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PARSEVAL’S IDENTITY
1. INTRODUCTION

I am writing this paper to learn and understand more about Fourier series and
Fourier analysis. My focus will be on Parseval’s Identity.

1.1 THESIS

This paper will introduce, state, and prove Parseval’s Identity and show how it
relates to applications.

1.2. BACKGROUND ON MARC-ANTOINE PARSEVAL

Born into a family of high standing in France, Parseval grew up in a family of
wealthy land-owners. Parseval, who considered himself a squire in his younger
years, lived from 1755-1836. Not much was known about Parseval’s personal
life. It is known that he once fled France from Napoleon when he published
poetry about Napoleon’s regime and Napoleon ordered his arrest. Little is known
about Parseval’s personal life. There is no record of his own family in his older
years or other personal information such as hobbies and interests. Parseval’s
mathematic contributions consisted of only five publications which were
presented to the French Academy of Science. The second of these publications is
where he proved the result known today as Parseval’s Identity or Parseval’s

Theorem.'

Parseval’s theorem occurs in many different contexts. In many problems,
Parseval’s theorem breaks down a given function into linear combinations of
orthogonal eigenfunctions. Parseval’s theorem says that the total energy of the
original function is the sum of the different eigenfunctions’ energies. Although
Parseval’s theorem may be applied to general orthogonal basis of eigenfunctions,

it is mainly discussed with Fourier series and Fourier transform.



1.3 UNDERSTANDING PARSEVAL’S THEOREM

Real and Imaginary Numbers

Leta € on the x-axis and be [1 on the y-axis.
Let z =a+bi. Let the complex conjugate of z be z.
So z=a—bi
The magnitude of z is equal to the square root of a” +b”
This is written as |z|=+/a’ +b*. We have:
2z = (a+bi)(a—bi)
=a’ +abi—abi+b’
=a’+b’

=I<f

c=z for the graph below.
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Inner Product on L* (1)

Suppose f, g are two square integrable functions on the interval I=[a,b].

b
ie. ﬂ f (x)|2 dx exists and is finite. (We say that such a function belongs to L*(1).)

Their inner product is defined by

(F-0)=[ F0g0odx

Properties of the Inner Product

L. (¢ fi+c,fr.8)=c/(f,8)+c,(f,,g) where ¢,,c, el
2. (f,/)=20
3. (f,e)=(g. f)

Follows that for a €[]
(.a9)=[ foagtods
(.a9) = foagtods
(.a0) =af f(guds
(f.ag)=a(f.g)

Using the inner product, we define

Df0=(f.f )”2 to be the "magnitude" or norm of a function.
(This is most commonly denoted by [ f [} )
Then [ f — g is defined to be the distance between f* and g.

Orthonormal Family of Functions

Definition: A family of functions { ¢ :k =0,1,2...} is orthonormal

if the following properties are satisfied
M (p,,9)=0ifk#1
2) (p.p)=1Ge |o =D Vk



Suppose { @), ¢, _@,} is an orthonormal set of functions and f is a linear combination of the ¢,,.

Then it is easy to compute the coefficients ¢, .

Suppose f = 2ck¢k

k=0
=Cy@Py tC +...tC,Q,

To find ¢, : take the inner product of both sides with ¢,

(f,%) =P tap+..+¢,9,.9)
=y (@, 0) + (@, 0) +..+¢,(@,,0,)

Remember from above that (¢,,¢,) =0 if k #[ and

(@ @) =1e. ||¢k " =1
So every inner product is 0 except for (¢,, ¢,) which is equal to 1.

(f,¢,)=(c, +0+...4+0)
Therefore ¢, =(f,¢,)
In general we getc, =(f,9,)

Definition: The numbers c,, are called the Fourier coefficients of f with respect to the

orthonormal set { ¢,,¢,,....9,}

Next suppose { @,,®,,...,@,} is an orthonormal set and f is a function in L*(1).
The following theorem is the crucial step in proving Parseval's theorem. It says that
among all linear combinations b,@, +b,@, +...+b ¢, the one that best approximates

f 1s obtained by letting b, be the Fourier coefficients of f with respect to { ¢, ¢,,...,9,}.

