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HistoryHistory

�� Daniel BernoulliDaniel Bernoulli

�� Known for the Known for the 

Bernoulli PrincipleBernoulli Principle

�� Solved the wave Solved the wave 

equation in 1720equation in 1720’’s s 

using techniques using techniques 

Fourier later would Fourier later would 

employemploy

�� Worked with Euler in Worked with Euler in 

St. PetersburgSt. Petersburg



HistoryHistory

�� Jean le Rond d'Alembert Jean le Rond d'Alembert 

�� French mathematicianFrench mathematician

�� Worked with Euler and Worked with Euler and 

Bernoulli on the wave Bernoulli on the wave 

equationequation

�� ““FoundFound”” the Cauchythe Cauchy--

Riemann equations Riemann equations 

decades before Cauchy decades before Cauchy 

or Riemann didor Riemann did



HistoryHistory

�� Joseph FourierJoseph Fourier

�� French mathematicianFrench mathematician

�� Served in Egypt while Served in Egypt while 

in Napoleonin Napoleon’’s Armys Army

�� Solved the heat Solved the heat 

equation and won equation and won 

award for it in 1811, award for it in 1811, 

published work in published work in 

1822 in 1822 in ThThééorie orie 

analytique de la analytique de la 

chaleurchaleur



HistoryHistory

�� Erwin SchrErwin Schröödingerdinger

�� ViennaVienna--born physicistborn physicist

�� Artilleryman in WWIArtilleryman in WWI

�� Best known for Best known for ““SchrSchröödingerdinger’’s s 

CatCat”” and the Schrand the Schröödinger dinger 

EquationEquation

�� Won the Nobel Prize in 1933Won the Nobel Prize in 1933

�� Worked with EinsteinWorked with Einstein

�� Fled Germany and Austria Fled Germany and Austria 

several times after several times after ““insultinginsulting””

the Nazisthe Nazis



ConceptsConcepts

�� The following concepts were usedThe following concepts were used

Fourier Coefficients
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Superposition Principle

The Superposition Principle states that for a linear system,    

the sum of solutions for that system is also a solution. 



ConceptsConcepts

�� OrthogonalityOrthogonality of of SinesSines
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ConceptsConcepts

�� Proof of Proof of OrthogonalityOrthogonality
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Wave EquationWave Equation

�� People studied the People studied the 

wave equation wave equation 

because they were because they were 

intrigued by string intrigued by string 

instruments.  instruments.  

�� Bernoulli defined Bernoulli defined 

nodes and nodes and 

frequencies of frequencies of 

oscillation oscillation 



Derivation of Wave EquationDerivation of Wave Equation

�� To solve the wave equation, we assume that it is a To solve the wave equation, we assume that it is a 

separable equation:separable equation:

u(x,tu(x,t)=)=X(x)T(tX(x)T(t))
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DerivationDerivation
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Solve for X as in the heat equation and you get
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Unfiltered Wave EquationUnfiltered Wave Equation



Filtered Wave EquationFiltered Wave Equation



Heat EquationHeat Equation

�� The reason we solve the heat equation is The reason we solve the heat equation is 

to find out what happens to a length of to find out what happens to a length of 

metal/plastic when heat is applied (the metal/plastic when heat is applied (the 

temperature distribution over time)temperature distribution over time)



Derivation of Heat EquationDerivation of Heat Equation

�� The assumption made by Bernoulli and adopted The assumption made by Bernoulli and adopted 

by Fourier was that the equation by Fourier was that the equation u(x,tu(x,t) was ) was 

separable:separable:

u(x,tu(x,t)=)=X(x)T(tX(x)T(t))
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DerivationDerivation
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Unfiltered Heat EquationUnfiltered Heat Equation



Filtered Heat EquationFiltered Heat Equation



Euler and Euler and dd’’AlembertAlembert

�� They too solved the wave equation, but by They too solved the wave equation, but by 
using using ““arbitrary functions representing two 
waves, one moving along the string to the 
right, the other to the left, with a velocity 
equal to the constant c.”

� Bernoulli’s solution was a summation of 
sine waves

� No one could tell if the two solutions could 
be reconciled



Until Fourier Came AlongUntil Fourier Came Along

� “Fourier showed that almost any function, 
when regarded as a periodic function over 
a given interval, can be represented by a 
trigonometric series of the form 

f(x)=ao+a1cosx+a2cos2x+a3cos3x… + 
b1sinx+b2sin2x+b3sin3x…

where the coefficients ai and bi can be 
found from f(x) by computing certain 
integrals.”



Modern Application:Modern Application:
SchrSchröödingerdinger

�� The SchrThe Schröödinger Equation was published dinger Equation was published 

in a series of papers on wave mechanics in a series of papers on wave mechanics 

in 1926in 1926

�� The solutions to the SchrThe solutions to the Schröödinger Equation dinger Equation 

are wave functions that express the are wave functions that express the 

probability that a particle (specifically the probability that a particle (specifically the 

electron of a hydrogen atom) will be in a electron of a hydrogen atom) will be in a 

certain location at any observationcertain location at any observation



Solution to SchrSolution to Schröödingerdinger

�� As with the heat and wave equations, we assume that the As with the heat and wave equations, we assume that the 

SchrSchröödinger Equation is separable:dinger Equation is separable:

u(x,tu(x,t)=)=X(x)T(tX(x)T(t))

The Schrödinger Equation
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SolutionSolution

Equations  WaveandHeat   theSimilar to     
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Solve for T:
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Final Solution

∫∑ 







=








=

∞

=









− L

n

n

t
L

n
is

n dxx
L

n
xf

L
bex

L

n
btx

0
1

sin)(
2

     Wheresin),(

2

ππ
ψ

π



SAGESAGE

�� The graphs were produced using the open The graphs were produced using the open 

source program SAGE by Prof. W. David source program SAGE by Prof. W. David 

Joyner, USNAJoyner, USNA

httphttp://://modular.math.washington.edumodular.math.washington.edu/sage/sage
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