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Abstract

Steganography, meaning covered writing, is the science of secret com-

munication. Ideally, steganographic communications occurs without alert-

ing anyone other than the sender and receiver. The seemingly innocuous

medium to carry the information is called the cover. With the advent of

computers, digital steganography refers to secret communication where the

cover is a digital media �le. In 2001, Westfeld proposed the F5 stegano-

graphic system with the goal of encrypting information in a cover while

minimizing the number of changes required. This project investigates the

mathematical aspects of the F5 system.

1 Introduction

Throughout history, many people have found unique and sophisticated ways
to encrypt information. There have always been a few who have extended this
idea to hiding information within innocuous objects. The goal of steganography,
from the Greek words steganos and graphein, is to hide data from anyone other
than the sender and receiver. The main advantage of such systems is that the
communication does not garner any attention from an outside party. Cryptogra-
phy, or the art of secure communication, can ensure privacy, but steganography
can ensure absolute secrecy. Early examples include writing on the backing of
a wax tablet before covering it, shaving and tattooing the head of a slave, only
to let the hair re-grow, or using invisible ink.

Cryptography is widely known as the study of the composition of secret mes-
sages. In such a system, two parties Alice and Bob seek to exchange information
while a third party Eve tries to learn the contents of the message. Encryption
and decryption, respectively, are the processes which yield and decode the se-
cret message. The most e�ective cryptographic methods are those which are
computationally e�cient yet secure.

Steganography, on the other hand, aims at allowing Alice and Bob to com-
municate secretly without Eve even knowing that the communication occurred.
A steganographic system involves the message and an arbitrary cover, or the
medium on which the message is transmitted. Covers are often tablets, body
parts, or in the modern era, text, picture and audio �les. Steganographic sys-
tems can either be classi�ed as classical or modern, where those considered
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modern take advantage of the vast possibilities to hide information in digital
�les. Consequently, the goal of digital steganography is to embed a message into
the redundant data of a cover. The result, after the message has been embedded,
is known as the stego-cover. The most common digital steganographic systems
utilize images, video, or audio �les as covers, as they are digital representations
of physical quantities that thus contain noise.

One of the most common systems of digital steganography is the Least Sig-
ni�cant Bit (LSB) system. In this system, the chosen encoder embeds one bit
of information in the least signi�cant bit, often considered redundant, of a given
number of pixels of a given image. In this situation, a greyscale image is re-
garded as an array of pixels, where each pixel is represented by a binary vector.
Care must be taken with this system to ensure that the changes made do not
betray the stego-cover, while still maximizing the information hidden.

Error-correcting codes are those which utilize redundant data to ensure the
original message can be accurately recovered after the introduction of errors. As
all forms of media transfer are imperfect, these errors are often introduced as the
message is being trasmitted. The use of these codes involves both the detection
and the more di�cult correction of an error. Simple error-correcting codes rely
on some form of parity information as a reference for error detection, where the
goal is to both maximize the information sent and the ability to correct errors.

Error-correcting codes are important if the distinction between code words
is desired, yet the covering radius is helpful in describing a system's ability to
embed a code in a medium. Thus, a covering code is an error-correcting code
with a `good' covering radius. The meaning of `good' will be discussed later in
the paper. The knowledge of error-correcting codes and use of covering codes
has the potential to produce e�ective steganographic systems.

Bierbrauer [B], [BB], Fridrich [BF], Munuera [M], Zhang-Li [ZL] have all
published on the advantages of using coding theory to produce steganographic
systems, and the aim of this paper will be to combine this work in studying
Westfeld's F5 system.

2 Steganography in the Modern World

Because of its e�ectiveness, recent history has seen steganography employed by
both states and private organizations.

In February 2007, the second isssue of an extremist manual entitled Techni-
cal Mujahid was released on the internet. This publication is a Jihad technical
training manual, intending to increase con�dence, knowledge, security, and sci-
entabout:homei�c knowledge. One of the six sections references steganography
and its potential for e�ective use. The recognition of the use of steganography
by terrorists organizations con�rms long standing suspicions of its application.
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In the summer of 2010, 11 suspected Russian spies were arrested in the
United States. According to the FBI's charging documents, these individuals
used a steganographic system that embedded information into images. Numer-
ous free programs are available online to the casual user, and steganography,
while traditionally not considered a severe digital threat, is in practical use.

