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Abstract—In this paper, we utilize recent advances in com-
pressive sensing theory to enable signal acquisition beyond
Nyquist sampling constraints. We successfully recover signals
sampled at sub-Nyquist sampling rates by exploiting additional
structure other than bandlimitedness. We present a working
prototype of compressive analog-to-digital converter (CADC)
based on a random demodulation architecture. The architecture
is particularly suitable for wideband signals that are sparse in
the time-frequency plane. CADC has the advantage of enhancing
the performance of communication and multimedia systems by
increasing the transmission rate for the same bandwidth. We
report successful reconstruction of AM modulated signals at
sampling rates down to 1/8 of the Nyquist-rate, which represents
an up to 87.5% savings in the bandwidth and the storage memory.

I. INTRODUCTION

Advances in computation power have enabled digital signal

processing to become the primary modality in many ap-

plications, such as, communications, multimedia, and radar

detection systems. Converting signals to the digital domain

for processing avoids the complicated design considerations

for analog processing, such as, feed through, linearity, noise

figure, distortion harmonics, and device inherent non-ideal

performance. However, the physical limitations of traditional

analog-to-digital converters (ADCs) is the main obstacle to-

wards pushing their performance to the GHz-regime. The

problem originates from the fact that traditional ADCs, such

as, flash ADCs [1], pipelined ADCs [2], and sigma-delta

ADCs [3], are based on the Nyquist sampling theorem, which

guarantees the reconstruction of a band-limited signal when

it is uniformly sampled with a rate of at least twice its

bandwidth. However, many signals of interest have additional

structure, which can be called sparsity or compressibility.

Consequently, sampling these sparse signals at Nyquist-rate

disregards this additional information. Thus, uniform sampling

is not a very efficient technique in extracting the information

out of sparse signals.

Over the past several years, a new theory of compressive

sensing (CS) has emerged to enable signal acquisition beyond

Nyquist constraints. The main idea of compressive sensing is

to recover signals using fewer measurements than the number

prescribed by the Nyquist theorem for certain classes of

signals. In particular, CS allows reconstruction of signals that

are compressible by some transform (such as Fourier, wavelets,

etc.). Leveraging the CS theory, a compressive analog-to-

digital converter (CADC) can be designed to acquire samples
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Fig. 1. Pseudo-random demodulation scheme for CADC.

at a lower rate while successfully recover the compressible

signal of interest. Consequently, the CS theory gives us an op-

portunity to sample at sub-Nyquist rates, thus alleviating many

of the problems in traditional ADCs. Moreover, sending the

same information using fewer samples, saves the bandwidth

or effectively increases the information transmission rate.

Additionally, sending fewer samples saves storage memory

space, power consumption, area, and computational power.

In this paper, we introduce a brief background of the CS

theory and extend the mathematical framework to random

demodulation architecture in Section II. In Section III, we

present a working prototype of compressive analog-to-digital

converter (CADC) that is based on the random demodulation

architecture [4]. We discuss the different implementation con-

cerns in that system and the importance of synchronization. In

Section IV, our measurement results show the success of the

signal information reconstruction from sampling rates down to

1/8 of the Nyquist-rate, which represents significant savings
in memory and transmission bandwidth.

II. COMPRESSIVE SENSING FOR CADC SYSTEMS

A. Compressive sensing background

The CS framework [5], [6], demonstrates that a signal

that is compressible in one basis Ψ can be recovered to

a quality similar to that of a K-term approximation from
M = O(K log N

K
) nonadaptive linear projections onto a

second basis Φ that is incoherent with the first. By incoherent,

we mean that the rows φj of the matrix Φ cannot sparsely

represent the elements of the sparsity-inducing basis ψi, and

vice versa. Thus, rather than measuring the N -point signal
x directly, we acquire the M ≪ N linear projections which
are then quantized such that y = Q(Φx + n). The effect of
quantization may be modeled as additive noise and thus we
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Fig. 2. (a) The hardware block diagram for our CADC prototype and (b) The actual implementation of our CADC prototype.

view the measurements as y = Φx+n = ΦΨα+n, where n

represents the combination of the quantization effect and the

noise inherent to the measurement process. For brevity, we

define the M ×N matrix Θ = ΦΨ.

