

Letters to NSA
by

Lauren Carson
01APR12

John Nash is a famous mathematician who was born on June 13, 1928. He became
infamous after the movie A Beautiful Mind was produced which detailed his life and struggle
with paranoid schizophrenia. His contributions to society today extend far beyond being the
inspiration for an entertaining movie however. As a child, Nash was introverted and shy, taking
an early interest in academics over various social events. He quickly became intellectually
superior to all of his peers and considered sports and entertainments to be distractions from his
studies and experiments. In 1941, Nash entered Bluefield College but after winning the
prestigious George Westinghouse Competition, received a full scholarship to the Carnegie
Institute of Technology where he was enrolled in 1945. Nash was originally interested in
studying chemical engineering but quickly discovered his passion and knack for mathematics.
After receiving an MA and BA in mathematics, Nash was accepted into the mathematics
program at Princeton. It was during his time at Princeton, while working towards receiving his
doctorate, that Nash made his most notable contributions to the field of mathematics. Nash was
most recognized for his work in game theory, partial differential equations, Nash equilibrium and
the Nash embedding theorem. His work in game theory which was his primary focus during his
time at Princeton eventually earned him a Nobel Memorial Prize in Economic Sciences; this is a
true testament that despite his deranged mind, his mathematical genius cannot be disputed and
his contributions have laid the foundations for many modern mathematical theories and
advancements.

This paper will focus on a series of letters that John Nash sent to NSA in 1955 regarding
a new idea for cipher security and a description for an encryption/ decryption machine. The
paper is essentially classified into three parts. The first topic deals with something known as
computational complexity which will be explained in more detail later, and the second part with
Nash’s description for an enciphering/deciphering machine and how the idea of computational
complexity applies to the machine. The final part will discuss the recent attempt by
mathematician Ronald Rivest to interpret Nash’s machine into a modern computer code. It is not
clear whether the NSA used some of his work or if they completely disregarded his letters due to
his mental condition or the fact that he says himself at one point regarding computational
complexity that “this can’t be exactly proven”. Despite this uncertainty Nash makes “remarks on
a general principle relevant to enciphering in general” and to his “machine in particular” that has
been beneficial for modern cryptologists to build new theories from.
 In the letters Nash sent to the NSA, he introduces the idea of computational complexity.
This idea that would transform the way modern cryptographers approached improving security
but not until about two decades later. Computational complexity is the idea that ciphers should
be classified according to the difficulty required to compute the original plaintext. If the
computation of a certain cipher grows exponentially with the key length then it is possible to
have an enciphering algorithm faster than the deciphering algorithm could ever possibly be. In
other words, algorithms efficiency can be classified by the number of basic operations it takes
relative to the input, and if the algorithm grows exponentially with the key length, then it
becomes computationally more and more difficult to compute the original plaintext and decrypt
the message. Modern cryptographers such as Cook, Whitfield Diffie and Martin Hellman would
begin to incorporate computational complexity into their theories and ciphers. For example, the
Diffie- Hellman key exchange uses an algorithm with modular exponentiations to encrypt and
decrypt. As the letters to the NSA reveal, Nash was years ahead of these modern cryptologists.

Nash begins his letter by asking the reader to consider a function: yi=F(α1,			α2…αr;	
xi,xi1,	xi2,…xin) where the α's and x’s are modular 2 and the α’s represent the key containing

