(k),

so

T (τf)(k) ==
∑

ℓ

e−2πiℓ/NcℓT (bℓ)(k) =
∑

ℓ

e−2πiℓ/Ncℓγℓbℓ(k).

This implies τT (f) = Tτ(f), for all f ∈ VN , as desired. �

We have: (3) =⇒ (1) (Lemma 32), (1) ⇐⇒ (2) (Lemma 35), (1) =⇒
(3) (Lemma 37), (3) =⇒ (5) (Lemma 38), (3) ⇐⇒ (4) (Lemma 39), and
(5) =⇒ (1) (Lemma 40). These lemmas taken together finished the proof
of the theorem.

In the next section, we shall give an example of how the Cesàro filter
gives rise to a Fourier multiplier operator.

4 Filters and reconstruction

Here is a problem which is sometimes called the reconstruction problem: Sup-
pose we know the Fourier series coefficients cn of f(x) but we don’t know
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f(x) itself. How do we “reconstruct” f(x) from its FS coefficients? The the-
oretical answer to this is very easy, it is (by Dirichlet’s Theorem 8) simply
the FS expansion:

f(x) =
∑

n∈Z

cne
2πinx/P .

Suppose that we modify this problem into a more practical one: Suppose
we know the Fourier series coefficients cn of f(x) but we don’t know f(x)
itself. Given some error tolerance δ > 0, how do we “reconstruct” (efficiently)
f(x), with error at most δ, from its FS coefficients? Practically speaking, a
“filter” is a sequence of weights you apply to the FS coefficients to accomplish
some aim (such as approximating f(x) “quickly”, or filtering out “noise”, or
...). Can we weight the terms in the partial sums of the FS to compute
an approximation to the value of a FS in a more efficient way than simply
looking at partial sums alone? In this section, we examine several filters and
see that the answer to this question is, in a specific sense, “yes”.

4.1 Dirichlet’s kernel

Let

SM(x) =

M
∑

j=−M
cke

2πijx/P

denote the M-th partial sum of the FS of f . (This is a filter, where the
weights are all 1 from −M to M and 0 elsewhere. Sometimes the term
“rectangular window” is seen in the literature for this.) Here is an integral
representation for SM . First, recall that

cj =
1

P

∫ P

0

f(t)e−2πijt/P dt,

so

SM(x) =
∑M

j=−M
1
P
(
∫ P

0
f(t)e−2πijt/P dt)e2πijx/P

= 1
P

∫ P

0
f(t)

∑M
j=−M e2πij(x−t)/P dt

=
∫ P

0
f(t)KD

M(x− t) dt
= f ∗KD

M(x),

(19)
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where KD
M(z) = 1

P

∑M
j=−M e2πijz/P . (Note that Walker defined the convo-

lution in a slightly different way than we do.) This function is called the
Dirichlet kernel . It turns out this function has a nice closed-form expres-
sion:

KD
M(x) =

sin((2M + 1)xπ
P

)

P sin(xπ
P

)
. (20)

Some plots of this, for various values of M , are given below. You can see that
the graphs get ‘spikier and spikier” (approaching the Dirac delta function,
δ) as M gets larger and larger.

Figure 18: List plot of values of KD
M(x), M = 5, 10, 50, P = 2π.

The SAGE commands for this are as follows:

sage: M = 5

sage: f = lambda z: (1/(M+1))*(sin((2*M+1)*z/2)/sin(z/2))

sage: P1 = plot(f,-5,5)

sage: M = 10

sage: f = lambda z: (1/(M+1))*(sin((2*M+1)*z/2)/sin(z/2))

sage: P2 = plot(f,-5,5)

sage: M = 50

sage: f = lambda z: (1/(M+1))*(sin((2*M+1)*z/2)/sin(z/2))
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sage: P3 = plot(f,-5,5)

sage: show(P1+P2+P3)

Here is the proof of (20):

∑M
j=−M e2πijz/P = e−2πiMz/P

∑2M
j=0 e

2πijz/P

= e−2πiMz/P e2πi(2M+1)z/P −1
e2πiz/P−1

= e−2πiMz/P (eπi(2M+1)z/P −e−πi(2M+1)z/P )/2i

(eπiz/P−e−πiz/P )/2i

= e−2πiMz/P+πi(2M+1)z/P−πiz/P sin(π(2M+1)z/P )
sin(πz/P )

= sin(π(2M+1)z/P )
sin(πz/P )

,

as desired.

4.2 Cesàro filters

Aside: Here is a historical/mathematical remark explaining the idea behind this. Start
with any infinite series,

∑

j

aj = a0 + a1 + a2 + a3 + ... ,

which, for the sake of this discussion, let’s assume converges absolutely. This means that
the series of partial sums

s0 = a0, s1 = a0 + a1, , s2 = a0 + a1 + a2, ...

has a limit - namely the value of the series
∑

j aj . In particular, the series of arithmetic
means

m0 = s0 = a0, m1 = s0+s1

2 = 1
2 (a0 + a0 + a1) = a0 + 1

2a1,
m2 = s0+s1+s2

3 = 1
3 (a0 + a0 + a1 + a0 + a1 + a2) = a0 + 2

3a1 + 1
3a2, ...

also has a limiting value, namely the value of the series
∑

j aj. (After all, you are simply
averaging values which themselves have a limiting value.) In general,

mJ =

J
∑

j=1

(1 − j

J + 1
)aj .

In the early 1900’s the basic observation that the limit of the mJ ’s, as J → ∞, is equal to
∑

j aj was applied by Fejér to the study of Fourier series. A more general convergence test

was devised by Cesàro, who generalized the “weights” 1 − j

J+1 used above. For historical

reasons, the “weights” 1 − j
J+1 are sometimes called Cesàro filters. �
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As usual, let SM(x) =
∑M

j=−M cke
2πijx/P denote the M-th partial sum of

the FS of f and let

SCM(x) =

M
∑

j=−M
(1 − |j|

M
)cje

2πijx/P =
1

M

M
∑

j=0

Sj(x).

