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MEASUREMENT SYSTEMS 
 
Virtually all of the experiments you have done so far in your engineering courses have 
been static measurements. In this unit we will look at the behavior of measurement 
systems (transducers) when they are used to measure dynamic (time changing) quantities. 
 
 
ORDER OF MEASUREMENT SYSTEMS 
 
When we measure dynamic quantities, the behavior of the measurement system is 
described by a differential equation. Depending upon the basic physical principles used 
by the measurement system, we need a differential equation of differing order. For 
example, if the measurement system depends on Newton’s Laws of Motion (a bathroom 
scale is a common day instrument that relies on this principle) then we need a second 
order differential equation to describe the response of the instrument. 
 
If x is the parameter we are measuring (e.g., temperature) and y is the output of the 
measurement system (e.g., the electrical output from a thermocouple), we can define the 
following: 
 

Zero Order system:  0a y x=  
 

First Order system:  1 0

dy
a a y x

dt
+ =  

 

Second Order system:  
2

2 1 02

d y dy
a a a y x

dt dt
+ + =  

 

Third Order system:  
3 2

3 2 1 03 2

d y d y dy
a a a a y x

dt dt dt
+ + + =  

 
and so on 

 
The order of the system relates to the number of energy stores in the measurement 
system. For example, if you use a mercury-in-glass thermometer to measure temperature 
there is a single energy store (the heat capacity of the mercury) – this device acts 
predominantly like a 1st order system. 
 
Many devices work on the principle of masses reacting on springs. These devices include 
the bathroom scale mentioned above, accelerometers, and seismographs. These devices 
have two energy stores – the spring (elastic potential energy) and the mass (kinetic 
energy). Thus, these devices respond like 2nd order systems. 
 
There are very few systems that respond like 0th order systems. These are usually fairly 
simple electronic devices such as a potentiometer. 
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ZERO ORDER SYSTEMS 
 
We rearrange the zero-order equation as follows: 
 

y Kx=  
 
where y is the output of the device in response to input x and K is the static sensitivity. 
The units of K are (output)/(input), for example, Volts per degree.  
 
When a zero-order system is subject to a time varying quantity, the output of the device 
exactly follows the input without any measurement system-generated variations in 
amplitude and without any time lag (delay) between the input and output. 
 
 
FIRST ORDER SYSTEMS 
 
First order systems have a single energy store. Examples of such systems include a 
simple R-C electrical circuit, a mercury in glass thermometer, and a thermocouple. For 
convenience we will rearrange the first order equation of motion into the form: 
 

dy
y Kx

dt
τ + =  

 
The symbols mean: 
 
 x  The time-varying quantity we are measuring – the measurand 

 
y  The time-varying output from our measurement system. This is the 

observed quantity 
 
K  This is the static sensitivity. The units are (output)/(input), for example, 

Volts per degree.  
  

τ  This is the time constant of our measurement system which is determined 
by the physical characteristics of the system. A measurement system with 
a small time constant will respond quicker to changes than a system with a 
large time constant. The time constant depends on the ‘size’ of the energy 
store as well as how quickly the energy can get in/out of that store. 

 
 For example, a mercury in glass thermometer will respond quicker when 

plunged into water than it does in air (faster heat transfer with water). 
A thermometer with a large bead will respond slower than a thermometer 
with a small bead (bigger energy store). 
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We will investigate the response of a first order system to three different inputs: step 
input, ramp input, and sine wave input. 
 
 
RESPONSE TO STEP INPUT 
 
A step input is defined as: 

0 0
0O

x t
x x t

= <
= ≥

 

time, tx=0

x=xO

 
 

We solve the first order differential equation in two parts: the general solution and the 
particular solution.  
 
We find the general solution by solving the differential equation with the right side of the 
equation to zero, 0Kx = . The general solution for the above first order differential 
equation is: 
 

/t
GENy Ce τ−=  

 
where C is an unknown constant that has to be determined from the initial conditions. 
 
The particular solution for a step input is: 

 

PART Oy Kx=  
 
The complete solution is the sum of the general and particular solutions, with the constant 
C determined for this specific problem. 
 