r bits of information. More specifically this is an enciphering process with a finite key that
operates on binary messages. Furthermore, Nash describes this function by explaining that if	xi is
changed with the other x’s and α’s being left fixed, then the yi is changed. A plaintext is left
fixed by a cipher if it remains the same in the cipher text generated by the cipher. The n
corresponding to the x’s is the maximum span of the “memory” of the process and the length of
n does not change the conjectures following. Although Nash wrote the function in the form
presented above, it makes more sense to look at it as follows since n is the maximum span of the
memory: yi=F(α1,			α2…αr;	xn,xn1,	xn2,…xni). Nash continues to examine the resistance of
an enciphering process from the perspective of cryptologists of his time. In order to truly test the
security of the system it is important to assume the enemy has all the information with the
exception of the key. Using traditional breaking methods it would be easy to crack this system
the way it exists now as soon as r bits of information were received. This is because traditional
ciphers did not have the security of computational complexity which Nash is introducing. Nash
proposes that receiving r bits of information gives no indication as to how easy or difficult it is
for the enemy to perform the computation. This idea of computational difficulty is what modern
cryptology has been focusing on because cracking ciphers by traditional means and brute force
would be far more difficult; even if r bits of information were received. Nash claims that if the
computation for deciphering “were sufficiently long but still practical” then the cipher could
“still be somewhat secure in a practical sense”. Nash claims that the most direct computation
procedure for the enemy to take would be to use brute force and try all 2^r computations. This
could easily be made more difficult for the enemy and impractical for them to break the cipher
merely by choosing a big enough r. Even this method is not entirely secure however when you
consider a traditional substitution cipher which switches a letter for a letter or a letter pair for a
letter pair. This is because the key can be determined piecemeal, thus creating a shorter means
for computing the key and making it once again computationally simple. Nash continues to
introduce a way to classify breaking processes based on the length of computation. This
classification is his general conjecture that has revolutionized the art of encryption and
decryption and is stated as follows: “For almost all sufficiently complex types of enciphering,
especially where the instructions given by different portions of the key interact complexly with
each other in the determination of their ultimate effect on enciphering, the mean key computation
length increases exponentially with the length of the key, or in other words, with the information
content of the key”. The significance of this conjecture, Nash states, is that it is feasible to
design ciphers that are effectively unbreakable. Nash says that he cannot prove this and he does
not expect that it will be proven but this does not destroy the significance of the theory in the
context of modern cryptography, namely that exponential key length is computationally difficult
and polynomial key length is computationally easy. Although he cannot fully prove his
conjecture, his revelation prompted him to warn the NSA to keep close tabs on foreign nations
should they develop a similar conjecture and begin to formulate unbreakable ciphers.#
 The second portion of Nash’s letter to the NSA provides a detailed description of an
encryption/ decryption machine he invented that he believes has the unbreakable property
mentioned previously. Nash also believes that his machine has several other advantages such as
its suitability for “an all electronic, ultra rapid, embodiment. Additionally the same machine
would be used for both enciphering and deciphering. The most effective way to understand how
Nash’s machine works is to look at the following diagram Nash sent to NSA and explain the
different parts and their specific functions.

 The machine above works on a cycling basis, performing certain operations during each
cycle and functions as follows: First, the input message is a sequence of binary digits, (zeros and
ones), and they are sent to the component A which stands for “the adder”. During the first cycle,
the adder takes in two digits from the input message and adds them together. This is defined as
the first cycle. During the next cycle after it has added another two digits together, it sends the
sum obtained from the previous addition forward into the machine. The delay in the addition is
the reason that there is an extra component, R, called the retarder which accounts for this delay
and allows the receiving component and the transmitting component to operate in sync. The sum
from the adder then travels to the portion called denoted as D. Nothing happens to the number in
D but it is an essential component none the less because it determines everything that happens
within P. P is the most complicated part of the machine and the component that provides the
computational complex element that Nash refers to. P stands for “the permuter” which contains
an already established number of digits remembered within it. Two permutation paths are also
contained within the permuter and the path that is taken per cycle is determined by the number
that is taken in from D. During each cycle, the permuter shuffles around the numbers inside of it,
changing some zeros to ones and vice versa and then sends one digit on and takes another one in
from D. A simple diagram of the permuter is as follows:

 The first circle with the D above it represents what is called the decider. As can be seen
in the diagram, if D receives a one from the adder, the number will take the red permutation path
and if it receives a zero from the adder, it will take the blue permutation path. Each of the circles
represents a position where a zero or one will be stored, with the original positioning being
determined by the machine operator. The D digit moves to the first circle, or storage place in P
during the cycle after it has determined the choice of the permutation and then proceeds through
the machine. In addition to moving digits around, the permutations can change ones to zeros and
vice versa. The boxes containing either a plus or minus sign represent this switch that happens
every cycle. The plus sign represents no change in the digit and the minus sign represents a
switch from zero to one or one to zero. Although the digit in D determines whether the blue or
red permutation takes place, Nash states that both permutations “should cycle through all the
places in P, so that a digit would be carried through all of them and out under its action
alone”. Once the digit has gone through the permutations in P, the resulting digit is sent out and
the output to the transmitting component of the machine is this encrypted digit.
 The output of the transmitting component, or the encrypted digit, is the input to the
receiving component. The receiving component has the same parts as the transmitting
component and essentially reverses the process of the transmitting component. The only
additional piece is the retarder which is needed due to the delay in the adder during the first
cycle. Because of this, the input to the retarder is the same as the input of D in the transmitter.