Theorem

Suppose f belongs to L’ (1).

ie. ifs, =c,@, +@ +...+c,9, where ¢, =(f.9,)
and t =b,@,+bp +..+b @ whereb el

then || f —s,|[<|f -1,

Note: s, is the closest approximation to f than any other generic or random
linear combination of the ¢, .

Note: ¢, is a generic or random combination of the ¢, .



PROOF
If =0 =(f~t,, f~1,)

Use the definition of the inner product to solve the above equation.

= [(f ()=, (N () =1, (0)elx

(f(F () =1, (x) =1, (X)(f (x) =1, (x))dx

[(FF @) =t,(0)dx= [ 1, (1) =1, (x)dx

=(f.f-t)-@,f-t,)
=, H=(ft)=@, ))+@,.1,)

Each term is now individually expanded.

b (tn’tn) = (b0¢0 +bl¢1 +"'+bn¢n’b0¢0 +b1¢l +"'+bn¢n)
= by, 0,0)) + (09, b)) + ...+ (0,9,.b,0,)

There should be n* terms, however there are only n terms since

all other terms cancel out where (b,¢,,b, @, ) and n # m.
SO (1,1,) = byby (9, 9) + Dby (9. @) +..+D,b,(9,.9,)
=byby+b,b, +..+b b

n
2 2
= Z|bk|
k=0

=|b0|2+|b1|2+...+

bn

o (f.t)=(f.byp,+bp +..+b )
=(f,b0¢0)+(f,b1¢1)+...+(f,bn§0n)
=by(f, @) +b,(f, @) +..+b,(f,9,)

Remember that (f,¢,)=c,,.

So (f,t,)=byc, +bc,+...+b.c,

R
= Zkzobkck



* ,.f)=(f.1)
=i‘ﬁck
zzzzoabk

So | f -1,

lf -,

f=| £ -y )+t
VTR R +;Ibk|2

Now we complete the square by adding and subtracting zzzo|ck

n n J— J— n
(Y TR AES TS Uy Yol

lf -,

"completing the square"

We next show that

n n n

2 2 [/ n 2
2 |b—e = 2lal = 2o = 2 e+ 2l
k=0 k=0 k=0

Z|bk -, |2 can be factored as follows
k=0

Z|b/< _Ck|2 = z(bk _Ck)(b_k_a)

k=0 k=0

Z|b/< _Ck|2 = z(bka—ckb_k—bkaﬂka)
k=0 k=0

Remember |bk|2 =b, b_k

Z|bk _Ck|2 = Z(|bk|2 _Ckb_k_bka"’kkr)
k=0 k=0

n ) n 2 n _ n J— n 2
Z|bk _Ck| = Z|bk| -chbk —ZbkCﬁZlckl
k=0 k=0 k=0 k=0 k=0

So we can reduce the equation (2) to

0 =UT - Elef + 3l -

k=

2



For which choice of b, does this become a minimum?
The minimum is attained where all the numbers |bk -, | =0

ie.when b, =c,

Theorem: Let {¢,,9,,,,...} be an orthonormal set in L*(I) where I =[a,b] and

L*(I)={f:1—10 such that j b| f (x)|2dx < oo}. Recall the definitions for the inner

product and the norm:

(f.9)=] FgCodx, |f]=f.0)7 =] |f G dxp

Suppose f € L*(I) and let ¢, = (f,,)
(l)i“|ck|2 < || f ||2 (Bessel's Inequality)
k=0

(2)Assume that furthermore || f-s,

—0

n—oo

where s, (x) = i P (x)

k=0

then i:|ck|2 = || f ||2 (Parseval's Identity)
k=0

PROOF OF (1):

From previous proof, if ¢, = Zbk @, (x)
k=0

oo n
11 - Sa+ S -af

=0

£ -1,

So by replacing ¢, by s (which means b, =c,)

2 2 2
=[£1" =2 le]
k=0

which can be rearranged into
el = = =l <l

Since this is true for Vn, we get limi|ck|2 < ||f||2,i.e.,i:|ck|2 < ||f||2 (Bessel's Inequality)
k=0

nse k=0

we get ||f -,




PROOF OF (2):
Now assume that || f- sn” —>0. Then we get

Yl =[] -1 -s. > =[] (Parseval's Identity)
k=0

n—o0 k=0

We present below an example as well as some special cases of Parseval's Identity.