Since M < N , recovery of the signal x from the mea-

surements y is ill-posed in general; however, the additional

assumption of signal compressibility in the basis Ψ makes

recovery both feasible and practical. The recovery of the set of

transform coefficients α can be achieved through optimization

[7] by searching for the α with the smallest ℓ1 norm that
agrees with the M observed measurements in y. Other varia-

tions of the recovery methods such as basis pursuit denoising

(BPDN) [8], allow for measurements with added noise.

B. The random demodulation CADC

As first introduced in [4], the random demodulation CADC

consists of three main components; demodulation, filtering,

and uniform sampling. As seen in Figure 1, the signal is

modulated by a square pulse, with pseudo-random values of

{±1}, generated by a PN sequence. We call this the chipping
sequence pc(t), and it must alternate between values at or
faster than the Nyquist frequency of the input signal. The

purpose of the demodulation is to spread the frequency content

of the signal so that it is not destroyed by the second stage

of the system, a low-pass filter implemented as an integrator.

Finally, the signal is sampled at rate M using a traditional

ADC. In its ideal form, this system can be modeled as a

discrete vector x operated on by a banded matrix Φ containing
N/M pseudo-random ±1s per row. For example, with N = 9

and M = 3, over a period of 1 second such a Φ might look
like

Φ =





−1 1 −1
−1 −1 1

1 1 −1



 .

Although our system involves the sampling of continuous-

time signals, the discrete measurement vector y can be char-
acterized as a linear transformation of the discrete coefficient

vector α. We assume that an analog signal f(t) is composed
of a discrete, finite number of weighted continuous basis or

dictionary components ψn. In cases where there are a small

number of nonzero entries in α, we may say that the signal

f is sparse. Although each of the dictionary elements may
have high bandwidth, the signal itself has few degrees of

freedom. In this paper, our signals are the superposition of

K sinusoids of varying frequency. Thus, the sparsity inducing
basis is the Fourier basis and our signals are sparse in the

frequency domain.

To improve the performance of the CADC hardware system,

we calibrate Θ. To calibrate, each continuous vector in Ψ

(e.g., sinusoids at different frequencies) is generated with a

signal generator and measured with the random demodulator.

Θ is composed of each of the measurement vectors, and once

generated, it is stored to a computer and reused for each

reconstruction.

III. CADC PROTOTYPE IMPLEMENTATION

In order to demonstrate the effectiveness of the random

demodulation based CADC design and evaluate its perfor-
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Fig. 3. Measurements from our implemented CADC prototype, (a) Single-tone signal reconstructed from different sub-Nyquist rates, (b) Three-tone (AM
modulated) signal reconstructed from different sub-Nyquist rates.

mance, we developed an end-to-end prototype hardware for

a compressive signal based acquisition system. The hardware

block diagram in Figure 2(a) illustrates an overview of the

main building blocks and components. The input signal is

mixed with a pseudo-random bipolar wave sequence using

an analog multiplier in order to randomly modulate the input

signal in the time domain. This is followed by an integrator,

which is implemented as Gm-C based differential integrator.

Each measurement is digitized using a low-rate ADC and is

sent to the reconstruction end. The reconstruction end consists

of a communication module that receives the transmitted

compressed signal in addition to a digital signal processor

(DSP). We used a commercial DSP board that has a 160MHz

Fixed-Point Digital Signal Processor to run the reconstruction

algorithms on the compressive measurements and retrieve the

original signal.

We divide the signal into time-frames, where we reset

the integrator after each frame. We use a master clock-

driven control circuit to synchronize the process and reset the

integrator. Reseting the integrator prevents the cross-coupling

of the information in adjacent frames. In addition, keeping the

integrator working for long time may cause saturation if the

signal amplitude does not follow a normal distribution around

the zero DC value.