/t
GEN PART Oy y y Ce Kxτ−= + = +  

 
Initial conditions of y = 0 at t = 0 give: 
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/

0

t
O

O

O

y Ce Kx

C Kx

C Kx

τ−= +

= +

= −

 

 
Hence our final solution is: 
 

( )/1 t
Oy Kx e τ−= −  

 
Here is a graph showing the difference between the input (measurand) and output 
(observed quantity) for three different first order systems responding to a step input. 
Notice the following: 
 

Even though the output starts to change immediately, a first order system can 
never respond instantly to an input. 
 
The smaller the time constant, the quicker the system responds. Large time 
constants lead to slow response. 
 
For a step input, the output is asymptotic to and never quite reaches the input. 
 
There is never an overshoot – the output is always smaller than the input. (Watch 
for a decreasing step, where the output is always greater than the input!) 
 

time, tx=0

x=xO

increasing 
time constant

 
 
We could also define a step as starting at non-zero. For example, if the temperature being 
measured suddenly changes from TO to T∞, the temperature measured by a first order 
measuring system (assuming it is calibrated to read in units of temperature) would be: 
 

( ) /t
OT T T T e τ−

∞ ∞= − −  
or 

( ) ( )/1 t
O OT T T T e τ−

∞= + − −  
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or 
( )
( ) ( )/1O t

O

T T
e

T T
τ−

∞

−
= −

−
 

 
or 

( )
( )

/t

O

T T
e

T T
τ∞ −

∞

−
=

−
 

 
EXAMPLE: A first order clinical thermometer is reading 70OF when it is plunged into a 
feverish mouth that is at 101OF. The time constant is τ = 60 seconds. What temperature 
will the device record at t = 2 minutes? 
 
SOLUTION:  

( )
( )

/

120 / 60101 101 70

96.805

t
O

O

T T T T e

T e

F

τ−
∞ ∞

−

= − −

= − −

=

 

 
More typically, you would not know your actual mouth temperature – after all, that is 
why we are measuring it! Let’s change the question a little to make it more realistic. 
 
EXAMPLE: A first order clinical thermometer is reading 70OF when it is plunged into a 
feverish mouth. After 2 minutes the recorded temperature was 101OF. The time constant 
is τ = 60 seconds. What is the actual temperature of the mouth? 
 
SOLUTION:  

( )
( )

/

120 / 60101 70

t
OT T T T e

T T e

τ−
∞ ∞

−
∞ ∞

= − −

= − −
 

gives 
105.85OT F∞ =  

 
Quite a difference! 
 
 
RESPONSE TO RAMP INPUT 
 
A ramp input is defined as: 
 

0
0

i

i

x x t
x x At t

= <
= + ≥
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where ix is the initial value of the measurand, which has not changed for a very long time 
prior to the start of the ramp, and A  is the slope of the ramp input in units of 
(output) / (time), for example, OF per minute. 
 
The ramp input is shown in the following figure: 
 

time, t

xi

slope = A

 
 
The particular solution for t ≥ 0 is: 
 

( )PART iy Kx KA t τ= + −  
 

The full solution, when solved for the initial conditions, becomes: 
 

( )/t
iy Kx KA e tττ τ−= + + −  

 
Here is a graph showing the difference between the input (measurand) and output 
(observed quantity) for two different first order systems responding to a ramp input. 
Notice the following: 
 
 The output does not immediately start to respond to the input (zero slope at t = 0). 
 
 The larger the time constant, the more the output lags behind the input. 
 

The output is always smaller than the input. (Watch for a negative slope where the 
output is always greater than the input!) 

 



11/16/2005 7:21 AM 

1st Order Systems - 7 

time, t

increasing 
time constantxi

 
 
INSTANTANEOUS ERROR 
As experimentalists, we are concerned with the errors introduced by our measurement 
system. One such error is the instantaneous error. By that, we mean, “What is the 
difference between the measurand and observed quantity at any instant in time?” 
 
Notice the curved shape to the observed quantity just after time t = 0. Usually this 
transient region is very short in duration compared to the overall measurement. This leads 
us to notice that after the ramp has been applied for a longer time, the output becomes a 
straight line, parallel to the input. Therefore, when we estimate the errors introduced by 
our measurement device, we only consider the straight portion of the results. 
 