3 Cryptography vs. Steganography

A cryptosystem is a speci�c method of secure communication. Let Alice and
Bob be the sender and receiver, respectively, in such a cryptosystem. Alice
starts with a plaintext, or unencrypted message. She then uses a key, or speci�c
set of rules, to encrypt the message to produce a ciphertext. All the while, Eve
the evesdropper wants to learn the contents of the plaintext.
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Eve Tries to Learn Plaintext from Cryptosystem Used by Alice and Bob

The basic goals of a cryptosystem are computational e�ciency and security.
Security is the principle desire, and is commonly quanti�ed with four tenents
([HAC], �1.2):

1. Secrecy : This objective ensures that the information is available only to
those people who are authorized to have it.

2. Integrity : This ensures that no third party can make unauthorized alter-
ations to the data.

3. Non-repudiation: This prevents the sender of information from denying
that they sent that information. This also allows the receiver to prove to
a third party that the information was sent by the sender.

4. Authentication: Authentication is related to identi�cation. Two parties
that are communicating with each other need to be able to identify one an-
other and the receiver can be sure that the person sending the information
is who the receiver thinks it is.

Steganography, as a method of secret communication, seeks to maintain the
highest levels of security through focusing on imperceptibility to a detector.
Similarly to cryptography, steganography is also measured in its integrity, or
in this special case, resistance to removal. Unlike most cryptographic systems,
however, one component of steganography is the actual size of the message that
can be embedded in a cover object while still keeping the changes innocuous.

The ability to detect the manipulation of a cover is related to the length of
the message embedded within it, because less changes to the original medium
are required. For even the most simple stegosystems, determining the highest
amount of information that can be embedded is not trivial. This amount of
information is also related to the cover image chosen and the compression format
used. Uncompressed �les, for example, provide the most redundant space for
manipulation, but they are also suspicious. The F5 system described later in
this paper is meant for JPEG images, some of the most abundant.
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4 Error-correcting and Covering Codes

We recall some well-known de�nitions from Hill [H].
Let GF (q) denote a �nite �eld with q elements, where q is a power of

a prime. A linear (error-correcting) code is a subspace C of GF (q)n

for some n > 1, with a �xed basis. This integer n is called the length
of C. Let C be a linear code of length n over GF (q). If q = 2 then the
code is called binary. Throughout, assume that GF (q)n has been given the
standard basis e1 = (1, 0, ..., 0) ∈ GF (q)n, e2 = (0, 1, 0, ..., 0) ∈ GF (q)n, ...,
en = (0, 0, ..., 0, 1) ∈ GF (q)n. The dimension of C is denoted k, so the number
of elements of C is equal to qk.

The Hamming distance d is a tool for determining the number of errors
a code can, in principle, detect. For any two x, y ∈ GF (q)n, let d(x, y) denote
the number of coordinates where these two vectors di�er:

d(x, y) = |{1 ≤ i ≤ n | xi 6= yi}|. (1)

De�ne the weight wt of v ∈ GF (q)n to be the number of non-zero entries of
v. Note, d(x, y) = wt(x − y) because the vector x − y has non-zero entries
only at locations where x and y di�er. The smallest distance between distinct
codewords in a linear code C is the minimum distance of C:

d = d(C) = min
c∈C, c6=0

d(0, c). (2)

Call a linear code of length n, dimension k, and minimum distance d an
[n, k, d] code, or [n, k] code if the minimum distance is not required. The
Singleton Bound states that if an [n, k, d] linear code over GF (q) exists, then
k ≤ n− d+ 1.

A linear code C of length n and dimension k over GF (q) has a basis of k
vectors of length n. If those vectors are arranged as rows of a matrix G, call the
k × n matrix G a generator matrix for C. A check matrix of C is any full
rank matrix whose kernel is equal to C. Thus, a check matrix H is a (n−k)×n
matrix over GF (q).