The above historical discussion motivates the following terminology.

Definition 41 The M-th Cesàro-filtered partial sum of the FS of f is the
function SCM = SCM,f above.

As the graphs show, as M gets larger, the SCM ’s approximate f “more

smoothly” than the SM ’s do. The factor (1− |j|
M

) have the effect of “smoothing
out” the “Gibbs phenomenon spikes” you see near the jump discontinuities.

Example 42 As an example, here are the plots of some partial sums of the
Fourier series, and filtered partial sums of the Fourier series.

Let f(x) = e−x, 0 < x < 1 as in Example 25 above.
We shall use list plots, since they are easy to construct in SAGE . Here is

f again, but as a list plot:

Figure 19: List plot of values of e−x, 0 < x < 1.
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S5:

Figure 20: List plot of values of S5(x), 0 < x < 1.

SC5 :

Figure 21: List plot of values of SC5 (x), 0 < x < 1.

Note how the Gibbs phenomenom of S5 is “smoothed out” by the filter -
the graph of SC5 seems to be less “bumpy”.
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S10:

Figure 22: List plot of values of S10(x), 0 < x < 1.

SC10:

Figure 23: List plot of values of SC10(x), 0 < x < 1.
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S25:

Figure 24: List plot of values of S25(x), 0 < x < 1.

SC25:

Figure 25: List plot of values of SC25(x), 0 < x < 1.

In each case, we see that the Cesàro filter “smooths out” the the Gibbs
phenomenom of the partial sums of the Fourier series.
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Here is the SAGE code for the M = 25 case:

sage: FSf = lambda x:(sum([ck(j)*exp(2*pi*I*j*x) for j in range(-25,25)])).real()

sage: L = [FSf(j/50) for j in range(50)]

sage: show(list_plot(L))

sage: FSf = lambda x:(sum([(1-abs(j)/25)*ck(j)*exp(2*pi*I*j*x) for j in range(-25,25)])).real()

sage: L = [FSf(j/50) for j in range(50)]

sage: show(list_plot(L))

Here is an integral representation for SCM . First, recall that

cj =
1

P

∫ P

0

f(t)e−2πijt/P dt,

so

SCM(x) =
∑M

j=−M(1 − |j|
M

) 1
P
(
∫ P

0
f(t)e−2πijt/P dt)e2πijx/P

= 1
P

∫ P

0
f(t)

∑M
j=−M(1 − |j|

M
)e2πij(x−t)/P dt

=
∫ P

0
f(t)KM(x− t) dt,

(21)

where

KM(z) =
1

P

M
∑

j=−M
(1 − |j|

M
)e2πijz/P .

This function is called the Fejér kernel (it is also sometimes referred to as
the “point spread function” of the filter). This has a simpler expression,

KM(z) =
1

P

1

M + 1
(
sin((M + 1)πz/P )

sin(πz/P )
)2.

This is included here not because we need it as much as because this expres-
sion is much easier to graph:

You see how these functions seem to be, as M → ∞, approaching the
spiky-looking Dirac delta function. In fact, (as distributions) they do. (A dis-
tribution is a linear functional on the vector space of all compactly supported
infinitely differentiable functions C∞

c (R).) In other words,

lim
M→∞

∫

R

f(x)KM(x− t) dx =

∫

R

f(x)δ(x− t) dx = f(t).

This is the essential reason why, if f is continuous at x, limM→∞ SCM(x) =
f(x).
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Figure 26: List plot of values of 2πKM(x), M = 5, 10, 50, P = 2π (normalized
by 2π for simplicity).

The SAGE command for this:

sage: M = 5

sage: f = lambda z: (1/(M+1))*(sin((M+1)*z/2)/sin(z/2))^2

sage: P1 = plot(f,-5,5)

sage: M = 10

sage: f = lambda z: (1/(M+1))*(sin((M+1)*z/2)/sin(z/2))^2

sage: P2 = plot(f,-5,5)

sage: M = 50

sage: f = lambda z: (1/(M+1))*(sin((M+1)*z/2)/sin(z/2))^2

sage: P3 = plot(f,-5,5)

sage: show(P1+P2+P3)

4.3 The discrete analog

There is a discrete analog of the CM = CM,f which may be regarded as a
Fourier multiplier operator. This subsection is included for the purpose of il-
lustrating the notion of a Fourier multiplier operator by means of an example
(as you will see, our process of discretizing the filter ruins its usefulness).

If we replace the usual FT on (0, P )
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f 7−→ ck = ck(f) =
1

P

∫ P

0

f(t)e−2πikt/P dt,

by the DFT on CN ,

~f 7−→ DFT (~f)k

then the Cesàro filter becomes simply the modification

~f 7−→ (1 − k

N
)DFT (~f)k.

If we define ξ ∈ VN by ξ(k) = (1 − k
N

) then, in functional notation, the
Cesàro filter becomes the modification

f 7−→ ξf∧, (f ∈ VN ).

We define the Cesàro filter map C : Vn → VN by

C(f) = (ξf∧)∨.

This operator C is, by construction, a Fourier multiplier operator: C = Mξ.
Here is an example computation.

Example 43 Let f(x) = 10x(1−x), 0 < x < 1, which we sample at N = 25
regularly spaced points. The plot of this function is an inverted parabola,
passing through 0 and 1 on the x-axis. Below, we plot both f and the real
part of C(f):

Figure 27: List plot of values of 10x(1 − x) and (the real part of) its image
under a FMO.

86



4.4 Hann filter

As usual, let SM(x) =
∑M

j=−M cke
2πijx/P denote the M-th partial sum of the

FS of f and let

SHM(x) =

M
∑

j=−M
HM(j)cje

2πijx/P ,

where HM(x) = (1 + cos(πx
M

))/2 is the Hann filter8.

Definition 44 The M-th Hann-filtered partial sum of the FS of f is the
function SHM = SHM,f above.