Mathematically, we solve the output equation for large t: 
 

( )
( )

ττ τ

τ

−= + + −

>> = + −

/

when 0

t
i

i

y Kx KA e t

t y Kx KA t
 

 
If there were no error, the output would exactly follow the input: 
 

 

 

i

NO ERROR

NO ERROR i

x x At

y Kx

y Kx KAt

= +

=

= +

 

 
The error is thus: 
 

( ){ } { }
 error NO ERROR

i i

y y

Kx KA t Kx KAt

KA

τ

τ

= −

= + − − +

= −

 

 
For a measurement system calibrated to read in “correct” units, the overall value for K is 
one. Thus the error in our measurement system becomes: 
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instantaneous error Aτ= −  

 
The error is demonstrated in the following figure: 
 

time, t

instantaneous 
error, Aτ

xi

 
 

 
TEMPORAL ERROR 
 
We saw that the output was always behind (i.e., lagged) the measurand. This leads to 
another question, “How long after the measurand has passed a prescribed level does the 
measurement system indicate that level?” This is a temporal (time domain) error. 
 
We calculate the error by looking at a certain level and calculating the difference in time 
between input and output. Again, we only consider the ‘large-time’ situation. 
 
If there were no error, the output would exactly follow the input, and as before: 
 

 NO ERROR iy Kx KAt= +  
 
The actual (observed) output is: 

 

( )
( )

ττ τ

τ

−= + + −

>> = + −

/

when 0

t
i

i

y Kx KA e t

t y Kx KA t
 

 
We ask, what is the time difference for these two levels to be the same? 
 

( )
 1

2

NO ERROR i

OBSERVED i

y Kx KAt

y y Kx KA t τ

= +

= = + −
 

 
When  NO ERRORy y=  we solve the equations to get: 
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( )1 2t t τ− =  

 
This error is independent of both K and A . Thus, after the initial transient period, the 
output of a first order system lags a ramp input by one time constant. The error is 
demonstrated in the following figure: 
 

time, t

temporal error, τ

xi

 
 
EXAMPLE: 
The heating system in a very cold house (less than 50OF ) is turned on. The heating 
system is controlled by a thermocouple with a 5-minute time constant. Assume the 
temperature increases approximately linearly with respect to time. During heating it was 
noticed that it took 40 minutes for the temperature to rise from 55OF to 71OF.  
 
When the thermocouple indicates 75OF it switches off the heating system. Calculate the 
following: 
 

a) How long after the actual house temperature passes 75OF does the 
thermocouple indicate that temperature? 
 
b) At the instant the heating system is switched off, what is the actual house 
temperature? 

 
SOLUTION: 
We assume that we are not concerned with the initial transient behavior of the 
thermocouple. We are therefore in the straight-line portion of the response curves. 
 
a) The temporal error is the time constant. Therefore, the thermocouple will indicate 
75OF some 5 minutes (the time constant, τ) after the actual temperature passes 75OF. 

 
b) The instantaneous error is .Aτ−  First, calculate the slope of the input. The change 
was (71 – 55) = 16OF in 40 minutes, so: 
 



11/16/2005 7:21 AM 

1st Order Systems - 10 

16
0.4 /minute

40
OA F= =  

The instantaneous error is 0.4 5 2.0OA Fτ− = − × = − . Therefore, the thermocouple reads 
2OF below the actual temperature, and the actual room temperature will be 77OF. 
 
 
EXAMPLE: 
After the heating system was turned off in the previous example, the air conditioner was 
switched on. The air conditioner can reduce the temperature in the house at a rate of 
0.6OF/minute. The thermocouple switches the air conditioner off when the temperature 
passes 70OF. Calculate the actual house temperature when the thermocouple indicates 
70OF. 
 
SOLUTION: 
The ramp input has a negative slope: 
 

0.6 /minuteOA F= −  
 
The instantaneous error is ( )0.6 5 3.0OA Fτ− = − − × = + . Therefore, the thermocouple 
reads 3OF above the actual temperature, and the actual room temperature will be 67OF. 
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RESPONSE TO HARMONIC INPUT 
 
In engineering we do not very often come across pure harmonic motion. However, when 
we have complicated periodic functions we often analyze them using Fourier analysis. 
What this essentially does is to break the complicated waveform (for example, the 
temperature in the combustion chamber of an internal combustion engine) into a series of 
harmonic signals. We then separately analyze each of those harmonic signals. 
 
