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PARSEVAL’S IDENTITY  

 

1. INTRODUCTION 

 

 I am writing this paper to learn and understand more about Fourier series and 

 Fourier analysis.  My focus will be on Parseval’s Identity.  

 

1.1 THESIS 

 

 This paper will introduce, state, and prove Parseval’s Identity and show how it 

 relates to applications.   

 

1.2. BACKGROUND ON MARC-ANTOINE PARSEVAL 

 

Born into a family of high standing in France, Parseval grew up in a family of 

wealthy land-owners.  Parseval, who considered himself a squire in his younger 

years, lived from 1755-1836.  Not much was known about Parseval’s personal 

life.  It is known that he once fled France from Napoleon when he published 

poetry about Napoleon’s regime and Napoleon ordered his arrest.  Little is known 

about Parseval’s personal life.  There is no record of his own family in his older 

years or other personal information such as hobbies and interests.  Parseval’s 

mathematic contributions consisted of only five publications which were 

presented to the French Academy of Science.  The second of these publications is 

where he proved the result known today as Parseval’s Identity or Parseval’s 

Theorem.
1
 

 

Parseval’s theorem occurs in many different contexts.  In many problems, 

Parseval’s theorem breaks down a given function into linear combinations of 

orthogonal eigenfunctions.  Parseval’s theorem says that the total energy of the 

original function is the sum of the different eigenfunctions’ energies.  Although 

Parseval’s theorem may be applied to general orthogonal basis of eigenfunctions, 

it is mainly discussed with Fourier series and Fourier transform.
2
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1.3 UNDERSTANDING PARSEVAL’S THEOREM 

 

2 2

Real and Imaginary Numbers

Let   on the x-axis and  on the y-axis. 

Let  = .  Let the complex conjugate of  be .

So 

The magnitude of  is equal to the square root of 
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c=z for the graph below. 
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2

2 2

Inner Product on ( )

Suppose ,  are two square integrable functions on the interval I=[a,b].  

ie.  ( )  exists and is finite. (We say that such a function belongs to ( ).)

Their inner product

b

a

L I

f g

f x dx L I∫

 is defined by

( , ) ( ) ( )
b

a
f g f x g x dx= ∫

 

 

 

1 1 2 2 1 1 2 2 1 2

Properties of the Inner Product

1.   ( , ) ( , ) ( , ) where ,

2.  ( , ) 0

3.  ( , ) ( , )

c f c f g c f g c f g c c

f f

f g g f

+ = + ∈

≥

=
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Follows that for 

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( , )     

b

a

b

a

b

a

f g f x g x dx

f g f x g x dx

f g f x g x dx

f g f g

α

α α

α α

α α

α α

∈

=

=

=

=

∫

∫

∫
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( )
1/ 2

2

Using the inner product, we define

,  to be the "magnitude" or norm of a function. 

 (This is most commonly denoted by ) 

Then  is defined to be the distance between  and .

f f f

f
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k

Orthonormal Family of Functions 

Definition:  A family of functions { : 0,1,2...} is orthonormal 

if the following properties are satisfied

(1) ( , ) 0 if 

(2) ( , ) 1 (i.e. 1)   k

k

k l

k k

k

k l

ϕ

ϕ ϕ

ϕ ϕ ϕ
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0 1,...Suppose { , } is an orthonormal set of functions and  is a linear combination of the .

Then it is easy to compute the coefficients .

n m

m

f

c

ϕ ϕ ϕ ϕ

 

0

0 0 1 1

Suppose 

                 ...

n

k k

k

n n

f c

c c c

ϕ

ϕ ϕ ϕ

=

=

= + + +

∑
 

 

( )
0 0

0 0 0 1 1 0

0 0 0 1 1 0 0

To find :  take the inner product of both sides with 

, ( ... , )

           ( , ) ( , ) ... ( , )

n n

n n

c

f c c c

c c c

ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= + + +

= + + +

 

 

k

0 0

Remember from above that ( , ) 0 if  and 

                                           ( , ) 1 (i.e. 1)