De�nition 1 Let r be a positive integer and let H be an r × (2r − 1) matrix
whoses columns are the distinct non-zero vectors of GF (2)r. Then, the code
having H as its check matrix is called a binary Hamming code and is denoted
Ham(r,2). [H]

Example 1 Let r = 3, and let

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

In this form, namely when the columns of H are arranged in standard form such
that the rightmost k× k entries are the identity matrix Ik, the generator matrix
G can be quickly found to be
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G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

A coset is a subset of GF (q)n of the form C + v for some v ∈ GF (q)n.
Equivalently, a coset is a pre-image of some y in GF (q)n−k under the check
matrix H : GF (q)n → GF (q)n−k. Let S be a coset of C. Then, a coset leader
of S is an element of S having smallest weight.

Theorem 1 The coset leaders of a Hamming code are those vectors of wt ≤ 1.

Proof: Let the Hamming code be de�ned as a [n, k, d] code as above where
for some integer r, n = 2r − 1, k = 2r − 1 − r, and d = r. In the binary case,
the size of the ambient space is qn = 2n = |GF (q)n| and the size of the code is
qk = 2k = |C|. Thus, the size of any coset S of C is

|S| = |GF (q)n|/|C| = 2n−k = 2r = n+ 1.

Claim: Each coset contains a coset leader of wt ≤ 1 and no coset contains more
than one vector of wt ≤ 1. Proof of claim: Assume that v1+C is one such coset
with two distinct vectors w1, w2 of wt ≤ 1. Then,

w1 = v1 + c1, w2 = v1 + c2.

So,
w1 − w2 = c1 − c2 ∈ C.

And, since wt(w1 − w2) = 2 and d(C) = 3 for a Hamming code, we have a
contradiction. Also, by the Pigeonhole Principle, each coset contains exactly
one vector of wt ≤ 1. Thus, the claim holds, and this also proves the theorem.
�

Let C be a linear code in V = GF (q)n, as above. We associate to V the
usual Euclidean inner product, denoted by a dot · or by brackets 〈. . . , . . . 〉. The
dual code of C is the vector space of all code words in GF (q)n which are
orthogonal (with respect to the given inner product) to each codeword in C:

C⊥ = {v ∈ GF (q)n | 〈v, c〉 = 0 ∀ c ∈ C}. (3)

If C is an [n, k, d] code over GF (q), the covering radius is de�ned to be

ρ = max
x∈GF (q)n

d(x,C). (4)

A perfect code is one for which ρ = [(d− 1)/2]. A covering code is a linear
error-correcting code having a `good' covering radius ρ. A `good' code refers to
one which is close to perfect in some sense.
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Theorem 2 Hamming codes are perfect.

Proof: Since d(C) = 3 for Hamming codes, we desire to show that equality
holds in

ρ = [(d− 1)/2] = 1.

To attain a contradiction, assume

ρ = max
x∈GF (q)n

d(x,C) > 1;

then for some x ∈ GF (q)n, d(x,C) > 1. But by the previous theorem, the coset
x+C must contain a coset leader of wt ≤ 1, a contradiction to the assumption
that d(x,C) > 1. Thus, ρ = 1. �

5 Steganographic Systems from Error Correcting

Codes

Following [M], a steganographic system S can be formally de�ned as

S = {C,M,K, emb, rec},

where

(i) C is a set of all possible covers

(ii) M is a set of all possible messages

(iii) K is a set of all possible keys

(iv) emb : C ×M×K → C is an embedding function

(v) rec : C × K →M is a recovery function

and
rec(emb(c,m, k), k) = m, (5)

for all m ∈ M, c ∈ C, k ∈ K. We will assume that a �xed key k ∈ K is
used, and therefore, the dependence on an element in the keyspace K can be
ignored. The original cover c is called the plain cover,m is called themessage,
and emb(c,m, k) = emb(c,m) is called the stegocover. Let C be GF (q)n,
representing both plain covers and stegocovers. Also, letM be GF (q)k, where
k is a �xed integer such that 0 ≤ k ≤ n.

As images are the primary focus of the stegoschemes in this paper, we desire
to embed information in the cover image such that its existence is not suspected.
Let us start with a picture where the pixels are divided blocks of size n.

An (n, k, t) stegocoding function over �nite �eld GF (q) is a vector-valued
linear transformation L(x) = (`1(x), `2(x), . . . , `k(x)) : GF (q)

n → GF (q)k sat-
isfying the following condition: For any given x ∈ GF (q)n and y ∈ GF (q)k,
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there exists a z ∈ GF (q)n such that wt(z) ≤ t and L(x + z) = y. We call the
matrix L an (n, k, t) stegocode matrix.

