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MECHANICAL ENGINEERING DEPARTMENT 
UNITED STATES NAVAL ACADEMY 

 
EM423 - INTRODUCTION TO MECHANICAL VIBRATIONS 

 
MANY DEGREES OF FREEDOM SYSTEMS 

 
INTRODUCTION 
This handout considers an undamped, lumped mass-spring system. The concepts are 
applicable to other Multi-Degree-of-Freedom (MDOF) systems, and hysteretic damping 
can be included for harmonic motion by letting the stiffness terms be complex. A 
previous handout determined the behavior of a two-degrees-of-freedom system as two 
simultaneous equations.  This handout looks at the matrix solution of the two-DOF 
system, and extends it to general systems with many degrees of freedom. Experimental 
modal analysis, a method of determining the dynamic mathematical model of an 
existing structure, is discussed. 
 
TWO DEGREES OF FREEDOM (2DOF) 
Recall from the 2DOF handout that for the 
most general 2DOF system possible, the 
equations of motion can be written: 
 
 

( )
( )

1 1 1 2 1 2 2 1
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The matrix formulation of these equations is: 
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( )
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or 
[ ][ ] [ ][ ] [ ]M x K x f+ =&&  

 
We find the natural frequencies of this system by setting the excitation to zero. For 
unforced, harmonic motion at circular frequency ωr 

1 1

2 2
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x X
ω   

=   
   

 

 
hence 
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The two circular natural frequencies are therefore the values of ωr which give the matrix 
a zero determinant: 

[ ] ( )
( ) [ ]

2

1 2 2 1

2 2 3 2

0

0
with          and     

0

rK M

k k k m
K M
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or 

( )( )2 2 2
1 2 1 2 3 2 2 0r rk k m k k m kω ω+ − + − − =  

 
which is the same result determined using simultaneous equations in the 2DOF 
handout. 
 
 
MANY DEGREES OF FREEDOM - UNDAMPED 
For a system with many degrees of freedom, the equation of motion can also be shown 
in the matrix form: 

[ ][ ] [ ][ ] [ ]( )M x K x f t+ =&&  
 
This course does not have time to fully investigate the matrices.  The following are 
cursory discussions of the most important aspects of the matrices. 
 
MASS MATRIX, [M] 
For many engineering systems, the mass matrix can be formed as a diagonal matrix of 
the inertia elements.  There are, however, some systems where the mass matrix is not 
diagonal.  This course only considers diagonal mass matrix problems. 
 
 
STIFFNESS MATRIX, [K] 
The stiffness matrix has element kij in the ith row and jth column.  It represents the force 
required at coordinate i while coordinate j has a unit displacement imposed with all other 
displacements held at zero.  It is thus the holding action required.  For linear elastic 
systems with small displacements reciprocity shows that kij = kji, and therefore the 
stiffness matrix is symmetric. 
 
FLEXIBILITY MATRIX, [H] 
The flexibility matrix has element hij in the ith row and jth column.  It represents the 
displacement at coordinate i due to unit force applied only to coordinate j with all other 
coordinates allowed to move freely.  For linear elastic systems with small displacements 
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reciprocity shows that hij = hji, and therefore the flexibility matrix is symmetric.  For the 
engineering systems we consider here, the following relationship exists: 
 

[ ] [ ] 1
H K

−
=  

 
The experimental significance and difference of the stiffness and flexibility matrices is 
discussed in class. 
 
 
NATURAL FREQUENCIES AND MODE SHAPES 
The natural frequencies and mode shapes (displaced shapes at resonance) are found 
by solving the equation of motion with f(t) = zero and substituting [x] = [X] eiωt. 
 

[ ][ ] [ ][ ] [ ]( )M x K x f t+ =&&  
hence 

[ ]2 0rK M Xω − =   

or 

[ ] [ ][ ] [ ]1 2
rM K X Xω

−
=  

 
This is an eigenvalue problem!  The eigenvalues represent the (circular natural 
frequencies)2, and the eigenvectors represent the mode shapes.  Combined, they are 
called the eigenstructure. How are you going to find the eigenstructure? How about 
using a commercial computer package, such as Mathcad or Matlab? 
 