Here is an integral representation for SHM . Since

cj =
1

P

∫ P

0

f(t)e−2πijt/P dt,

we have

SHM(x) =
∑M

j=−M HM(j) 1
P
(
∫ P

0
f(t)e−2πijt/P dt)e2πijx/P

= 1
P

∫ P

0
f(t)

∑M
j=−M HM(j)e2πij(x−t)/P dt

=
∫ P

0
f(t)KH

M(x− t) dt,

(22)

where

KH
M(z) =

1

P

M
∑

j=−M
HM(j)e2πijz/P .

This function is called the Hann kernel. This has a simpler expression,

KH
M(z) =

1

4
(2KD

M(z) +KD
M(z +

π

M
) +KD

M(z − π

M
)),

where KD
M is the Dirichlet kernel.

8With 0.54 + 0.46 cos(πx
M

) instead of HM , you get the Hamming filter. We shall not
describe this due to its similarity with the Hann filter.
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Example 45 Consider the odd function of period 2π defined by

f(x) =

{

−1, 0 ≤ x < π/2,
2, π/2 ≤ x < π.

We use SAGE to compare the ordinary partial sum S20(x) to the Hann-filtered
partial sum SH20(x) and the Césaro-filtered partial sum SC20. As you can see from
the graphs, the filtered partial sum is “smoother” than S20(x) and a slightly better
fit than SC20.

Figure 28: Plot of f(x), SH20(x). Plot of f(x), SC20(x). Plot of f(x), S20(x).
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The SAGE command for this:

sage: f1 = lambda x:-2

sage: f2 = lambda x:1

sage: f3 = lambda x:-1

sage: f4 = lambda x:2

sage: f = Piecewise([[(-pi,-pi/2),f1],[(-pi/2,0),f2],[(0,pi/2),f3],[(pi/2,pi),f4]])

sage: P1 = f.plot_fourier_series_partial_sum_hann(20,pi,-5,5)

sage: P2 = f.plot(rgbcolor=(0.8,0.3,0.4))

sage: P3 = f.plot_fourier_series_partial_sum(20,pi,-5,5)

sage: P4 = f.plot_fourier_series_partial_sum_cesaro(20,pi,-5,5)

sage: show(P1+P2+P3+P4)

4.5 Poisson summation formula

Let δ(x) be the Dirac delta function. The Poisson summation formula can
be regarded as formula for the FT of the “Dirac comb”:

∆(x) =

∞
∑

n=−∞
δ(x− Pn).

We shall not need this formulation, or any of the many very interesting
generalizations of this formula. In the next section, it will be applied to
proving the Shannon sampling theory, so we only present here what we need
for that.

Theorem 46 (Poisson summation) Assume that P > 0 is fixed and

• f be a continuous function,

• the function

fP (x) =
∑

n∈Z

f(x− n

P
)

converges uniformly on [−P/2, P/2], and

•
∑

n∈Z

|f̂(
n

P
)|

converges.
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Then

∑

n∈Z

f(x− n

P
) =

1

P

∑

n∈Z

f̂(
n

P
)e2πix/P .

proof: This theorem says that the n− th Fourier series coefficient of the
perioic function fP is

cn =
1

P
f̂(
n

P
),

where here f̂ denotes the Fourier transform (on R). This identity is verified
by the following computation:

cn = 1
P

∫ P

0
fP (x)e−2πix/P dx

=
∑

n∈Z

1
P

∫ P

0
f(x− nP )e−2πix/P dx

=
∑

n∈Z

1
P

∫ (n+1)P

−nP f(x)e−2πix/P dx

= 1
P

∫

R
f(x)e−2πix/P dx

1
P
f̂( n

P
),

as desired. �

4.6 Shannon’s sampling theorem

Let f be a continuous function periodic with period P . So far, we have
started with sampling values of f(x) at N equally spaces points to get a

vector ~f = (f( j
N
P ))j=0,1,...,N−1, then computed its DFT, which we showed

was a good approximation to the FS coefficients:

f(x) 7−→ ~f

ck = 1
P

∫ P

0
f(x)e−2πikx/P dx ≈ DFT (~f)k

f(x) =
∑

k∈Z
cke

2πikx/P ↔ ( 1
N

∑N−1
j=o DFT (~f)kW

kj)k=0,1,...,N−1

Based on this, we might expect that f(x) can be approximately reconstructed

from its sample values alone. For example, perhaps something like f(x)
?≈

∑

|k|<N DFT (~f)ke
2πikx/P might be true. Shannon’s Sampling Theorem says

that, under certain condtions, f(x) ∈ L1(R) is completely determined from
its sampled values.
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We say f ∈ L1(R) is band limited if there is a number L > 0 such that
f̂(t) = 0 for all t with |t| > L. When such an L exists and is choosen as
small as possible, the number 2L is called the Nyquist rate and the number
1

2L
is the sampling period.
Define the “sink” function

sinc(x) =

{

sin(πx)
πx

, x 6= 0,
1, otherwise.

Theorem 47 (Shannon’s Sampling Theorem) Assume f is as in the above
theorem and that f ∈ L1(R) is band limited with Nyquist rate P = 2L. Then

f(x) =
∑

n∈Z

f(
n

2L
)sinc(2Lx− n).

proof: Let f̂P be defined analogously to fP above. The Poisson formula
gives

f̂P (y) =
∑

n∈Z
f̂(y − n

P
)

= 1
P

∑

n∈Z

ˆ̂
f( n

P
)e2πiy/P

= 1
P

∑

n∈Z
f(− n

P
)e2πiy/P ,

since
ˆ̂
f(x) = f(−x). By hypothesis, f̂(y) = 0 for |y| > P/2, so f̂P (y) is

merely a periodic extension of f̂ . Let

χP (y) =

{

1, |y| ≤ P/2,
0, |y| > P/2.

so, by hypothesis, f̂(y) = χP (y)f̂P (y). Multiply both sides of

f̂(y) = χP (y)f̂P (y) =
1

P

∑

n∈Z

f(− n

P
)χP (y)e2πiy/P

by e2πixy and integrate over −P/2 < y < P/2. On one hand,

∫ P/2

−P/2
f̂(y)e2πixy dy =

∫

R

f̂(y)e2πixy dy = f(x),

and on the other hand,
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∫ P/2

−P/2
1
P

∑

n∈Z
f(− n

P
)χP (y)e2πiy/P e2πixy dy

= 1
P

∑

n∈Z
f(− n

P
)
∫ P/2

−P/2 χP (y)e2πiy/P e2πixy dy

=
∑

n∈Z
f(− n

P
)S(x+ n

P
),

where

S(z) =
1

P

∫ P/2

−P/2
e2πizy dy = sinc(πz).