So every inner product is 0 except for ( , ) which is equal to 1.

k l

k k

k lϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

= ≠

= =  

 

( )

( )

( )

0 0

0 0

, ( 0 ... 0)

Therefore ,

In general we get ,
m m

f c

c f

c f

ϕ

ϕ

ϕ

= + + +

=

=

 

 

0 1

Definition:  The numbers  are called the Fourier coefficients of  with respect to the 

orthonormal set { , ,..., }

m

n

c f

ϕ ϕ ϕ

 
2

0 1

0 0

Next suppose { , ,..., } is an orthonormal set and  is a function in ( ).

The following theorem is the crucial step in proving Parseval's theorem.  It says that 

among all linear combinations 

n f L I

b

ϕ ϕ ϕ

ϕ 1 1

0 1

...  the one that best approximates 

 is obtained by letting  be the Fourier coefficients of  with respect to { , ,..., }.

n n

i n

b b

f b f

ϕ ϕ

ϕ ϕ ϕ

+ + +

( )

2

0 0 1 1

0 0 1 1

Theorem

Suppose  belongs to ( ).                                              

i.e.   if ...    where  ,   

and     ...     where 

then 

n n n m m

n n n m

n n

f L I

s c c c c f

t b b b b

f s f t

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

= + + + =

= + + + ∈

− ≤ −

�

 

 

Note:  is the closest approximation to  than any other generic or random 

linear combination of the .

Note:  is a generic or random combination of the .

n

n

n n

s f

t

ϕ

ϕ
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2

PROOF

( , )n n nf t f t f t− = − −
 

 

Use the definition of the inner product to solve the above equation.

            ( ( ) ( ))( ( ) ( ))

            ( ( )( ( ) ( )) ( )( ( ) ( ))

            ( ( )( ( ) ( ))

b

n n

a

b

n n n

a

b

n

a

f x t x f x t x dx

f x f x t x t x f x t x dx

f x f x t x dx t

= − −

= − − −

= − −

∫

∫

∫ ( )( ( ) ( ))

            ( , ) ( , )                   

            ( , ) ( , ) ( , ) ( , )

b

n n

a

n n n

n n n n

x f x t x dx

f f t t f t

f f f t t f t t

−

= − − −

= − − +

∫

 

 

Each term is now individually expanded.  

 

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

  ( , ) ( ... , ... )

             ( , ) ( , ) ... ( , )

n n n n n n

n n n n

t t b b b b b b

b b b b b b

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

• = + + + + + +

= + + +
 

 
2There should be n  terms, however there are only n terms since 

all other terms cancel out where ( , ) and .       n n m mb b n mϕ ϕ ≠
 

 

0 0 0 0 1 1 1 1

0 0 1 1

2 2 2 2

0 1

0

So ( , ) ( , ) ( , ) ... ( , )

                ...

                ...

n n n n n n

n n

n

n k

k

t t b b b b b b

b b b b b b

b b b b

ϕ ϕ ϕ ϕ ϕ ϕ

=

= + + +

= + + +

= + + + =∑

 

 

0 0 1 1

0 0 1 1

0 0 1 1

  ( , ) ( , ... )

             ( , ) ( , ) ... ( , )

             ( , ) ( , ) ... ( , )

n n n

n n

n n

f t f b b b

f b f b f b

b f b f b f

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

• = + + +

= + + +

= + + +

 

 

Remember that ( , )
m m

f cϕ = . 

 

0 0 1 1

0

So ( , ) ...