Before we can do this, we need to understand how our measurement systems respond to 
pure harmonic excitation. 
 
Throughout this section we assume that the harmonic excitation has been going on for a 
long time. This way, we can ignore the transient effects on our measurement system 
caused when the harmonic input first starts. That means we ignore the general solution, 
and only consider the particular solution. 
 
The measurand (input) is: 
 

( )sinOx x tω=  
 
In this equation: 
 
 x  is the time-varying quantity we are measuring – the measurand 
 Ox  is the mean-to-peak amplitude of the harmonic excitation 

ω  is the circular frequency of the excitation. In this equation the circular 
frequency must be in units of radians per second (rad/s). 

t  is time in seconds 
 
 
The particular solution is: 
 

( )
( )

2
sin

1

OKx
y tω φ

ωτ
= +

+
 

 
where 

y  is the time-varying output of the measurement system (the observed 
quantity) 

φ  is the phase between the input and output, measured in radians. The phase 
is calculated as the inverse tangent of frequency and system time constant: 

 
( )1tanφ ωτ−= −  

 
For the previous sections on step input and ramp input we looked at graphs of input and 
output versus time. We can do the same for harmonic excitation. Here are two examples. 
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The first is for a very low frequency of excitation, and the second is for a higher 
frequency. The time axes have been changed to show the same number of cycles. 
 

time, t

xO

increasing 
time constant

 

time, t

xO

increasing 
time constant

 
Notice the following: 
 
 The output is always behind (lagging) the input. 
 
 The magnitude of the output is always smaller than the magnitude of the input. 
 

As the time constant gets bigger, the magnitude of the output gets smaller and the 
lag gets bigger. 

 
As the frequency goes up, the output of our measurement system gets smaller. 

 
These time-based graphs have very limited use for harmonic excitation. More often we 
look at the magnitude and phase characteristics as functions of frequency. Actually, 
rather than ‘raw’ frequency, we use the nondimensional frequency ωτ . The frequency ω  
is in units of radians per second and the time constant τ  is in units of seconds. Therefore 
the nondimensional frequency has no units. 
 
The following two graphs show how the amplitude and phase of the measurement system 
change as the excitation (input, measurand) frequency changes. The vertical axes show 
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the amplitude ratio of (output) / (input) and the horizontal axes shows the nondimensional 
frequency ωτ . 
 
This graph shows the equation: 

( )
( )

2

1
 versus 

1O

Y
Kx

ωτ
ωτ

=
+
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This graph shows: 

( ) ( )1tan  versus φ ωτ ωτ−= −  

-90

-75

-60

-45

-30

-15

0

0 1 2 3 4 5 6 7

Nondimensional (omega-tau)

P
ha

se
 (

de
gr

ee
s)

 
 
 
 



11/16/2005 7:21 AM 

1st Order Systems - 14 

EXAMPLE: 
A first order measurement system with a time constant of τ = 0.1 seconds is used to 
measure a harmonically varying voltage. The voltage has a peak-to-peak amplitude of 
6 Volts and a frequency of 5 Hz. Calculate the following: 
 
 a) Frequency of the observed signal  

b) Mean-to-peak amplitude of the observed signal 
 c) Phase (in degrees) of the observed signal 
 d) Time delay (lag) of the observed signal. 
 
SOLUTION (analytical): 
a) The input and observed signals both have the same frequency. Therefore, 
observed frequency = 5 Hz. 
 
b) mean-to-peak amplitude = (peak-to-peak)/2 = 6/2 = 3 V 
 
 2 2 5 31.42 /f rad sω π π= = =  
 

( )2

1

1O

Y
Kx ωτ

=
+

  

hence 
( ) ( )2 2

3
0.910

1 1 31.42 0.1

OKx
Y V

ωτ
= = =

+ + ×
(observed mean-to-peak) 

 
c) ( ) ( )1 1tan tan 31.42 0.1 72.3Oφ ωτ− −= − = − × = −  
 

d) One cycle takes 1/5 = 0.2 seconds. Therefore 72.3O takes
72.3

0.2 0.0402
360

O

O s× =  

 
SOLUTION (graphical): 
a) Same solution as analytical solution (5 Hz) 
 
b) mean-to-peak amplitude = (peak-to-peak)/2 = 6/2 = 3 V 

 
2 2 5 0.1 3.142fωτ π τ π= = × = (no units) 