�

4.7 Aliasing

Obviously most functions are not band limited. When a function is not band
limited but the right-hand side of the above “reconstruction formula” is used
anyway, the error creates an effect called “aliasing.” This also occurs when
one uses the reconstruction formula for a smaple rate lower than the Nyquist
rate.

Aliasing is a major concern in the analog-to-digital conversion of video
and audio signals.

Theorem 48 (Aliasing Theorem) Assume f is as in the above theorem and
that the FT of f ∈ L1(R) satisfies

|f̂(y)| ≤ A

(1 + |y|)α ,

for some constants A > 0 and α > 0. Then

f(x) =
∑

n∈Z

f(
n

2L
)sinc(2Lx− n) + E(x),

where E(x) is an “error” bounded by

|E(x)| ≤ 4A

α · (1 + P/2)α
.
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5 Discrete sine and cosine transforms

Recall that, given a differentiable, real-valued, periodic function f(x) of pe-
riod P = 2L, there are an with n ≥ 0 and bn with n ≥ 1 such that f(x) has
(real) Fourier series

FSR(f)(x) =
a0

2
+

∞
∑

n=1

[an cos(
2πnx

P
) + bn sin(

2πnx

P
)].

where

an =
2

P

∫ P

0

f(x) cos(
2πnx

P
) dx =

1

L

∫ L

−L
f(x) cos(

πnx

L
) dx,

and

bn =
2

P

∫ P

0

f(x) sin(
2πnx

P
) dx =

1

L

∫ L

−L
f(x) sin(

πnx

L
) dx.

When f is even then the bn = 0 and we call the FS a cosine series. When
f is odd then the an = 0 and we call the FS a sine series. In either of these
cases, it suffices to define f on the interval 0 < x < L instead of 0 < x < P .

Let us first assume f is even and“discretize” the integral for the k-th
coefficient of the cosine series and use that as a basis for defining the discrete
cosine transform or DCT. Using the “left-hand Riemann sum” approximation
for the integral using N subdivisions, we have

ak = 2
L

∫ L

0
f(x) cos(πkx

L
) dx

≈ 2
L

∑N−1
j=0 f(Lj/N) cos(πkLj/N

L
)
(

L
N

)

= 2
N

∑N−1
j=0 f(Lj/N) cos(πkj/N).

(23)

This motivates the following definition.

Definition 49 The N -point discrete cosine transform (or DCT) of the vector
~f = (f0, ..., fN−1) ∈ RN is

DCT (~f)k =
N−1
∑

j=0

fj cos(πkj/N),

where 0 ≤ k < N .
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This transform is represented by the N ×N real symmetric matrix
(cos(πkj/N))0≤j,k≤N−1.

Example 50 When N = 5, we have

0

B

B

B

B

@

1 1 1 1 1

1 cos( π

5
) cos( 2π

5
) cos( 3π

5
) cos( 4π

5
)

1 cos( 2π

5
) cos(4 4π

5
) cos( 6π

5
) cos( 8π

5
)

1 cos( 3π

5
) cos( 6π

5
) cos( 9π

5
) cos( 12π

5
)

1 cos( 4π

5
) cos( 8π

5
) cos( 12π

5
) cos( 16π

5
)

1

C

C

C

C

A

=

0

B

B

B

@

1 1 1 1 1
1 0.8090 0.3090 −0.3090 −0.8090
1 0.3090 −0.8090 −0.8090 0.3090
1 −0.3090 −0.8090 0.8089 0.3090
1 −0.8090 0.3090 0.3090 −0.8089

1

C

C

C

A

and

0

B

B

B

B

@

0 0 0 0 0

0 sin( π

5
) sin( 2π

5
) sin( 3π

5
) sin( 4π

5
)

0 sin( 2π

5
) sin(4 4π

5
) sin( 6π

5
) sin( 8π

5
)

0 sin( 3π

5
) sin( 6π

5
) sin( 9π

5
) sin( 12π

5
)

0 sin( 4π

5
) sin( 8π

5
) sin( 12π

5
) sin( 16π

5
)

1

C

C

C

C

A

=

0

B

B

B

@

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.5877 0.9510 0.9510 0.5877
0.0000 0.9510 0.5877 −0.5877 −0.9510
0.0000 0.9510 −0.5877 −0.5878 0.9510
0.0000 0.5877 −0.9510 0.9510 −0.5878

1

C

C

C

A

.

Here is the SAGE code for producing the DCT above::

sage: RRR = RealField(15)

sage: MS = MatrixSpace(RRR,5,5)

sage: r = lambda j: [RRR(cos(pi*j*k/5)) for k in range(5)]

sage: dct = MS([r(j) for j in range(5)])

Next, assume f is odd and“discretize” the integral for the k-th coeffi-
cient of the sine series and use that as a basis for defining the discrete sine
transform or DST. Using the “left-hand Riemann sum” approximation for
the integral using N subdivisions, we have

bk = 2
L

∫ L

0
f(x) sin(πkx

L
) dx

≈ 2
L

∑N−1
j=0 f(Lj/N) sin(πkLj/N

L
)
(

L
N

)

= 2
N

∑N−1
j=0 f(Lj/N) sin(πkj/N).

(24)

This motivates the following definition.