               

n n n

n

k kk

f t b c b c b c

b c
=
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=∑
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0

0

  ( , ) ( , )

             

             

n n

n

k k

k

n

k kk

t f f t

b c

c b

=

=

• =

=

=

∑

∑

 

 
2 2

2 2 2

0 0
0

So ( , ) ( , ) ( , )

     

n n n n n

n
n n

n k k k k kk k
k

f t f f t t f t t

f t f b c c b b
= =

=

− = − − +

− = − − +∑ ∑ ∑
 

 
2

0

2 2 2 2 2

0 0
0 0 0

"completing the square"

Now we complete the square by adding and subtracting 

        (2)

n

kk

n n n
n n

n k k k k k k kk k
k k k

c

f t f c c b c c b b

=

= =
= = =

− = − + − − +

∑

∑ ∑ ∑ ∑ ∑
14444444244444443

 

 

2 2 2

0 0
0 0 0

We next show that

n n n
n n

k k k k k k k kk k
k k k

b c c b c c b b
= =

= = =

− = − − +∑ ∑ ∑ ∑ ∑
 

 

2

0

2

0 0

2

0 0

  can be factored as follows

 ( )( )  

 ( + )  

n

k k

k

n n

k k k k k k

k k

n n

k k k k k k k k k k

k k

b c

b c b c b c

b c b b c b b c c c

=

= =

= =

−

− = − −

− = − −

∑

∑ ∑

∑ ∑

 

 
2

Remember .
k k k

b b b=  

 

2 2 2

0 0

n
2 2 2

0 0 0 0 k=0

 ( + )

 +

n n

k k k k k k k k

k k

n n n n

k k k k k k k k

k k k k

b c b c b b c c

b c b c b b c c

= =

= = = =

− = − −

− = − −

∑ ∑

∑ ∑ ∑ ∑ ∑
 

 

 

2 2 2 2

0 0

So we can reduce the equation (2) to

 
n n

n k k k

k k

f t f c b c
= =
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For which choice of  does this become a minimum?

The minimum is attained where all the numbers 0

. . when 

k

k k

k k

b

b c

i e b c

− =

=

 

 
2

0 1 2

b 22

a

Theorem:  Let { , , ,...} be an orthonormal set in L ( ) where [ , ] and

L ( ) { :  such that ( ) }.  Recall the definitions for the inner 

product and the norm:

( , ) ( ) ( ) ,  ( ,
b

a

I I a b

I f I f x dx

f g f x g x dx f f

ϕ ϕ ϕ =

= → < ∞

= =

∫

∫

�

1 1
b 2

2 2

a
) [ ( ) ]f f x dx= ∫

 

 
2

2 2

0

0

2 2

k=0

Suppose L ( ) and let ( , )

(1)   (Bessel's Inequality)

(2)Assume that furthermore 0

where ( ) ( )

then .  (Parseval's Identity)

k k

k

k

n

n

n

n k k

k

k

f I c f

c f

f s

s x c x

c f

ϕ

ϕ

∞

=

→∞

=

∞

∈ =

≤

−

=

=

∑

→

∑

∑

 

 

0

2 2 2

k=0 0

2 2 2

0

2 2 2 2

0

PROOF OF (1):

From previous proof, if ( )

So by replacing  by (which means )

we get 

which can be rearranged into 

Sinc

n

n k k

k

n

n k k k

k

n n k k

n

n k

k

n

k n

k

t b x

f t f c b c

t s b c

f s f c

c f f s f

ϕ
=

∞

=

=

=

=

− = − + −

=

− = −

= − − ≤

∑

∑ ∑

∑

∑

2 2 2 2

0 0

e this is true for , we get , . .,  (Bessel's Inequality)lim
n

n

k k

k k

n c f i e c f
→∞

∞

= =

∀ ≤ ≤∑ ∑
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n n
2 2 2 2 2

k=0 k=0

PROOF OF (2) :

Now assume that 0.  Then we get

 (Parseval's Identity)

n

n

k n k

n

f s

c f f s c f

→∞

→∞

−

= − − =

→

∑ ∑⇒

 

 

2

0 1 2

We present below an example as well as some special cases of Parseval's Identity.

First we present an application of Parseval's Identity.  Consider the set of functions

{ , , ,...} in L ([0,2 ]) giveϕ ϕ ϕ π n by

 

 

0 2 1 2

1 cos( ) sin( )
( )      ( )      ( ) .