 
MODAL and FREQUENCY MATRICES 
The eigenstructure can represent a lot of information, especially for a structure with 
many degrees of freedom.  Instead of giving long lists of numbers, the eigenstructure is 
combined and normally presented in two matrices.  These matrices are the 
FREQUENCY MATRIX [Ω], which is a diagonal matrix of the eigenvalues (circular 
natural frequencies), and the MODAL MATRIX [Φ], which is a full matrix whose 
columns are the eigenvectors (mode shapes). 
 
Frequency matrix, [Ω]: 
 

[ ]

2
1

2
2
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ω
ω

ω
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 
 
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Modal matrix, [Φ]: 
 

[ ]
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N N N

φ φ φ
φ φ
φ

φ φ

 
 
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ORTHOGONALITY & NORMALIZATION 
It can be shown that the eigenvectors (mode shapes) are orthogonal with respect to 
both the mass and stiffness matrices.  This means: 
 

[ ] [ ][ ] [ ]
[ ] [ ][ ] [ ]2

T
P

T
P

M m I

K m

Φ Φ =

Φ Φ = Ω
 

 
where mP is the modal mass.  The modal mass is an arbitrary number and is used to 
scale, or normalize, the eigenvectors. 
 
 
 
DECOUPLING THE EQUATIONS 
The (N × N) matrix equation of motion represents N separate equations, and each 
equation includes several different spatial coordinates.  This means the equations are 
coupled, and mathematically are complex to solve.  Decoupling means applying a 
coordinate transformation such that each equation only has one independent 
coordinate.  The new coordinates are called the modal (or principal) coordinates. 
 
The modal coordinates relate directly to the natural frequencies of a structure, and there 
is one coordinate for each resonance.  If we consider the case for unit modal mass 
(mP = 1), the equations of motion can be decoupled as follows: 
 

[ ][ ] [ ][ ] [ ]( )M x K x f t+ =&&  
let 

[ ] [ ][ ]x a= Φ  
substituting give 

[ ][ ][ ] [ ][ ][ ] [ ]( )M a K a f tΦ + Φ =&&  
 
Pre-multiplying by the transpose of the modal matrix gives: 
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[ ] [ ][ ][ ] [ ] [ ][ ][ ] [ ] [ ]( )
T T T

M a K a f tΦ Φ + Φ Φ = Φ&&  
 

Now we apply the restrictions of orthogonality and simple harmonic motion to get: 
 

[ ] [ ] [ ] [ ] ( ) ( )22 T
Ga a f t f tω    − + Ω = Φ =     

or, rearranging: 
 

[ ] ( )2 2
GI a f tω   Ω − =     

 
where fG(t) is called the Generalized Force Vector. 
 
Since all the quantities in the equation are either diagonal matrices or column vectors, 
the matrix result represents N independent equations: 
 

( ) ( )

( ) ( )

( ) ( )

1
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2 2
1 1

2 2
2 2

2 2

. . . . . . . . . . . . . . . .

N
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a f t

a f t
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ω ω

ω ω

ω ω

− =

− =

− =

 

 
Each of these equations can be solved as if it where a single degree of freedom system.  
The final result for the displacement of the structure is determined from the previous 
substitution: 
 

[ ] [ ][ ]x a= Φ  
 
 

SINGLE POINT EXCITATION AND RESPONSE 
The previous result can be applied to linear MDOF systems with harmonic excitation at 
any or all coordinates.  However, when conducting a vibration test, one common 
method is to excite the structure at only one point.  For single point excitation at 
coordinate # j, the spatial force vector is all zeroes except for the entry that represents 
the excitation coordinate: 
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If we now further restrict our interest only to the response at a single coordinate #i, it 
can be shown that for viscous damping: 
 

{ }2 2
1

.

2

N
r i r ji

rj r r r r

X
F m i

φ φ

ω ω ζ ω ω=

=
− +

∑  

 
This equation is the summation of N single degree of freedom systems, and shows that 
the MDOF behavior of a structure can be modeled by summing (superimposing) the 
response of many SDOF oscillators. 
 