Definition 51 The N -point discrete sine transform (or DST) of the vector ~f =
(f0 = 0, f1, ..., fN−1) ∈ RN is

DST (~f)k =

N−1
∑

j=1

fj sin(πkj/N),

where 0 ≤ k < N .
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This transform is represented by the N ×N real symmetric matrix
(sin(πikj/N))0≤j,k≤N−1. Since the 0-th coordinate is always = 0, since sin(0) =
0, sometimes this is replaced by a map DST : RN−1 → RN−1, represented
by the (N − 1) × (N − 1) real symmetric matrix (sin(πkj/N))1≤j,k≤N−1.

One difference between these definitions and the definition of the DFT is
that here the N samples are taken from (0, L), whereas for the DFT the N
samples are taken from (0, P ).

Is there some way to compute the DCT and the DST in terms of the DFT
of a function? Let ~f = (f0, f1, ..., fN , ..., f2N−1) and compute, for 0 ≤ k < N ,

DFT (~f)k =
∑2N−1

j=0 fje
πikj/N

=
∑N−1

j=0 fje
πikj/N + (−1)k

∑N−1
j=0 fN+je

πikj/N

=
∑N−1

j=0 (fj + (−1)kfN+j)e
πikj/N

=
∑N−1

j=0 (fj + (−1)kfN+j) cos(πkj/N)

+i
∑N−1

j=0 (fj + (−1)kfN+j) sin(πkj/N)

= DCT (~g + (−1)k~h)k + iDST (~g + (−1)k~h)k,

where ~g = (f0, f1, ..., fN−1) and ~h = (fN , fN+1, ..., f2N−1). Here the DFT is
based on 2N sample values, whereas the DCT and DST are each based on
N sample values.

Let ~g = (g0, g1, ..., gN−1) ∈ RN and let ~g∗ = (g0, g1, ..., gN−1, 0, ..., 0) ∈ R2N

denote its “extension by zero” to R2N . The above computation implies

DCT (~g)k = Re(DFT (~g∗)k), DST (~g)k = Im(DFT (~g∗)k),

for 0 ≤ k < N . In particular, if we can find a “fast” way of computing the
DFT then we can also compute the DCT and the DST quickly. We turn to
such efficient computational procedures inthe next section.

6 Fast Fourier transform

The fast Fourier transform is a procedure for computing the discrete Fourier
transform which is especially fast. The term FFT often loosely refers to a
hybrid combination of the two algorithms presented in this section.

The algorithm described first, due to James Cooley and John Tukey [CT],
works when the number of sample values N is a power of 2, say N = 2r, for
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some integer r > 1. This special case is also referred to as the radix-2
algorithm. This is the one we will describe in the next section.

6.1 Cooley-Tukey algorithm (radix-2)

First, we assume that the powers of W (namely, 1, W , W
2
, ..., W

n−1
) have

been precomputed. Note that the computation of the DFT on CN requires
N2 multiplications. This is because the matrix FN is N×N and each matrix
entry is involved in the computation of the vector DFT (~f) ∈ CN . If M(N)
denotes the number of multiplications required to compute the DFT then
the above reasoning shows that

M(N) ≤ N2.

To improve on this, the Cooley-Tukey procedure is described next. Let
N = 2M for the argument below. To be clear about the notation, let WN =

e2πi/N , so W
2

N = WM . Let ~f = (f0, f1, ..., fN−1) ∈ CN be the vector we want
to compute the DFT of and write

~feven = (f0, f2, ..., fN−2) ∈ CM , ~fodd = (f1, f3, ..., fN−1) ∈ CM .

We have, for 0 ≤ k < N ,

DFT (~f)k =
∑N−1

j=0 fjW
jk

N

=
∑M−1

j=0 f2jW
2jk

N +
∑M−1

j=0 f2j+1W
(2j+1)k

N

=
∑M−1

j=0 f2jW
jk

M +W
k

N

∑M−1
j=0 f2j+1W

jk

M

= DFT (~feven)k +W
k

NDFT (~fodd)k.

(25)

Theorem 52 For each N = 2L, M(N) ≤ N · (L+ 2).

proof: We prove this by mathematical induction on L. This requires
proving a (base case) step N = 4 and a step where we assume the truth of
the inequality for N/2 and prove it for N .

The number of multiplications required to compute the DFT when N = 4
is ≤ 16. Therefore, M(4) ≤ 4 · (2 + 2).

Now assume M(N/2) ≤ N
2
· (L + 1). The Cooley-Tukey procedure (25)

shows that M(N) ≤ 2 ·M(N/2) +N/2. This and the induction hypothesis
implies
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M(N) ≤ 2 ·M(N/2) +N/2 ≤ 2(
N

2
· (L+ 1)) +N/2 = (L+ 1 + 1/2)N.

This is ≤ N · (L+ 2). �

Example 53 When N = 8, the DFT matrix is given by

F8 =

























1 1 1 1 1 1 1 1
1 ζ8 ζ2

8 ζ3
8 −1 −ζ8 −ζ2

8 −ζ3
8

1 ζ2
8 −1 −ζ2

8 1 ζ2
8 −1 −ζ2

8

1 ζ3
8 −ζ2

8 ζ8 −1 −ζ3
8 ζ2

8 −ζ8
1 −1 1 −1 1 −1 1 −1
1 −ζ8 ζ2

8 −ζ3
8 −1 ζ8 −ζ2

8 ζ3
8

1 −ζ2
8 −1 ζ2

8 1 −ζ2
8 −1 ζ2

8

1 −ζ3
8 −ζ2

8 −ζ8 −1 ζ3
8 ζ2

8 ζ8

























and the DFT matrix for N/2 = 4 is given by

F4 =









1 1 1 1
1 ζ4 −1 −ζ4
1 −1 1 −1
1 −ζ4 −1 ζ4









.