2
n n

nx nx
x x xϕ ϕ ϕ

π π π
−= = =  

 

We show below that this set is orthonormal.  

 
2 2

0 0
0 0

2
2

0
20

1 1
( ) ( )

2 2

1
                       |

24

2 0
                       1

2 2

x x dx

x

π π

π
π

ϕ ϕ
π π

ππ

π

π π

=

= =

= − =

∫ ∫

∫  

 
2 2

2 1 2 1
0 0

2

0

cos( ) cos( )
( ) ( )

sin(2 )cos(2 ) 2
                                   |

2

2
                                   0 1

2

n n

nx nx
x x dx dx

n n n

n

n

n

π π

π

ϕ ϕ
π π

π π π

π

π

π

− − =

+
=

= + =

∫ ∫

 

 

Similarly, one shows the following:  

 
2 2

0 2 1
0 0

1 cos( )
( ) ( ) 0

2
n

nx
x x dx dx

π π

ϕ ϕ
π π

− = =∫ ∫  

 
2 2

0 2
0 0

1 sin( )
( ) ( ) 0

2
n

nx
x x dx dx

π π

ϕ ϕ
π π

=∫ ∫  

 
2 2

2 2
0 0

sin( ) sin( )
( ) ( ) 1

n n

nx nx
x x dx dx

π π

ϕ ϕ
π π

= =∫ ∫  
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2 2

2 1 2 1
0 0

cos( ) cos( )
( ) ( ) 0 where m n

n m

nx mx
x x dx dx

π π

ϕ ϕ
π π

− − = = ≠∫ ∫  

 
2 2

2 2
0 0

sin( ) sin( )
( ) ( ) 0 where m n

n m

nx mx
x x dx dx

π π

ϕ ϕ
π π

= = ≠∫ ∫  

 
2 2

2 2 1
0 0

sin( ) cos( )
( ) ( ) 0 where m n

n m

nx mx
x x dx dx

π π

ϕ ϕ
π π

− = = ≠∫ ∫  

 

 
2

0

Theorem: Suppose L ([0, 2 ])

and let ( ) ( ) where ( , ).

Then -  0.

n

n k k k k

k

n

n

f

s x c x c f

f s

π

ϕ ϕ
=

→∞

∈

= =∑

⇒

 

 

The proof is omitted.  See W. Rudin, Theorem 8.16.  

 

Let ( )  on [0,2 ]f x x π=  

 

2 2

0 0 0
0 0

2 2 2
2

0

Compute 

1
( , ) ( ) ( )

2

1 4 2
                   |

22 2 2 2

kc

c f f x x dx x dx

x

π π

π

ϕ ϕ
π

π π

π π π

= = =

= = =

∫ ∫  

 

2 1

2

2 1
0

2

0

cos( )
( , )

1
                        cos( )

nn

nx
c f x dx

x nx dx

π

π

ϕ
π

π

−− = =

=

∫

∫
 

 

Now we are going to use integration by parts to compute the above integral.

        cos( )

1
    sin( )

u x dv nx dx

du dx v nx
n

= =

= =

 

 

2 1

2
2

2 1 0
0

2

02

1 1 1
( , ) [ sin( ) | sin( ) ]

1 1
       cos( ) | 0

nn
c f x nx nx dx

n n

nx
n

π
π

π

ϕ
π

π

−− = = −

= =

∫
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2

2

2
0

2

0

sin( )
( , )

1
     sin( )

nn

nx
c f x dx

x nx dx

π

π

ϕ
π

π

= =

=

∫

∫
 

 

 

Once again we use integration by parts to compute the above integral.

        sin( )

1
    cos( )

u x dv nx dx

du dx v nx
n

= =

= =

 

 

2

2
2

2 0
0

2

02

1 1 1
( , ) [ cos( ) | cos( ) ]  

1 1 1 2 1
                     ( 2 sin( ) |

nn
c f x nx nx dx

n n

nx
n n n

π
π

π

ϕ
π

π
π

π π

= = − +

= − + = −

∫
 

 