For this reason “the output of P in the receiver is the same as the output of P in the transmitter,
except for a one unit lag”. Nash explains further to help his reader understand better that the
adder in the receiver receives the output of the adder in the transmitter along with the previous
input from the P in the transmitter to the A in the transmitter. If the machine was to be built and
operated the way Nash intended it to, the receiving component would reverse the process of the
transmitting component and the output of the receiver would be the original message that was
entered into the transmitter. This is because in modular arithmetic, binary subtraction is the same
as binary addition so the output of the receiver at A will be the previous input to A from the
transmitter, or the un-ciphered message.
 A further look at Nash’s machine reveals why he believes it has an unbreakable
characteristic. It is due to the fact that the key computation grows longer exponentially with the
length of the key. The key for Nash’s enciphering machine is the choice in P, or the
permutations. Since each of the circles on the diagram above of the permuter represents a storage
place, then if there were n storage places there would be [n!2n+1]2 possible keys. You can see
from this equation that the number of possible keys grows exponentially as n gets bigger. Nash
concludes his description of his machine by stating that various devices could be added to the
machine to improve it or to make it more secure but focusing on the idea of computational
complexity and enlarging the permuter would be the most effective way to make the machine
more secure.
 The negative response Nash received from NSA must have come as a disappointment
after all of the thought and work he had put into his invention. The response he received was
that, although the NSA found that the cryptographic principles involved in his system were
ingenious, it did not meet the necessary security requirements for official application. No further
records were given about the machine and it is not clear whether NSA simply forgot about it for
years or if they kept it classified until 2011 because they were able to utilize some of Nash’s
concepts and theories. We do know, however, that there is no evidence that Nash did further
work on the machine after it was rejected by the NSA. It remained forgotten until the NSA chose
to declassify the letters. Modern cryptologists have been studying the theories behind such a
machine and have been astounded to find that Nash originated the idea of computational
complexity. Nash’s machine has not been manufactured but the mathematician, Ronald Rivest,
recently translated his machine into a computer code written for python. A further look at the
code shows how the processes in Nash’s machine are repeated in the program. The program
looks as follows and each line of code is numbered in order to simplify referencing it later in the
description:
1� -- "^" in python is xor (mod-2 addition)
2� #
3� # -- in python range(b) is the sequence 0, 1, 2, ..., b-1
4� #
5� # -- Nash doesn't say anything about the initial state of the bits
6� # in the system; here we allow an initial state as part of the key
7� # It would be reasonable and interesting to consider other
8� # possibilities, such as having a fixed initial state (all zeros),
9� # or running the system with "0"'s as input for a while to arrive
10� # at an initial state, or ... ??
11� #
12� # -- We implement the example given in his note. There is one arrow

13� # missing a label; we assume here the missing label is a "+".
14� # We also choose an arbitrary starting state as part of the key.
15� #
16� # -- There are many interesting open questions about this system;
17� # here are some as ``food for thought'':
18� # (a) Are there ``weak keys''? (Keys that shouldn't be used?)
19� # (b) If the system receives periodic input, it will exhibit
20� # periodic output. (E.g. input 001001001001001...)
21� # What can be said about the periodicities?
22� # (c) How do different guesses about what Nash intended
23� # for the starting state affect security?
24� # (d) How long can a given bit circulate internally?
25� # (e) Can you figure out the permutations and bit-flips if you are allowed
26� # to specify inputs to the system, and to reset it to
27� # the initial state whenever you like? (Effectively, a
28� # chosen ciphertext attack)
29� # (f) Is the output of the system balanced (equal number of 0's and 1's)
30� # or unbalanced (biased somehow)?
31�
32� class NashMethod:
33� def __init__(self,n,redp,redbits,bluep,bluebits,initialP):
34� # check that inputs are all of correct length
35� assert n+2 == len(redp)
36� assert n+2 == len(redbits)
37� assert n+2 == len(bluep)
38� assert n+2 == len(bluebits)
39� assert n+2 == len(initialP)
40� # initialize the Nash cryptosystem private state with the given parameters
41� self.n = n # number of state bits (not counting D, P entry point, or output bit)
42� self.redp = redp # specifies the red permutation: redp[i] says where bit i comes
from, in the red permutation
43� self.redbits = redbits # 1 = complement, 0 = no complement: redbits[i] == 1 if you
complemenet when copying to P[i]
44� self.bluep = bluep # blue permutation
45� self.bluebits = bluebits # same as for redbits
46� self.P = initialP # initialP = initial state P[0...n] and P[n+1]=output bit. P[0] is
entry point
47� # as noted in the comments, it isn't really clear what Nash intended for
the
48� # initial state of the system.
49� def tick(self,c):
50� """
51� advance state for one tick, with input ciphertext bit c.
52� """