Let ~f = (0, 1, 2, 3, 4, 5, 6, 7), so ~feven = (0, 2, 4, 6), ~fodd = (1, 3, 5, 7). We
compute

F8
~f =

























28
−4ζ3

8 − 4ζ2
8 − 4ζ8 − 4

−4ζ2
8 − 4

−4ζ3
8 + 4ζ2

8 − 4ζ8 − 4
−4

4ζ3
8 − 4ζ2

8 + 4ζ8 − 4
4ζ2

8 − 4
4ζ3

8 + 4ζ2
8 + 4ζ8 − 4

























.

Let Z denote the diagonal matrix with ζk8 ’s on the diagonal, 0 ≤ k ≤ 7. (This

matrix represents the factors W
k

N in the formula (25) above.) It turns out to
be more useful for computations to split this matrix up into two parts:
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Z1 =









1 0 0 0
0 ζ8 0 0
0 0 ζ2

8 0
0 0 0 ζ3

8









, Z2 =









ζ4
8 0 0 0
0 ζ5

8 0 0
0 0 ζ6

8 0
0 0 0 ζ7

8









.

Note Z2 = −Z1. For the first 4 coordinates, we use

F4
~feven + Z1F4

~fodd =









28
−4ζ3

8 − 4ζ2
8 − 4ζ8 − 4

−4ζ2
8 − 4

−4ζ3
8 + 4ζ2

8 − 4ζ8 − 4









and for the last 4 coordinates, we use

F4
~feven + Z2F4

~fodd =









−4
4ζ3

8 − 4ζ2
8 + 4ζ8 − 4

4ζ2
8 − 4

4ζ3
8 + 4ζ2

8 + 4ζ8 − 4









We see that, as (25) predicts, F8
~f is equal to [F4

~feven + Z1F4
~fodd, F4

~feven +

Z2F4
~fodd].

Here is the SAGE code for the above computations.

sage: MS4 = MatrixSpace(CyclotomicField(4),4,4)

sage: MS8 = MatrixSpace(CyclotomicField(8),8,8)

sage: V4 = VectorSpace(CyclotomicField(4),4)

sage: V8 = VectorSpace(CyclotomicField(8),8)

sage: z4 = CyclotomicField(4).gen()

sage: z8 = CyclotomicField(8).gen()

sage: r4 = lambda k: [z4^(j*k) for j in range(4)]

sage: r8 = lambda k: [z8^(j*k) for j in range(8)]

sage: F4 = MS4([r4(k) for k in range(4)])

sage: F8 = MS8([r8(k) for k in range(8)])

sage: f = V8([0,1,2,3,4,5,6,7])

sage: fe = V4([0,2,4,6])

sage: fo = V4([1,3,5,7])

sage: FFTe = [(F4*fe)[j]+z8^j*(F4*fo)[j] for j in range(4)]

sage: FFTo = [(F4*fe)[j]-z8^j*(F4*fo)[j] for j in range(4)]

sage: FFTe+FFTo

[28,

-4*zeta8^3 - 4*zeta8^2 - 4*zeta8 - 4,

-4*zeta8^2 - 4,
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-4*zeta8^3 + 4*zeta8^2 - 4*zeta8 - 4,

-4,

4*zeta8^3 - 4*zeta8^2 + 4*zeta8 - 4,

4*zeta8^2 - 4,

4*zeta8^3 + 4*zeta8^2 + 4*zeta8 - 4]

sage: [(F8*f)[j] for j in range(8)]

[28,

-4*zeta8^3 - 4*zeta8^2 - 4*zeta8 - 4,

-4*zeta8^2 - 4,

-4*zeta8^3 + 4*zeta8^2 - 4*zeta8 - 4,

-4,

4*zeta8^3 - 4*zeta8^2 + 4*zeta8 - 4,

4*zeta8^2 - 4,

4*zeta8^3 + 4*zeta8^2 + 4*zeta8 - 4]

Finally, we give an example which only illustrates SAGE ’s implementation
of the FFT (which calls functions in the GSL [GSL]), as compared to its
implementation of its DFT (which is implemented in Python but calls Pari
for the computations involving N -th roots of unity over Q):

sage: J = range(30)

sage: A = [QQ(int(10*(random()-1/2))) for i in J]

sage: s = IndexedSequence(A,J)

sage: time dfts = s.dft()

CPU times: user 0.86 s, sys: 0.04 s, total: 0.90 s

Wall time: 0.94

sage: time ffts = s.fft()

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.00

sage: J = range(3000)

sage: A = [QQ(int(10*(random()-1/2))) for i in J]

sage: s = IndexedSequence(A,J)

sage: time ffts = s.fft()

CPU times: user 0.21 s, sys: 0.00 s, total: 0.21 s

Wall time: 0.21

As you can see, for a sample vector in C3000, SAGE can compute the FFT in
about 1

5
-th of a second. However, of you try to compute the DFT using this

example, SAGE will probably give you an error related to its extreme size.
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6.2 Rader’s algorithm

In this subsection, we assume N is prime. Here we breifly describe an algo-
rithm due to Rader [Ra] for computing the DFT on VN for prime N .

The basic idea is to rewrite the DFT on VN as a convolution on VN−1.
Remark 1 is then used to show that this convolution can be computed using
a “fast” algorithm.

The first step in the algorithm is to select an element g, 1 < g < N − 1,
which has the property that every element y in {1, 2, ..., N−1} can be written
in the form y = gx (mod N) for some x. This element g s called a primitive
root (mod N) (or a generator of (Z/NZ)×), where (Z/NZ)× = Z/NZ −
{0}. Here is a table of primitive roots for various small primes N , and a
demonstration, in the case N = 17, that g = 3 is indeed a primitive root:

p 3 5 7 11 11 13 17 19 23
g 2 2 3 2 2 2 3 2 5

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gk (mod N) 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

The SAGE command which produces the smallest primitive root (mod N)
is primitive_root(N). For example, the above tables were produced using
the commands

sage: [primitive_root(p) for p in [3,5,7,11,13,17,19,23]]

[2, 2, 3, 2, 2, 3, 2, 5]

sage: N = 17; g = 3

sage: [g^k%N for k in range(N-1)]