 

{ {
0      2      

2

1

2 1 2 1 sin( )
( ) ~  

2 2

n

n

c c

nx
f x x

n

π π

π π π π

∞

=

= −∑  

 

Combining the above two theorems, we obtain Parseval's Identity:  

 

2 2

k=0

4
2 3

2 2
0 1 1

3 3
2 22 2 2

0
0 0

3
3

2
1

 .  Since 

4 1 1
 4 2 4  and 

2

8
( ) ( ) |  we get

3 3

1 8
2 4

3

k

k

k n n

n

c f

c
n n

x
f f x f x dx x dx

n

π π
π

π
π π π

π

π

π
π π

∞

∞ ∞ ∞

= = =

∞

=

=

= + = +

= = = =

+ =

∑

∑ ∑ ∑

∫ ∫

∑

 

 

3 2

2 2
1 1

Rearrange with algebra to get

1 2 1
4

3 6n nn n

π π
π

∞ ∞

= =

= ⇒ =∑ ∑
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2

0 2n-1 2n

Generally consider the space [ , ]

The functions

1 1 1
( ) ,   ( ) cos( ),   ( ) sin( ) 

2

form a complete orthonormal set.  (Complete means the hypothesis to the

previous theorem is satis

L T T

n x n x
x x x

T TT T T

π π
ϕ ϕ ϕ

−

= = =

fied.)

 

 

 

0

0

Let ( ) ~ cos( ) sin( ) be the Fourier series of      
2

1
where a ( )

1
( )cos( )

1
( )sin( ) .

n n

T

T

T

n
T

T

n
T

a n x n x
f x a b f

T T

f x dx
T

n x
a f x dx

T T

n x
b f x dx

T T

π π

π

π

−

−

−

+ +

=

=

=

∑

∫

∫

∫

 

 

T 2 2

-T
0

In general, Parseval's Identity says that

f(x)   

where ( , ).  We compute:

*
n

n

n n

dx c

c f ϕ

∞

=

=

=

∑∫  

 

0 0 0

0

0

( , ) ( ) ( )

1
                   ( )

2 2

1 1
                   ( ) ( )

2 2 2

T

T

T

T

T T

T T

c f f x x dx

T
f x dx a

T T

T T T
f x dx f x dx a

T TT T T

ϕ ϕ
−

−

− −

= =

= =

= = =

∫

∫

∫ ∫

 

 

2 1 2 1( , )

1
       ( ) cos( )

1
       ( ) cos( )

n n

T

T

T

n
T

c f

n x
f x dx

TT

n x
f x dx T a

TT

ϕ

π

π

− −

−

−

=

=

= =

∫

∫

 

 

2 2

Similarly

( , )
n n n

c f Tbϕ= =
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2 2 2 2

0

n=0 1

2 2 2

0

1

2 2 2

0

1

So ( ) ( ) ( )
2

                ( )
2

1
                ( ( )

2

n n n

n

n n

n

n n

n

T
c a T a T b

T

T
a T a b

T a a b

∞ ∞

=

∞

=

∞

=

= + +

= + +

= + +

∑ ∑

∑

∑

 

2 2 2 2

0

1

So * gives

1 1
( )

T 2

This is Parseval's Identity for real Fourier series.

T

n n
T

n

f x dx a a b
∞

−
=

= + +∑∫  

 

 

n

2

Parseval's Identity for complex fourier series

Consider the set of functions

1
( )   .  