The mapping that sends (x, y) to z as above de�nes a qn×qk encoding table
B.

Remark 1 In this case, x is the plain cover, y is the message, x + z is the
stegocover, and z is the change made to the plain cover. z is derived from the
speci�c system used, where it is desired that the weight of z is small while still
retaining the ability to embed as much information as possible.

Remark 2 The stegocoding function in [ZL] corresponds closely to the cover-
ing function from [B] and roughly corresponds to the recovering function from
Proposition 4.4 in [M].

We next de�ne the encoding table B. For x ∈ GF (q)n, y ∈ GF (q)k, de�ne
Bx,y = z where z satis�es the following conditions: z ∈ GF (q)n, wt(z) ≤ t, and
L(x+ z) = y.

For the binary case (q = 2), let C be the [n, n − k, d] code given by C =
ker(L), where L is a k×n matrix of full rank over GF (2). For each y ∈ GF (2)k,
let v = v(y) ∈ GF (2)n be such that L−1(y) = C + v. Thus, Bx,y = z as above
means that x+ z ∈ C + v which implies that z ∈ C + v + x. We select z to be
an element of C + v + x of smallest weight, i.e. a coset leader. Choose t such
that it is the largest weight of all the coset leaders of C. Therefore, the check
matrix of the code C above de�nes an (n, k, t) stegocoding function.

Theorem 3 Assume L is a k×n matrix as above. L is a (n, k, t) linear stego-
code matrix i� t is the covering radius of the code C whose check matrix is
L.

The proof of the theorem above can be found in [M].

5.1 Practical Aspects of the Encoding Table

The brute force computation of this table involves qn+k calculations. There-
fore, the naive implementation of our stegoscheme requires that B is computed
beforehand. Unless n and k are relatively small, this computation will be ex-
pensive. However, for some codes (those for which an e�cient way of computing
the coset leader is known), there are more e�cient methods of computation.

5.2 Encoding Table Examples

Example 2 Next we give an example of a (5, 2, 1) stegocoding function.
De�ne the check matrix and generator matrix as follows:

H =

(
1 1 1 1 0
0 1 0 0 1

)
, G =

1 0 0 1 0
0 1 0 1 1
0 0 1 1 0

 .
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We have C = ker(H) = Row(G). Since dim(C) = 3, this is a [5, 3, 2]
code. De�ne the coset space by Q = GF (2)5/ker(H). De�ne the syndrome of
y ∈ GF (2)2 to be the coset

H−1y = {v =


v1
v2
v3
v4
v5

 | Hv = y}.

Now we will compute all the syndromes explicitly. Computing the encoding
table amounts to computing all the coset leaders, which are indicated in bold.

H−1
(
0
0

)
= {(0,0,0,0,0), (1, 0, 0, 1, 0), (1, 0, 1, 0, 0), (0, 0, 1, 1, 0),

(1, 1, 0, 0, 1), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1), (1, 1, 1, 1, 1)}

H−1
(
1
0

)
= {(0,0,0,1,0), (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 1),

(1, 0, 1, 1, 0), (1, 1, 0, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 0, 1)}

H−1
(
0
1

)
= {(0,0,0,0,1), (0, 1, 0, 1, 0), (1, 1, 0, 0, 0), (0, 1, 1, 0, 0),

(1, 0, 0, 1, 1), (0, 0, 1, 1, 1), (1, 0, 1, 0, 1), (1, 1, 1, 1, 0)}

H−1
(
1
1

)
= {(0,1,0,0,0), (0, 0, 0, 1, 1), (1, 0, 0, 0, 1), (0, 0, 1, 0, 1),

(1, 1, 0, 1, 0), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0), (1, 0, 1, 1, 1)}.
Note that H is a (5, 2, 1) stegocoding function.

Let C be any Hamming code over GF (q). Then, there is an integer r ≥ 1
such that C has length n = qr − 1, dimension k = qr − r − 1, and minimum
distance d = 3.

Example 3 Let us consider an example of a F5 stegosystem using a [7, 4, 3]
Hamming code. De�ne the check matrix and generator matrix as follows:

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 , G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

Denote the coset space by Q = GF (2)7/C, where C = ker(H) is a [7, 4, 3]
Hamming code.