[1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6]

The next step in the algorithm is to rewrite the DFT on VN as a convo-
lution on VN−1. To this end, fix f ∈ VN and define h1, h2 ∈ VN−1 as

h1(x) = f(g−x), h2(x) = e−2πigx/N ,

for x ∈ {0, 1, 2, ..., N − 2} = Z/(N − 1)Z. For k = 0 we compute

DFT (f)k = DFT (f)0 = f(0) + f(1) + ... + f(N − 1).
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For ℓ 6= 0, we let m = m(ℓ) denote the element of {0, 1, 2, ..., N−2} such that
ℓ = g−m. For k 6= 0, we let n = n(k) denote the element of {0, 1, 2, ..., N−2}
such that k = gn. Now write

DFT (f)k =
∑N−1

ℓ=0 f(ℓ)e−2πikℓ/N

= f(0) +
∑N−1

ℓ=1 f(ℓ)e−2πikℓ/N

= f(0) +
∑N−2

m=0 f(g−m)e−2πign−m/N

= f(0) +
∑N−2

m=0 h1(m)h2(n−m)
= f(0) + h1 ∗ h2(n).

This is a convolution on VN−1. If N − 1 is a power of 2 (e.g., for N = 17)
then use Remark 1 and the radix-2 Cooley-Tukey algorithm described in the
previous section to quickly compute h1 ∗ h2. If N − 1 is not a power of 2,
the best thing to do is to let P denote the smallest power of 2 greater than
N −1 and extend both h1 and h2 by 0 to the range {0, 1, 2, ..., P −1} (this is
called “padding” the functions). Call these new functions h̃1 and h̃2. Using
DFT (f)k = f(0) + h̃1 ∗ h̃2(n) (where k = gn). We now have expressed the
DFT on VN in terms of a convolution on VP , where P ≤ 2N . By Remark
1, we know that this can be computed in ≤ cN log2(N) multiplications, for
some constant c ≥ 1 (in fact, c = 4 should work if N is sufficiently large).

7 Fourier optics

Fourier optics is a special topic in the theory of optics. Good references are
Goodman [Go] and chapter 5 of Walker [W1]. This section owes much to
discussions with Prof. Larry Tankersley of the USNA Physics dept.

The object of this section is to describe a method for computing cer-
tain quantities arising in defraction experiments. I’ll try to describe these
experiments next.

Consider a monochromatic light source having wavelength λ. For ex-
ample, the light emitted from a laser would fit this9. Imagine x- and y-
coordinates in the aperture plane. The aperture function A(x, y) is defined

9In reality, a laser beam is too narrow, so a series of lenses is required to widen it and
then straighten out the light rays. You need to make sure that the beam is wide enough
for it to be possible to place a small aperture (a slit or defraction grating, for instance) in
front of it to allow only the light through that the aperture.
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to be 1 if light can pass though the “slit” at (x, y) and 0 otherwise10. The
light which passes through the aperture is pictured on a screen. It is this
pattern which we wish to describe in this section.

Figure 29: Slit experiment set-up for Fourier optics model.

10(It is even possible to image values of A(x, y) in the range between 0 and 1 representing
a partially opaque screen, though we shall not need this here. However, we do assume A
is real-valued.
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When the aperture is a square (whose sides are aligned parallel to the x-
and y-axes), the image projected on the screen of this experiment looks like
a dotted plus sign, where the dots get fainter and fainter as they move away
from the center. A square slit diffraction pattern is pictured below11:

Figure 30: Square aperture diffraction experiment, Betzler [B].

The goal of this last section will be to describe the mathematics behind this
“dotted plus sign” square slit diffraction pattern.

7.1 The mathematical model

The theory we shall sketch is called scalar defraction theory. A special case
which we shall concentrate on is the Fraunhofer defraction model.

Let L denote the distance from the aperture to the screen, λ (as above)
the wavelength of the light, and a > 0 the width of the slit. The Fresnel
number12 is the quantity F = a2

λL
. When F ≥ 1 the screen is “sufficiently

far” (past the “Fresnel threshold”) from the aperture that the wavefronts
created by the slit have negligable curvature.

11This image is copyright Prof. Dr. Klaus Betzler and reproduced with his kind per-
mission (stated in an email dated May 2, 2007)

12Pronounced “Fre-nell”.
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Here is Wikipedia’s image13 [WFd]:

Figure 31: On this diagram, a wave is diffracted and observed at point σ. As this
point is moved further back, beyond the Fresnel threshold, Fraunhofer diffraction
occurs.

We also assume that the index of refraction of the medium is 1. If a light
ray of wavelength λ travels from P to Q, points at a distance of r = ||Q−P ||
from each other, at time t then the light amplitude ψ(Q, t) at Q arising from
this light ray satisfies the property

ψ(Q, t) = ψ(P, t)
e

2πir
λ

λr
,

where ψ(P, t) is the light amplitude at P . We can and do assume P =
(x, y, 0) is a point in the aperture plane and Q = (x′, y′, L) is a point on the
screen. We assume ||Q− P || is not too big - so that light travels essentially
instantaneously from P to Q. The superposition principle implies that the
total light amplitude at Q satisfies

ψ(Q, t) =

∫

R2

A(P )ψ(P, t)
e

2πi||Q−P ||
λ

λ||Q− P || dP, (26)

where we have identified the plane of the aperture slit with the Cartesian
plane R2. If the distance between the aperture and he screen is large enough
then r is a constant

The light intensity is defined by

13Wikipedia’s images are copyright the Wikipedia Foundation and distributed under
the GNU Documentation License.
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I(Q) = lim
T→∞

1

T

∫ T

0

|ψ(Q, t)|2 dt.

The light amplitude is not typically measurable (at least not in air, with
present day technology), but the intensity is.

Let P and P ′ be points on the aperture plane where A(P ) 6= 0 and
A(P ′) 6= 0. The coherency function is defined by

Γ(P, P ′) = lim
T→∞

1
√

I(P )I(P ′)

1

T

∫ T

0

ψ(P, t)ψ(P ′, t) dt.