 

from the graph, at 3.142ωτ =  we get 0.3 (approx)
O

Y
Kx

=  so 0.3 3 0.9Y V= × =  

c) from the graph, at 3.142ωτ =  we get 70  (approx)Oφ = −  
 
d) Same solution as analytical solution (0.0402s)  
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EXAMPLE: 
A first order system measures a harmonic voltage and indicates the mean-to-peak 
amplitude is 5 Volts. If the measurement system has a time constant of τ = 0.3 seconds 
and the signal has a frequency of 10 Hz, what is the mean-to-peak amplitude of the 
measurand? 
 
SOLUTION: 
 2 2 10 0.3 18.85fωτ π τ π= = × =  
 

( )2

1

1O

Y
Kx ωτ

=
+

  

hence ( ) ( )2 2
1 5 1 18.85 94.4OKx Y Vωτ= + = + = (mean-to-peak) 

 
Clearly, using a measurement system with an inappropriate time constant can lead to 
large measurement errors. 
 
 
 
Special Situation: 
One situation warrants further investigation. Very often the signal we are considering 
consists of a harmonic signal with a DC level offset. For example, if we are measuring 
temperature in an engine, the temperature cannot go negative – there is a periodic signal 
with a DC offset. The equation for the waveform we consider is: 
 

( )sinOx x x tω= +  
 
The output from a first order system will be: 
 

( )
( )

2
sin

1

OKx
y Kx tω φ

ωτ
= + +

+
 

 
What this means is that the output from our first order system will have the correct DC 
offset, superimposed with the harmonic content determined using the previous harmonic 
excitation work in this handout. 
 
Some observations and questions: 
 

If you wish to measure the DC component, should you use a first order system 
with a short or long time constant? 

  
 What if you need to measure the harmonic part? 
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EXAMPLE: You are designing a thermocouple first order system to monitor the 
temperature in a passageway. The system will activate a heater and/or air conditioner if 
the observed temperature varies by more than 0.2OF from the required value of 72OF. It 
has been observed (using high-speed very accurate equipment) that the movement of hot 
equipment on carts past the thermocouple causes a heating effect such that the actual 
temperature is approximately harmonic, following the equation: 
 

( )72 0.4sin 0.005  OT t F= +  
 
a) What is the shortest permissible time constant for the thermocouple such that it 
will not activate the heater/air conditioner just because of the cart activity? 
 
b) Someone opens a window and the temperature suddenly increases by 5OF. Using 
the time constant you found in a) above, what will be the time delay before the 
thermocouple system activates the air conditioner? 
 
SOLUTION: 
a) We need the observed mean-to-peak amplitude to be less than 0.2OF. We have 

( )

( )

2

2

1

1

0.2 1
0.4 1 0.005

346.4

O

Y
Kx

s

ωτ

τ

τ

=
+

=
+

=

 

 
A system with a time constant of 346.4s or more will be OK. Let’s choose τ = 
360 seconds. 
 
b) We now have a step input (back to the top of this handout!). The response of the 
system is given by: 

 
( ) ( )/1 t

O OT T T T e τ−
∞= + − −  

Putting in the values and solving for time, t: 
 

( )( )/ 36072.2 72 77 72 1

14.7

te

t s

−= + − −

=
 

 
Note that we have managed to get a control system to respond quickly (less than 15 
seconds) to a small increase in temperature, while ‘ignoring’ the cart-induced 
fluctuations. 
 
FOLLOW-ON QUESTION: How would your solution be different if you needed to 
measure the temperature fluctuations caused by the passing equipment? 
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THERMOCOUPLES 
A thermocouple is an electrical device that is commonly used to measure temperature. If 
any two dissimilar metals are connected together a voltage is developed. This 
phenomenon is called the Seebeck effect (Thomas Seebeck, 1821). The level of the 
voltage depends on the temperature of the connection. By measuring the induced voltage, 
we can get a measure of the temperature of the junction. 
 
Since there is only one “energy sink” (the heat capacity of the metal forming the 
junction) a thermocouple acts like a first order system. 
 
Note the following: 

The voltage must be made with no current flow. Therefore we need to use a very 
high input impedance voltmeter (DVM) 
 
Once we connect the two wires to the DVM, we have introduced 2 more 
connections, so there are now 3 connections with the Seebeck effect. 