For a given structure, we need to be able to calculate the properties of these SDOF 
oscillators.  Experimentally we do this using a technique called MODAL ANALYSIS. 
 
 
EXPERIMENTAL MODAL ANALYSIS 
Experimental modal analysis is a method of determining a mathematical model that has 
the same dynamic properties as an existing structure.  It is a state-of-the-art method, in 
that it is only in relatively recent history that is has been accepted as a fully functional 
method.  One of the first useable references was:  Use of Vectors in Vibration 
Measurement and Analysis.  Kennedy & Pancu.  Journal of the Aeronautical Society, 
1947 
 
1960-70 Theoretical algorithms were limited by functionality of the hardware. 
 
1970-1990 Hardware improvements (especially good quality digital systems) meant 

measured data gave a better understanding of the theory and required 
algorithms. 

 
1990s  A fully functional, general purpose, experimental tool. 
 
today  New applications . . . . . . . . . . .? ? ? 
 
 
WHAT DOES MODAL ANALYSIS GIVE? 
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Modal analysis essentially gives the properties of the many SDOF oscillators which, 
when combined, have the same dynamic behavior as the structure.  This information is 
presented as the natural (resonant) frequencies, damping (energy loss or dissipation), 
and deflected shapes at resonance (mode shapes) of the structure.  Since these are 
system properties, the method used for the experiments does not usually change or 
restrict the use of the derived model. 
 
 
WHAT CAN WE USE THE MODAL MODEL FOR? 
There are numerous applications.  Some of the most common are: 
 Finite Element model validation 
 Transmissibility estimation 
 Non Destructive Examination (NDE) 
 Health Monitoring 
 Quality Control 
 Prediction of transient structural response 
 Damage detection 
 
 
COMPUTER DEMONSTRATION 
This demonstration shows the results of a modal analysis.  Use this page for your own 
notes. 
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MODAL CONSTANT (called modal residue in some commercial software) 
The modal constant is a complex number that defines the relative motion (magnitude 
and phase) between two coordinates on a structure at resonance.  There is a different 
modal constant for every combination of excitation and response coordinates, and for 
every natural frequency. 
 
Example. For a structure with a mesh of 56 coordinates, with single point response and 
excitation at all 56 coordinates, an analysis of 11 natural frequencies will determine a 
maximum of 562 × 11 = 34,496 modal constants.  If we assume reciprocity, we can 
reduce this to approximately 616 different constants. 
 
From the series: 

{ }2 2
1

.

2

N
r i r ji

rj r r r r

X
F m i

φ φ

ω ω ζ ω ω=

=
− +

∑  

 
the modal constant, r i jA , is defined as the terms 

.r i r j
r ij

r

A
m

φ φ
=  

Which makes the series become: 
 

{ }2 2
1 2

N
r iji

rj r r r

AX
F iω ω ζ ω ω=

=
− +

∑  

 
This is the equation to which we curve fit the experimental data.  It can be shown from 
the normalization procedure that the modal constant is independent of the choice of 
modal mass. 
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DATA REQUIREMENTS FOR A MODAL ANALYSIS - FREQUENCY RESPONSE 
FUNCTIONS 
 
These graphs are for a single degree of freedom system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Linear magnitude vs . frequency     Log magnitude (dB) vs. frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Real vs. frequency      Phase vs. frequency 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Imaginary vs. frequency      Nyquist (Real vs. Imaginary) 
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The following is an example of a measured FRF (dB vs. frequency). This FRF was 
measured from a GRP cylinder. 
 

 
 
 
Discussion points: 
Scaling  logarithmic v. linear (FRF and frequency) 
Complex data real, imaginary, modulus, phase 
Coherence 
Point and transfer functions 
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FOURIER TRANSFORMS 
A Fourier Transform converts a time signal into a frequency signal.  Both the signal 
and it's transform hold the same information, but present it in a different way.  Fourier 
Analysis assumes infinitely long, continuous signals in both the time and frequency 
domains. 
 
The transform of a harmonic time sine wave at frequency ω is an impulse in the 
frequency domain at frequency ω. 
 
An impulse in the time domain has energy at all frequencies in the frequency domain. 
 