53� if c == 0:
54� # use blue permutation
55� # copy P[bluep[[i]] to P[i], complementing if bluebits[i]==1 (a "-" label on the blue
arrow)
56� self.P = [self.P[self.bluep[i]] ^ self.bluebits[i] for i in range(self.n+2)]
57� # entry point of P gets new bit
58� self.P[0] = c
59� else:
60� # use red permutation
61� # copy P[redp[[i]] to P[i], complementing if redbits[i]==1 (a "-" label on the red
arrow)
62� self.P = [self.P[self.redp[i]] ^ self.redbits[i] for i in range(self.n+2)]
63� # entry point of P gets new bit
64� self.P[0] = c
65� print "state: ", c, self.P
66�
67� def Enc(self,bs):
68� """
69� Encrypt bitstring bs, return ciphertext string
70� """
71� print "Enc: encrypting string bs = ", bs
72� cs = []
73� for b in bs:
74� c = b ^ self.P[-1] # add b to output bit to get next ciphertext bit (save it)
75� cs.append(c) # save ciphertext output
76� self.tick(c) # feedback and advance state
77� print "Enc: ciphertext string cs = ", cs
78� return cs
79�
80� def Dec(self,cs):
81� """
82� Decrypt bitstring cs, return ciphertext string
83� """
84� print "Dec: decrypting string cs = ", cs
85� bs = []
86� for c in cs:
87� b = self.P[-1] ^ c # decoded plaintext
88� self.tick(c)
89� bs.append(b)
90� print "Dec: plaintext string bs = ", bs
91� return bs
�
�
92� # test example from his paper

93� # entry point of P is position 0 of state: P[0]
94� # positions 1, 2, 3 across top row: P[1], P[2], P[3]
95� # positions 4, 5, 6 across bottom row: P[4], P[5], P[6]
96� # position 7 is output bit: P[7]
97�
98� def testNash():
99�
100� # set up key for encryption
101� # key consists of: redp, redbits, bluep, bluebits, initialP (see his figure)
102�
103� N1 = NashMethod(6, # n = 6
104� [0, 5, 0, 4, 1, 6, 2, 3], # redp
105� [0, 0, 0, 1, 0, 0, 1, 1], # redbits [note assuming arrow to 4 is a "+"]
106� [0, 6, 4, 2, 0, 1, 3, 5], # bluep
107� [0, 1, 0, 0, 1, 1, 0, 0], # bluebits
108� [0, 1, 1, 0, 1, 1, 0, 1], # initialP -- initial state P[0...n+1] (arbitrary choice)
109�)
110�
111� # define test string to encrypt
112� bs = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1]
113�
114� # now do the encryption, save results as cs
115� cs = N1.Enc(bs)
116�
117� # set up (same) key for decryption
118� # key consists of: redp, redbits, bluep, bluebits, initialP (see his figure)
119� N2 = NashMethod(6, # n = 6
120� [0, 5, 0, 4, 1, 6, 2, 3], # redp
121� [0, 0, 0, 1, 0, 0, 1, 1], # redbits [note assuming arrow to 4 is a "+"
122� [0, 6, 4, 2, 0, 1, 3, 5], # bluep
123� [0, 1, 0, 0, 1, 1, 0, 0], # bluebits
124� [0, 1, 1, 0, 1, 1, 0, 1], # initialP -- initial state P[0...n+1] (arbitrary choice)
125�)
126�
127� # now do the decryption, save result as bs2
128� bs2 = N2.Dec(cs)
129�
130� # test -- did we get our original plaintext back?
131� if bs == bs2:
132� print "Encryption/decryption successful!"
133� else:
134� print "Encryption/decryption failed."
�

135� testNash()#

Line 1 of the code begins by establishing that the input will be mod 2, or will be binary
digits, just as Nash defined his machine. Line 2 defines that the range of the bit string is from 0
to b-1. Lines 4-30 are just comments inserted by Rivest that discuss some of the potential flaws
in Nash’s machine such as the existence of weak keys. Weak keys are keys that would create
patterns within the ciphertext due to the cyclic nature of the machine. Rivest also poses detailed
questions that have not been answered yet such as if the system’s output has a balanced number
of 0’s and 1’s. Lines 33-40 begin to initialize the permuter component. Since Nash does not
specify any initial state of the permuter, the computer code assigns an initial state. The permuter
in Nash’s machine has n spaces in which a 1 or a 0 can initially be designated so lines 34-30
ensure that the inputs are the correct length. Lines 40- 65 set up the permutation paths that will
be taken based on the input to the permuter. The code looks complicated but it is important to
realize that it is merely designating the permutation paths and shuffling positions that takes place
within the permuter as discussed earlier in Nash’s machine. The tick mentioned in lines 49 and
51 advances the state once, just as each input taken into Nash’s machine begins a new cycle.

An important note about Rivest’s interpretation of Nash’s machine in this code is that
Rivest significantly decreases the security of this system by printing too much information for
the public to see. The code in line 65 prints the state of the permuter after every tick, or every
rearrangement of the numbers within it. Since the permuter is the key, this makes the system
extremely insecure because the enemy can easily see the path the message will take. Lines 69-78
describe the encryption operation and essentially converts Nash’s transmitting component into
python code. As can be seen from the comments Rivest makes on the side, lines 74-
76 achieve what the adder in Nash’s machine does by taking two digits, adding them together
and then advancing the states. Lines 80-91 implement the receiving component functions of
Nash’s machine. In line 91, this decryption process returns bs which is the original message that
was encrypted beginning in line 71.

Rivest then plugs in a random set of values to see if this computer code works the way
Nash’s machine was intended to work. In lines 93-96, Rivest is allowing there to be six spaces
within the permuter, not including the exit point, so n=6 for this example. In lines 103-309, he is
assigning values to each spot within the permuter and initializing the system. In line 112 he
defines the bitstring that he wants to encrypt and applies the encryption code to it. Lines 117-128
apply the decryption process to the output of the encryption. The permuter is initialized in the
same way in the decryption process as it was in the encryption process as can be seen in lines
120-124. This is identical to the permuters in the transmitter and receiver components of Nash’s
machine. Finally if the bitstring that is decrypted is the same as the original bitstring that was
entered into the program in line 112, then the program will print that the process was successful.

It is clear that Rivest’s interpretation of Nash’s machine in Python code is not perfect,
particularly with regard to the lack of security involved in printing so much information, but it is
a useful building block none the less. Due to the advancements made in modern technology since
the time it is more logical to try and convert the idea of Nash’s physical machine into a computer
program similar to the one Rivest attempted. With more experimenting and improvement on
Rivest’s program, Nash’s encryption/ decryption machine could be a very useful, efficient, and
easy to use option for encrypting a message.
 While Nash’s machine itself does not seem to be particularly sophisticated or technical,
the idea of computational complexity is something that modern cryptographers should continue

to develop and incorporate into modern ciphers. It is important Nash’s letter to the NSA

seriously, particularly when he speaks about computational complexity and warns about the

development of unbreakable ciphers. This advancement in cryptology would pose a serious

threat to national security if America were not the leading developers and researchers on this

subject.

Works cited:

Nisan, Noam. "John Nash's Letter to the NSA." Wordpress.com. 17 Feb. 2012. Web. 17 Mar.

2012. <http://www-history.mcs.st-andrews.ac.uk/Biographies/Nash.html>.

 "John Forbes Nash." Nash Biography. Web. 15 Apr. 2012. <http://www-history.mcs.st-

andrews.ac.uk/Biographies/Nash.html>.

 Nash, John. http://www.nsa.gov/public_info/_files/nash_letters/nash_letters1.pdf