 

JUNCTION

Metal B wire

Metal A wire

Connection
Copper

Voltmeter

Connection
Copper

 
 
How can we get round the problem of the voltage caused by the DVM connections? We 
do this by introducing one or 2 more connections, called the reference junction. The 
following figures show two ways of making this circuit. Note that the second figure uses 
copper from the reference junction to the DVM. What are the advantages of this method? 
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REFERENCE
JUNCTION

SENSING
JUNCTION

Metal B wire

Metal A wire

Metal A wire

Copper

Copper

Voltmeter

 
 
 

REFERENCE
JUNCTIONS

at same temperature

Metal B wire

SENSING
JUNCTION

Metal A wire

Copper

Copper

Copper

Voltmeter

Copper

 
 
The reference junction is held at a constant temperature, often 0OC – melting ice. There 
are many electronic devices that simulate this temperature without the need for ice. 
 
The following figures show two more ways of connecting thermocouple wires. The 
thermopile connects several thermocouples together and gives a voltage output greater 
than a single thermocouple. The DAQ arrangement shows how it is only necessary to 
have a single reference junction when measuring temperatures with several 
thermocouples. In this configuration the DAQ software determines the difference in 
voltage between each thermocouple and the reference junction. It then converts these 
voltages to temperatures. 
 



11/16/2005 7:21 AM 

1st Order Systems - 19 

Active
Junction

Active
Junction

Active
Junction

Active
Junction

Active
Junction

Reference

Reference

Reference

Reference

Reference

Reference

D
ig

ita
l V

ol
tm

et
er

 
Thermopile 

 
 
 

Active
Junction

Active
Junction

Reference

Active
Junction

Active
Junction

In
pu

t t
o 

D
A

Q

 
Four thermocouples and a single reference junction used for a  

Data Acquisition (DAQ) system 
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The level of voltage generated by the wire junction depends on the type of metals in the 
two separate wires. NIST (National Institute of Standards and Technology) restricts the 
number of different wires that can be used for commercial thermocouples, and has issued 
standard calibration curves. Unfortunately the voltage generated is not a linear function 
of temperature. Therefore the voltage has to be determined using a lookup table. In a 
computer application the curves are usually determined as polynomial functions. 
 
The standard thermocouple materials are shown in the following table. The sensitivity is 
only an approximate value to help in selection. Exact calculations of temperature must be 
done using the table of thermocouple outputs. 
 

Thermocouple 
Type Materials Lead wire 

color 

Operating 
range 
(OC) 

Sensitivity 
(mV/OC) 

T Copper & constantan Blue -250 to +400 0.052 

E Chromel & constantan Purple -270 to 
+1000 0.076 

J Iron & constantan Black -210 to +760 0.050 

K Chromel & alumel Yellow -270 to 
+1372 0.039 

R Platinum & platinum/13% 
rhodium Green -50 to +1768 0.011 

S Platinum & platinum/10% 
rhodium Green -50 to +1768 0.012 

C Tungsten/ 5% rhenium & 
tungsten/ 26% rhenium 

White, red 
tracer 0 to +2320 0.020 
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The following table is to be used for all thermocouple problems on this course. The table 
gives the output (in mV) of different thermocouples assuming the reference junction is 
held at 0OC. 
 
 