First we present an application of Parseval's Identity. Consider the set of functions

{@,.9,.9,,...} in L*([0,27]) given by

cos(nx) _ sin(nx)

1
@y (x) = E @5, (x) = \/; ?,,(x) = \/;

We show below that this set is orthonormal.

J-OM @, ()@, (x) = J.OM% \/1_ dx

J-Zﬂ' _ _x 2”
7 275

27[0

2 27w

2z cos(nx) cos(nx)

j Py 1 ()P, (X)dx _[ Jz N dx

_sin(2nx)cos(2nrx) +2nxw 27
2nw ’

—0+ Znﬂ' _1
Znn'

Similarly, one shows the following:

cos(nx)

[ o0, 0dx=[" \/;_ =0

sin(zx)

27 sin(nx) sin(nx)

[ 0 (0, (0= [ =]




dx =0 where m #n

J-Zfr cos(nx) cos(mx)

J-O ¢2n—1(x)¢2m—1(x)dx: 0 \/; \/;

J-Zfr sin(zx) sin(mx)

N N/

J-OM @,,(X)@,,, (x)dx = dx =0 where m # n

dx=0 where m#n

J-Zﬂ sin(zx) cos(mx)

J-O ¢2n(X)¢2m_l()C)dX: 0 \/; \/;

Theorem: Suppose f € L*([0,27])

and let s (x)= Zn:ck%(x) where ¢, =(f,9,).

k=0

Then ||f -s,|= 0.

n—oo

The proof is omitted. See W. Rudin, Theorem 8.16.
Let f(x)=x on [0,27]

Compute ¢,

2r 2 1
=0 9)= .[0 f(x)@,(x)dx = J-o Xﬁdx
1 X pr_ 47* 27’

B N2 7 o 227 B N2

cos(nx)

2r
Con = (0, V=] N

xcos(nx)dx

_ % jozn

Now we are going to use integration by parts to compute the above integral.

u=x dv = cos(nx)dx

du=dx v= lsin(nx)

n

Con =50, ) =%[1xsin(nx) e —J-OZ”%sin(nx)dx]

1
2

1
Jzn

cos(nx) 7= 0



e =(fop, )= [0 gy

N

2z .
xsin(nx)dx

-7

Once again we use integration by parts to compute the above integral.

Uu=x dv =sin(nx)dx

du=dx v= lcos(nx)
n

[—lxcos(nx) 17 + .[ w1 cos(nx)dx]
0 n

C2ﬂ:(f’¢zn):ﬁ n

L Lozl _sin(nx) 2= 2zl

:ﬁ n n’ Jz n

2 i _7[ l sin(nx)

f("):’“r 5 dzn x

Combining the above two theorems, we obtain Parseval's Identity:

§| e =| f||2. Since

Z| [ =27 tan Z——27£ +473 L and

n=1 1
3

- p 3
||f||2 = IOZ”f(x)f(x)dx = J-OZ x’dx =% b= 8% we get
[ 3
27+ 4752L2 - 8%

n=1

Rearrange with algebra to get

=

A Z_:275 z_:_

nln nln

10



Generally consider the space L’[-T,T]

The functions

SIH(T)

¢0( ) \/_ ¢2n 1( ) ﬁ COS( ) ¢2n (.X) ﬁ

form a complete orthonormal set. (Complete means the hypothesis to the

previous theorem is satisfied.)

Let f(x) ~ a—2°+ Zan cos(%) +b, sin(%) be the Fourier series of f
1 ¢
where a, = FJ-—T f(x)dx
1 ¢r nwx
a,=— j_T f () cos(= =)
1 r . NTX
b= [ rw sin(= =)dx.