The encoding table is a 128 × 16 array of vectors. We describe a speci�c
example below. Let x = (1, 1, 1, 1, 1, 1, 1) and y = (1, 0, 0) We verify that Bx,y =
(0, 0, 0, 0, 1, 0, 0) = z, since
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1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1




1
1
1
1
0
1
1


=

1
0
0

 = y.

Other entries of B can be determined similarly.

For further details, see [B], [BB], [BF], [M], and [ZL].

6 The F5 Stegosystem

This project concerns the F5 stegosystem, which incorporates linear error-
correcting codes. Developed by D. Westfeld in 2001, the system hides k infor-
mation bits into covers of length n = 2k− 1. More importantly, this embedding
is accomplished by changing at most one bit.

Before de�ning the F5 stegosystem, new notation must �rst be de�ned. For
any positive integer m, [m]2 is the binary representation. Similarly, for any
binary representation x, [x]10 is the associated positive integer. Therefore, for
any binary x, [[x]10]2 = x, and for any positive integer m, [[m]2]10 = m.

In this system, the embedding map is de�ned as

emb : GF (2)n ×GF (2)k → GF (2)n (6)

emb(c,m) = c+ e(
[
m+

n∑
i=1

ci[i]2
]
10
) . (7)

At this point, note that the message is in GF (2)q, and both the plain text
and stegocover are in GF (2)n.

The recovery map is

rec : GF (2)n → GF (2)k (8)

rec(c′) =

n∑
i=1

c′i[i]2 . (9)

6.1 Theorem and Proof

Theorem 4 With emb and rec as in (7) and (9), respectively, we have rec(emb(c,m)) =
m.

Proof: If c′ = emb(c,m), where c′ = (c′1, c
′
2, . . . , c

′
n), c = (c1, c2, . . . , cn). Then,

for all but one i, 1 ≤ i ≤ n, we have

c′i = ci.
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Now, suppose c′i0 6= ci0 , 1 ≤ i0 ≤ n. In this case,

i0 =

[
m+

n∑
i=1

ci[i]2

]
10

.

In fact, for any x ∈ GF (2)k, we have

[[x]10]2 = x .

Moreover, for any x ∈ {0, 1, . . . , 2k − 1}, we have

[[x]2]10 = x .

Therefore,

[i0]2 = m+

n∑
i=1

ci[i]2 .

Thus,

rec(emb(c,m)) = rec(c′)

=

n∑
j=1

cj [j]2

=

n∑
j = 1
j 6= i0

cj [j]2 + c′i0 [i0]2

=

n∑
j = 1
j 6= i0

cj [j]2 + c′i0(m+

n∑
j=1

cj [j]2) .

At this point, there are 2 cases: c′i0 6= 0 (i.e. c′i0 = 1), and c′i0 = 0.
Case 1: Let c′i0 = 1. Then, ci0 = 0, so the above equation gives

rec(emb(c,m)) =

n∑
j = 1
j 6= i0

cj [j]2 + (m+

n∑
j=1

cj [j]2)

= m + 2

n∑
j=1

cj [j]2

= m .

Case 2: Let c′i0 = 0. Then, ci0 = 1, so the above equation gives
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rec(emb(c,m)) =

n∑
j = 1
j 6= i0

cj [j]2

=

n∑
j=1

cj [j]2 + ci0 [i0]2

=

n∑
j=1

cj [j]2 + (m+

n∑
j=1

cj [j]2)

= m+ 2

n∑
j=1

cj [j]2

= m .

�

7 Conclusion

The mating of coding theory's error-correcting and covering codes with digital
steganography has the potential to produce e�ective and e�cient new stegoschemes.
The relatively low statistical detectability of stegoschemes like the F5 system
still maintain embedding e�ciency, thus making them desirable for use.

While the above analysis provides only a narrow view of the methods of
digital steganography, it alludes to the power, implications, and importance that
it has the potential to occupy in the future. As these stegoschemes continue
to become stronger, and therefore less statistically detectible, their use will
spread. Several free steganography programs are already accessible, and to
date, information transmission between several enemies of the United States
has been reported. These include, but are not limited to, terrorist organizations
and Russian operatives.
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