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MECHANICAL ENGINEERING DEPARTMENT 
UNITED STATES NAVAL ACADEMY 

 
EM423 - INTRODUCTION TO MECHANICAL VIBRATIONS 

 
CONTINUOUS SYSTEMS - LONGITUDINAL VIBRATION IN RODS 

 
SYMBOLS 
ρ Mass density 
AX Cross-sectional area 
u Longitudinal deflection from equilibrium position 
x Distance along the rod 
P Internal longitudinal force (varies along the rod) 
 
INTRODUCTION 
This theory is applicable to longitudinal vibration in slender rods. With this type of 
vibration, very small amplitudes of motion can produce very large forces. Typical 
problems include damage to thrust bearings in ship propulsion systems, noise and 
damage caused by engine support props in helicopters, and radiated noise problems in 
submarines. 
 
ASSUMPTIONS 
1. The rod is thin compared to its length. 
 
2. The rod is uniform, homogeneous and isotropic. 
 
3. The material is within the elastic limit, and obeys Hooke's Law. 
 
4. Plane sections remain plane. 
 
5. The lateral deflection caused by changes in length of the rod is small. 
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THEORY 
Consider a small element of rod: 
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From Hooke's Law, E = (stress) / (strain), and (stress) = (force) / (area), so 
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Resolve forces along the rod. 
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This is the same wave equation as derived for string vibrations, but with a different wave 
velocity. Using the same method to solve the equation, firstly separate the variables. 
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COMMON BOUNDARY CONDITIONS 
For a FREE end the internal stress is zero. 
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For a FIXED end the displacement is zero. 

0u =  
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NATURAL FREQUENCIES OF A FREE-FREE ROD, length = L 
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NATURAL FREQUENCIES OF A FIXED-FREE ROD, length = L 
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Rearrange for the natural frequencies: 
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DISCUSSION 
1. The solution for longitudinal vibrations in a rod is similar to flexural vibrations of a 

taught string, but with a different wave speed. 
 
2. This means the same discussion applies to rod vibrations. The only difference is 

that, for graphical presentation, longitudinal displacements are usually drawn as 
if they were transverse. 
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EXAMPLES 
1. A steel propulsion shaft on a ship is 25 m long.  Its outside and inside diameters 
are 32 cm and 15 cm respectively. What are the first 2 natural frequencies of 
longitudinal vibration? Solve the problem 2 times. First, assume the gearbox and 
propeller are very light. Second, assume the gearbox is light, but the propeller is very 
heavy. 
 

L = 25 m;     = 7843 kg/m3;   E = 210 kN/mm2 
Free-free 
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Fixed-free 
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f1 =   51.7 Hz 
f2 = 155.2 Hz 

 
 
2. What difference does it make to the previous question if you assume both the 
propeller and gearbox are very heavy? 
 
The solution is identical to that for example 1. Why? 
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ASSIGNMENTS 
 
1. Find, from first principles, the velocity of longitudinal waves along a thin steel rod. 
 
2. The figure shows a schematic of a magnetostriction oscillator. The frequency of 
the oscillator is determined by the length of the 
nickel alloy rod, which generates an alternating 
voltage in the surrounding coils equal to the 
frequency of the fundamental longitudinal vibration 
of the rod. Determine the full length, L, of the rod for 
a frequency of 20 kHz. 
 
3. (extra credit) A uniform rod of length L and cross-sectional area A is fixed at the 
upper end and is loaded with a weight W on the other end. Show that the natural 
frequencies are determined from the equation: 
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SOLUTIONS 
 
1. Find, from first principles, the velocity of longitudinal waves along a thin steel rod. 
 

See the Course Handout 
CONTINUOUS SYSTEMS – LONGITUDINAL WAVES IN RODS 

 
2. The figure shows a schematic of a magnetostriction oscillator. The frequency of 
the oscillator is determined by the length of the nickel alloy rod, which generates an 
alternating voltage in the surrounding coils equal to the frequency of the fundamental 
longitudinal vibration of the rod. Determine the full length, L, of the rod for a frequency of 
20 kHz. 
 
We consider half of the rod, with boundary conditions of fixed at one end (x = 0), and 
free at the other end (x = L). 
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3. (extra credit) A uniform rod of length L and cross-sectional area A is fixed at the 
upper end and is loaded with a weight W on the other end. Show that the natural 
frequencies are determined from the equation: 
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The solution to extra credit problems is available from your instructor. 