We say thet the light is coherent if Γ(P, P ′) = 1 for all such P, P ′.
Using (26), we have

I(Q) = limT→∞
1
T

∫ T

0
ψ(Q, t)ψ(Q, t) dt

= limT→∞
1
T

∫ T

0
(
∫

R2 A(P )ψ(P, t) e
2πi||Q−P ||

λ

λ||Q−P || dP )×

×(
∫

R2 A(P ′)ψ(P ′, t)e
−

2πi||Q−P ′||
λ

λ||Q−P ′|| dP ′) dt

= limT→∞
∫

R2

∫

R2

A(P )A(P ′)
λ2||Q−P ||||Q−P ′||e

2πi(||Q−P ||−||Q−P ′||)
λ ×

×( 1
T

∫ T

0
ψ(P, t)ψ(P ′, t)dP dP ′) dt.

Assuming that the light is coherent, this is

=
∫

R2

∫

R2

A(P )A(P ′)
λ2||Q−P ||||Q−P ′||e

2πi(||Q−P ||−||Q−P ′||)
λ

√

I(P )I(P ′) dP dP ′

= |
∫

R2

A(P )
λ||Q−P ||e

2πi||Q−P ||
λ

√

I(P ) dP |2.

We assume14 that I(P ) = 1 for all points P on the aperture screen with
A(P ) 6= 0. In this case, the above reasoning leads to

I(Q) = |
∫

R2

A(P )

λ||Q− P ||e
2πi||Q−P ||

λ dP |2. (27)

This is the key equation in scalar diffraction theory that enables one to
approximate the intensity function in terms of the Fourier transform of the
aperture function.

14The assumption that the intensity is constant at the aperture is all that is really
necessary. We assume that this constant is = 1 for simplicity.
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7.2 The Fraunhofer model

Notation: In x, y, z-coordinates, the aperature plane is described by z = 0,
the screen is described by z = L > 0. In the diagram below, if Q = (x, y, L)
then Q′ = (x′, y′, L), P ′ = (x, y, 0), and P = (x′, y′, 0).

Figure 32: Notation for slit experiment set-up for Fraunhofer model.

In particular, the vector ~v = Q−P ′ is orthogonal to the vector ~w = P ′−P
and P · P ′ = P ·Q. These give us

||Q− P || = ||Q− P ′ + P ′ − P || = (||Q− P ′||2 + ||P ′ − P ||2)1/2

= L · (1 + ||P ′−P ||2
L2 )1/2 = L+ ||P ′−P ||2

2L
+ ... ,

by the power series expansion (1 + x)1/2 = 1 + 1
2
x + .... In addition to the

coherence assumption, we also assume that L is so large and the aperture
opening (i.e., the support of the aperture function A in the aperture plane,
which we identify with R2) is so small that the error in

e
2πi||Q−P ||

λ ≈ e
πi||P ′−P ||2

Lλ e
2πiL

λ
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is negligable. We expand ||P ′ − P ||2 = ||P ′||2 − 2P ′ · P + ||P ||2, so

e
2πi||Q−P ||

λ ≈ e
πi||P ||2

Lλ e
2πiL

λ e
πi||P ′||2

Lλ e
2πiP ·P ′

Lλ = e
πi||P ||2

Lλ e
2πiL

λ e
πi||P ′||2

Lλ e
2πiP ·Q

Lλ .

If f ∈ L1(R2), define the 2-dimensional Fourier transforms by

f̂(u, v) =

∫

R2

f(x, y)e−2πixu−2πiyv dxdy.

We also assume that L is so large and the aperture opening is so small that

the error in e
πi||P ||2

Lλ ≈ 1 is negligable. Plugging this into (27), therefore gives

I(Q) ≈ |
∫

R2

A(P )

λ||Q− P ||e
2πiP ·Q

Lλ dP |2 ≈ | 1

λL

∫

R2

A(P )e
2πiP ·Q

Lλ dP |2. (28)

In otherwords, if Q = (x, y, L) then I(Q) = 1
λ2L2 |Â( x

Lλ
, y
Lλ

)|2, where Â de-
notes the 2-d Fourier transform.

Example 54 We consider the example where the slit is a small rectangle.
For example, suppose

A(x, y) = χ−ǫ1,ǫ1(x)χ−ǫ2,ǫ2(y),

where ǫ1 > 0 and ǫ2 > 0 are given, and χa,b represents the function which is
1 for a ≤ x <≤ b and 0, otherwise.

We know

∫ a

−a
e2πixu dx =

sin(2πau

πau
2sinc(2πau),

therefore

Â(
x

Lλ
,
y

Lλ
) = 4sinc(2π(

x

Lλ
)sinc2π(

y

Lλ
),

and so

I(Q) =
4

λ2L2
(sinc(2πǫ1

x

Lλ
)sinc(2πǫ2

y

Lλ
))2.
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Here are the SAGE commands which produce the plot below for this in-
tensity function (the axes have been scaled for simplicity).

sage: f = "(sin(x)/x)^2*(sin(y)/y)^2"

sage: opts = "[plot_format, openmath]"

sage: maxima.plot3d (f, "[x, -5, 5]", "[y, -5, 5]", opts)

Figure 33: Intensity function for a square slit experiment in the Fraunhofer
model.

This plot is consistent with the image pictured in the “dotted plus sign” square
slit diffraction pattern. As the mathematical explanation of this image was
the goal of this last section of these notes, we are done.

8 Additional reading

For an elementary introduction to wavelets, appropriate for capstone projects,
see Frazier [F].
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A number of papers from the American Math. Monthly in the theory of
FS is available at the URL

http://math.fullerton.edu/mathews/c2003/FourierTransformBib/Links/FourierTransformBib_lnk_2.html

A number of those articles would also make good starters for a capstone
project.

Finally, we recommend Walker [W2] and Körner [K] as excellent addi-
tional references.
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