2

This is a complete orthonormal set in ([ , ]).

in x

Tx e n
T

L T T

π

ϕ = ∈

−

�
 

 

2 2

-

If ( ) ( ) is the Fourier series expansion of ( ) with respect to 

this set, Parseval's Identity gives that

( ) ( ),  ( )   *

n n

n

T

n n n
T

n n

f x c x f x

f x c x f x dx c

ϕ

ϕ

∞

=−∞

∞ ∞

=−∞ =−∞

=

= =

∑

∑ ∑∫

 

 

( )

Recall that the complex Fourier series of  ( ) over [ , ] is given by

  ( )~

1
where ( )

2

1 1
              2 ( )

2 2

1 1
               ( , )

2 2

n

in x

T
n

n

in x
T

T
n

T

in x
T

T

T

x

n

f x T T

f x d e

d f x e dx
T

T f x e dx
T T

f
T T

π

π

π

ϕ

ϕ

∞

=−∞

−

−

−

−

−

=

=

= =

∑

∫

∫
14243

n
c

 

 



 13 

2 2

-

2

2 2

-

So * gives ( )

                                     2

1
( )

2

This is Parseval's Identity for complex Fourier Series.

T

n
T

n

n

n

T

n
T

n

f x dx c

T d

d f x dx
T

∞

=−∞

∞

=−∞

∞

=−∞

=

=

⇒ =

∑∫

∑

∑ ∫

 

 

Finally we present Parseval's Identity for the discrete Fourier Transfrom.

Discrete Fourier Transform

 

0 1 1

21

0 1 -1

0

( , ,..., )  n-tuple of complex numbers

Then their  Discrete Fourier Transform is the n-tuple 

( , ,..., ) where  for 0,1,... -1.

n

i jN

N
n k j

j

h h h h

H H H H h e k N

π

−

−−

=

=

= =∑

 

 

2

N-1 1
2 2

j

j=0 0

Parseval's Identity for DFT:

1
h

N

k

k

h

H
N

−

=

=∑ ∑
123

 

 

1 1
2

0 0

2 21 1 1

0 0 0

Proof

             ( )

N N

k k k

k k

i jk i lkN N N

N N
j l

k j l

H H H

h h e e

π π

− −

= =

−− − −

= = =

=

=

∑ ∑

∑ ∑∑

 

 
2 4 2 ( 1)

0 1 2 1

2 4 2 ( 1)

0 1 2 1

Note(1)    ...

Note(2)    ...

i k i k i N k

N N N
k N

i k i k i N k

N N N
k N

H h h e h e h e

H h h e h e h e

π π π

π π π

− − − −

−

−

−

= + + + +

= + + + +

 

 
2 21 1 1 1

2

0 0 0 0

2 21 1 1

0 0 0

2 ( )1 1 1

0 0 0

                   (changing the order of summation)

                   

i jk i lkN N N N

N N
k j l

k j l k

i jk i lkN N N

N N
j l

j l k

i l j kN N N

N
j l

j l k

H h h e e

h h e e

h h e

π π

π π

π

−− − − −

= = = =

−− − −

= = =

−− − −

= = =

=

=

=

∑ ∑∑∑

∑∑ ∑

∑∑ ∑            ∗
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2 ( )N-1

k=0

2 ( )

th

2 1

2 1

2

Now consider the sum

.

If ,  the sum is equal to .

If ,  let .

Note that 1 is an  root of 1 ( 1).

The sum is equal to 1 ... .

(1 )(1 ... )

1

i l j k

N

i l j

N

N

N

N

e

l j N

l j w e

w N w

w w w

w w w w

w w

π

π

−

−

−

−

=

≠ =

≠ =

+ + + +

− + + + + =

+ +

∑

1 2 1

2 1

-1 1
2

0 0

2 ( )1 1 1 1 1
2

0 0 0 0 0

... -( ... ) 1 .

1
Therefore  1 ... 0,  since 1.

1

It follows that 

and equation * i

N N N N

N
N N

N N

j j j

j j

i l j kN N N N N

N
j l j l j

j l k j j

w w w w w w

w
w w w w

w

h h N N h

h h e h h N N h

π

− −

−

−

= =

−− − − − −

= = = = =

+ + + + + − = −

−
+ + + + = = =

−

=

= =

∑ ∑

∑∑ ∑ ∑ ∑

-1 1
22

0 0

mplies that

  q.e.d.
N N

k j

k j

H N h
−

= =

=∑ ∑
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