In general, Parseval's Identity says that

T o
I_T|f(x)|2dx = Z|cn|2 *

n=0

where ¢, = (f,,). We compute:
¢ =(f0)=[ Fp(x)dx

- ﬁ jTT F0dx= %ao

- ﬁ; [" o =%% [ o= %ao

Cu =5 95,1)

nwx

—j f(x)Tcos(—)d

_ ﬁ.[_r f(x) cos(nTm)dx =Ta,

Similarly

cZn = (f’ ¢2n) = ﬁbn

11



=

smggzﬂ%%MW+gNF@fﬂﬁ%f
:€|a0|2+;T(|an|2+ b
:T(%|a0|2+;( al+lb )

So * gives

%I_TT|f(x)|2dx=%|ao|2 +g al +b[

This is Parseval's Identity for real Fourier series.

Parseval's Identity for complex fourier series

Consider the set of functions
InzTx

T pell.

1
o, (x)= \/ﬁe

This is a complete orthonormal set in L*([-T,T1]).

Iff(x)= Z ¢, @, (x) is the Fourier series expansion of f (x) with respect to

n=—o0

this set, Parseval's Identity gives that

f@=3 eom. [l de= Y

n=—oo n=—oco

2 3k

Cl‘l

Recall that the complex Fourier series of f(x) over [-T,T] is given by
fO~> de™

—inzx

where d —LJ-T f(x)e T dx
toorr

—inzx

— 1 T 1 T
__2 \lle_Tf(x) T e dx
e
g, (x

1 1
Cn

:ﬁ(f’¢n): \/ﬁ

12



2
C

n

So * gives V[TT|f(x)|2 dx = i

n=—oo

-

n=—oco

LI 2
=Ll ax

2

dVl

=3

n=—oo

dVl

This is Parseval's Identity for complex Fourier Series.

Finally we present Parseval's Identity for the discrete Fourier Transfrom.

Discrete Fourier Transform
h=(hy,h,,....h,_,) n-tuple of complex numbers

Then their Discrete Fourier Transform is the n-tuple

N-1 —i27j
(H,,H,,...H, ) where H, = Zhje N fork=0,1,..N-1.
j=0
Parseval's Identity for DFT:
N-1 2 1 N-1 )
Z hj| = _Z|H k|
j:O‘ J‘ N>
2
]
Proof
N-1 - o
Z|H k| =2 H.H,
k=0 k=0
N-1 N-IN-1 __ -—i2zjk i27lk
= Z( hj he N e N )
k=0 j=0 /=0
—i27k —idrk —i2x(N-1)k
Note(1) H, =h,+he V +he V¥ +..+h,e V
2wk idrk i2r(N-1)k

Note(2) E=E+Ee N +h_2e N+ +hy e N

N-1 o NANZINT —i2njk  i27xlk

|Hk| = hhe N eV

N—-1N-1 N-1 —i2zjk i2zxlk

:z hﬁ, e N e " (changing the order of summation)
j=0 1=0 k=0

N-1N-1 N-1 i2z(-j)k

j=0 1=0 k=0

13



Now consider the sum

N-1 i2z(=))k

Qe
k=0

If [ = j, the sum is equal to N.
i2z(l-j)
Ifl+#j, letw=e V

Note that w#1 is an N™ root of 1 (w"
The sum is equal to 1+ w+w’ +...+w
A-w)(I+w+w +..+w" ") =

l+w+w +. 4wV - w+w + .+

~1).

N-1

—wV)y=1-w".

N
Therefore 1+w+w”+...+w" ' = 11_W =0, since w
N-1 N-1 ) v
hh,N=NY ||

j=0 j=0

N-1N-1 N-1 127r(l i2z(l-)k N _ N
It follows that hh Z => hhN =

j=0 1=0 k=0 i=0

and equation * implies that

N-1 ) N-1 2
Z|Hk| :NZ‘hj‘ q.e.d.
k=0 j=0

14
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