Temperature 
(OC) T-Type E-Type J-Type K-Type R-Type S-Type 

-250 -6.181 -9.719  -6.404   
-200 -5.603 -8.824 -7.890 -5.891   
-150 -4.648 -7.279 -6.499 -4.912   
-100 -3.378 -5.237 -4.632 -3.553   
-50 -1.819 -2.787 -2.431 -1.889   
0 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.789 1.192 1.019 0.798 0.111 0.113 
40 1.611 2.419 2.058 1.611 0.232 0.235 
60 2.467 3.683 3.115 2.436 0.363 0.365 
80 3.357 4.983 4.186 3.266 0.501 0.502 
100 4.277 6.317 5.268 4.095 0.647 0.645 
120 5.227 7.683 6.359 4.919 0.800 0.795 
140 6.204 9.078 7.457 5.733 0.959 0.950 
160 7.207 10.501 8.560 6.539 1.124 1.109 
180 8.235 11.949 9.667 7.338 1.294 1.273 
200 9.286 13.419 10.777 8.137 1.468 1.440 
220 10.360 14.909 11.887 8.938 1.647 1.611 
240 11.546 16.417 12.998 9.745 1.830 1.785 
260 12.572 17.942 14.108 10.560 2.017 1.962 
280 13.707 19.481 15.217 11.381 2.207 2.141 
300 14.860 21.033 16.325 12.207 2.400 2.323 
350 17.816 24.961 19.089 14.292 2.896 2.786 
400 20.869 28.943 21.846 16.395 3.407 3.260 
450  32.960 24.607 18.513 3.933 3.743 
500  36.999 27.388 20.640 4.471 4.234 
600  45.085 33.096 24.902 5.582 5.237 
700  53.110 39.130 29.218 6.741 6.274 
800  61022  33.277 7.949 7.345 
900  68.873  37.235 9.203 8.448 
1000  76.358  41.269 10.503 9.585 
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Example: 
A pair of K-type thermocouples has a voltage difference of 17.893 mV. The cooler 
junction is known to be at 300OC. What is the temperature of the hot junction? 
 
Solution:  
All calculations must be done in voltages. This is because the thermocouple calibration is 
not quite linear. The equation is: 
 

OUT ACTIVE REFERENCEV V V= −  
so 

17.893 ACTIVE REFERENCEmV V V= −  
 
We need convert the 300OC  to mV by looking up in the table to get 

12.207REFERENCEV mV= . The calculation now is: 
 

17.893 12.207

30.100
ACTIVE

ACTIVE

mV V

V mV

= −
=

 

 
Interpolation in the table gives the temperature for 30.100mV as 721.7 OC. 
 
 
Example: 
The hot junction of an R-type thermocouple pair is at a known temperature of 900 OC. 
The cold junction is at 180 OC. If the DAQ system is calibrated assuming the reference 
junction is held at 0 OC, what will be the indicated temperature? 
 
Solution: 
Look up the temperatures in the table to get voltages: 
 
 180 OC (reference) 1.294 mV 
 900 OC  (active) 9.203 mV 
 

9.203 1.294 7.909
OUT ACTIVE REFERENCEV V V

mV

= −
= − =

 

 
Interpolation in the table gives the temperature for 7.909 mV as 796.7OC. 
 
Note that if you “just” do the calculations as temperature calculations, you will get the 
wrong answer (in this case, 900-180 = 720OC). 
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PROBLEMS 
 
1stOrder-1: 
A thermocouple is subject to a step change in temperature. Determine the time it will take 
the thermocouple to record 99% of this change for each of the following thermocouple 
time constants: 
 
 τ = 0.1s, 1s, 10s, and 1 min 
 
1stOrder-2: 
A fluid has a sinusoidal temperature variation of ±2OF with a time period of 10 seconds.  
For each of the time constants in problem 1, calculate: 
 
a) The indicated (i.e., mean-to-peak) output from the systems. 
b) The phase lag in degrees. 
 
1stOrder-3: 
The following data were obtained by plunging a thermocouple into a mixture of ice and 
water at a known temperature of 0OC. The thermocouple was initially at the ambient 
room temperature of 20OC. 
 
 Time (s) 0.1  0.5  1.0  2.0  3.0 
 Temp (OC) 16.7  8.1  3.3  0.6  0.1 
 
a) Create a worksheet in MathCAD that plots the raw time vs. temperature data 
b) Identify a linearizing transformation for the expected response of the system 
c) Transform the data, then do a complete linear regression of the data 
d) Use the results from c) to determine the time constant of the thermocouple. 
e) In the same worksheet re-plot the original temperature vs. time data and overlay 
the theoretical response determined using your calculated time constant. 
 
1stOrder-4: 
A pair of K-type thermocouples is used to measure the temperature in a hot air duct. The 
DAQ is calibrated assuming the reference junction is held at 0OC and the indicated 
temperature is 120OC. The reference junction is actually at 80OC. What is the actual hot 
air duct temperature? 
 
1stOrder-5: 
The same system (DAQ and reference junction) as in problem 4 is now used to control a 
freezer. It is required that the freezer is maintained at –50OC. What temperature should 
the DAQ indicate? 