In general, the “wider” the time pulse, the "narrower" the frequency "pulse".  This means 
that if we wish to use impulsive excitation, and target low frequencies, we need a wide 
(i.e. long) time pulse.  Conversely, if we wish to target higher frequencies, we need a 
much shorter time pulse. 
 
 
DISCRETE FOURIER TRANSFORM 
Experimental data is discrete and truncated.  Discrete time data transforms to periodic 
frequency data.  Truncated (finite) time data transforms to discrete frequency data. 
 
Discrete Fourier theory of truncated series assumes the time signal repeats periodically.  
Therefore the differences in the signal between the start and end of the time period can 
cause problems when transformed.  These problems, if not taken into account, can 
severely degrade the data. 
 
EXAMPLE OF TRUNCATION EFFECTS 
There are many ways the edge or end effects can manifest themselves.  The following 
is an example of degraded data. The “smooth” line is a FRF measured from a structure 
(the same GRP cylinder as used for the previous example). The “spiky” line is supposed 
to be the same FRF, but the truncation effects were allowed to be a problem. 
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WINDOWING 
The way of reducing the truncation effects is to weight the time data.  This usually 
ensures the time signals are zero, or very close to zero, at both the start and end of the 
time period, and reduces the problem.  This process is called WINDOWING.  The 
theory of windowing can give an indication of which type of window is best for which 
application.  However, a good "rule of thumb" is to try different windows, and select the 
one that gives the best results for any one application.  EXPERIMENT! In class, we will 
go through a better method that optimizes the window for your particular structure and 
experiment. 
 
 
WINDOWING (CONTINUOUS, RANDOM SIGNALS) 
When the excitation signal and resulting response are continuous random, both the 
beginning and end of the time signals have to be tapered.  Examples of commonly used 
windows are: 
 
 HANNING (cosine2) 
 HAMMING (Hanning on a rectangular pedestal) 
 GAUSSIAN 
 
WINDOWING (TRANSIENT, IMPULSIVE SIGNALS) 
The time signals are zero at the start, since the system is quiescent.  The response 
signal is generally exponential.  It needs "tapering off" toward the end.  A good window 
for this type of data is exponential.  Choose the time constant such that the signal is 
very close to zero at the end of the time period.  If the time constant is too short, the real 
signal will be "lost" in the digitization noise.  If the constant is too long, the window is 
ineffective, and end effects will be present.  If an exponential window is not available, 
use a rectangular window (i.e. no window). 
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The force signal is impulsive, and zero everywhere except during the impact itself.  
The best window for this type of data is a square window around the impulse.  If this is 
not available on the hardware, an exponential window (similar to the response window) 
may be adequate. 
 
 
STEADY STATE EXCITATION 
For this style of test, the structure is excited continuously at one frequency.  After a 
short delay period, the response is steady state (i.e. not changing with time).  The 
excitation and response can be measured very accurately, with digital filters at the exact 
excitation frequency.  This gives a very high signal to noise ratio, and is particularly 
suitable where signals are small and/or the environment is noisy (acoustics or 
background vibration).  The excitation frequency is incremented, and the process 
repeated.  In this way, the transfer function is measured over the frequency range of 
interest. 
 
No time window is necessary, because the data are not being Fourier Transformed. 
 
 
ACCURACY EXPECTATIONS OF MODAL ANALYSIS RESULTS 
The accuracy of modal data is highly dependent on the vibration characteristics of the 
structure, the accuracy of the data, and signal noise during measurement. The following 
aspects are discussed in class. 
 
Natural Frequencies 
Frequency Resolution 
 
 
 
 
 
Damping 
Too much, or too little? 
Most appropriate mathematical model? 
 
 
 
 
 
Modal Constants 
Modal Assurance Criterion table (MAC) (based on orthogonality) 
Consistency of animated shapes 
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MODAL TEST PROCEDURE 
Choose an appropriate test method  (transient, random, steady state) 
 
 
 
Identify the spatial mesh and coordinates 
 
 
 
Measure transfer functions, referenced to either fixed excitation or fixed response. 
 
 
 
Curve fit the data 
 
 
 
Verify the accuracy and reliability of the results. 
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ASSIGNMENTS 
 
 
 1. Determine the stiffness and 
flexibility matrices for the given system.  
Verify that the flexibility matrix is the 
inverse of the stiffness matrix. 
 
 
 
 
 2. Determine the stiffness and flexibility 
matrices for the given system, and write the 
equations of motion in the following matrix form.  
You may reference your solution to the previous 
question. 
 

[ ][ ] [ ][ ] [ ]M x K x f+ =&&  
 
3. (extra credit)  The normal modes of a 3-DOF system with m1 = m2 = m3 = m are 
given as: 
 

[ ] [ ] [ ]1 2 3

0.737 0.591 0.328

0.591  ;     0.328  ;     0.737
0.328 0.737 0.591

φ φ φ

−     
     = = = −     
          

 

 
Verify the orthogonality of these mode shapes with respect to the mass matrix. 
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SOLUTIONS 
 1. Determine the stiffness and flexibility matrices for the given system.  Verify that 
the flexibility matrix is the inverse of the stiffness matrix. 
 

[ ] [ ]
( )

( )

[ ]

( )

( ) ( )

( ) ( )

[ ][ ]

1 1 2 2

2 2 2 3 3

3 3 3

2
1 3 3 2 3 2 3

1 3 2 3 1 3 2 32 3
1 2 3

1 3 2 3 1 3 1 3 2 32 3

0 0 0
0 0  ;     
0 0 0

 ;     with 

1 0 0
verify:  

J k k k
M J K k k k k

J k k

k k k k k k k

k k k k k k k kk k
H k k k

k k k k k k k k k kk k

H K

 + − 
  = = − + −  
   −   

 +
 

∆ ∆ ∆ 
 + +
 = ∆ =

∆ ∆ ∆ 
 + + +
 

∆ ∆ ∆  

= 0 1 0
0 0 1

 
 
 
  

 

 
 
 2. Determine the stiffness and flexibility matrices for the given system, and write the 
equations of motion in the following matrix form.  You may reference your solution to the 
previous question. 
 
Solution note: Problems 1 and 2 are dynamically the same system. The only difference 
is that in problem #1, we have “torsional springs and inertias,” whereas in problem #2 
we have “linear springs and masses.” Thus, the units for the k’s and m’s are different 
(N-m/rad and N/m; kg-m2 and kg), but the form of the equations is the same. 
 

[ ][ ] [ ][ ] [ ]M x K x f+ =&&  
 



1/9/2004 10:08 AM 

Section 12-MDOF-17 

 

[ ] [ ]
( )

( )

[ ]

( )

( ) ( )

( ) ( )

[ ][ ]

1 1 2 2

2 2 2 3 3

3 3 3

2
1 3 3 2 3 2 3

1 3 2 3 1 3 2 32 3
1 2 3

1 3 2 3 1 3 1 3 2 32 3

0 0 0
0 0  ;     
0 0 0

 ;     with 

1 0 0
verify:  

m k k k
M m K k k k k

m k k

k k k k k k k

k k k k k k k kk k
H k k k

k k k k k k k k k kk k

H K

 + − 
  = = − + −  
   −   

 +
 

∆ ∆ ∆ 
 + +
 = ∆ =

∆ ∆ ∆ 
 + + +
 

∆ ∆ ∆  

= 0 1 0
0 0 1

 
 
 
  

 

Now put the equations in the required form: 
 

( )
( )

1 1 1 2 2 1 1

2 2 2 2 3 3 2 2

3 3 3 3 3 3

0 0 x 0
0 0 x +
0 0 x 0

m k k k x f
m k k k k x f

m k k x f

 + −       
        − + − =        
        −        

&&
&&
&&

 

 
3. (extra credit)  The normal modes of a 3-DOF system with m1 = m2 = m3 = m are 
given as: 
 

[ ] [ ] [ ]1 2 3

0.737 0.591 0.328

0.591  ;     0.328  ;     0.737
0.328 0.737 0.591

φ φ φ

−     
     = = = −     
          

 

 
Verify the orthogonality of these mode shapes with respect to the mass matrix. 
 

The solution to extra credit questions is available from your instructor. 
 