The implementation of our CADC prototype is shown in

Figure 2(b). One advantage of our presented system design

is that it relies on simple analog processing components,

thus enabling for hardware implementation that is compact

in size as well as power efficient. In addition, our system

utilizes an analog multiplier in the high frequency regime,

which is easy to design, in order to reduce the performance

design constraints of the low-rate ADC. This makes our design

suitable for sensor networks and portable devices.

The reconstruction algorithm, which is based on orthogonal

matching pursuit, is implemented on a programmable DSP

board. The reconstruction end needs the most computational

power and complexity of the CADC acquisition system.

Therefore, our system is suitable for applications that need

simplicity on the acquisition side. We use Bluetooth wireless

communication modules to send the random measurements

from the acquisition end to the reconstruction end. Using

actual communication standard in our system enables us to

evaluate the performance of our system under the effects of

environmental noise and device non-idealities.

IV. MEASUREMENTS AND RESULTS

We conducted a series of experiments on the implemented

prototype hardware in order to evaluate the performance of

the reconstruction from our CADC prototype hardware. We

performed the reconstruction experiments for different AM

modulated signals with different frequencies, different sparsity,

and different sampling frequencies. We varied the sampling
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frequency from Nyquist-rate/2 to Nyquist-rate/8 to evaluate the

effect of deep sub-Nyquist sampling rates on the reconstruction

performance measured by signal-to-noise ratio. Figure 3(a)

shows the success of the reconstruction of single-tone signal

with SNR about 62 dB, 59 dB, and 56 dB for sampling
frequencies 1/2, 1/4, and 1/8 from Nyquist-rate, respectively.
Figure 3(b) shows the success of the reconstruction of three-

tones signal with SNR about 46 dB, 43 dB, and 40 dB
for sampling frequencies 1/2, 1/4, and 1/8 from Nyquist-
rate, respectively. These sub-Nyquist sampling rates can be

translated into savings in memory and transmission bandwidth

by 50%, 75%, and 87.5%, respectively.
The previous results show that SNR values are sensitive to

the sparsity of the input signal and to the sampling frequency

used in signal acquisition. Therefore, we investigated this

relation and tested the reconstruction success for different

AM modulated signals under different sampling frequencies.

Figure 4 shows the degradation of SNR values (reconstruc-

tion success) when the signal becomes more complex (less

sparse) or when we decrease the sampling frequency for

signal acquisition far from the Nyquist-rate. These results

are consistent with CS theory as the performance of the

algorithm will degrade for less sparse signals. However, the

curves become closer to maintain a constant SNR for more

complex signals. When the sampling frequency goes much

lower than Nyquist-rate, the reconstruction algorithm does not

have enough information to be able to reconstruct the actual

signal, and thus degrading the signal-to-noise ratio.

In addition, the SNR values of the reconstructed signals

are sensitive to the non-ideal behaviors in the analog devices

utilized in our CADC implementation. The most significant

sources of non-idealities are the clock jitter of the random

number generator, the linearity and intermodulation distortion

of the mixer, and the quantization error of the back-end ADC.

The sensitivity of the reconstruction is partially due to the fact

that these behaviors introduce noise, but also because that we

can not produce a matrix that is exactly tuned to the non-

idealities for reconstruction process. The difficulty of matrix

calibration is due to the stochastic nature of some of these

non-linearities.

In order to enhance our reconstructed signals, we used cal-

ibration techniques to generate a more accurate reconstruction

matrix. Our first calibration technique depends on applying

time-shifted impulses to the system and recording the output

as a column in the reconstruction matrix, which represents

the impulse response of the system. The advantage of this

technique is that it can detect the phase differences (sensitive

to the phase information). Our second calibration technique

depends on applying different input tones to our system, a

tone per frame, and build the matrix using the generated

measurement outputs. The advantage of this technique is that it

builds a dictionary of possible tones and enables the system to

reconstruct the signal by extrapolating the information inherent

in the matrix. Our reported results and measurements are

generated using the second calibration technique. The previous

results demonstrate a successful reconstruction of signals at

Fig. 4. The effect of signal sparsity and sampling frequency on reconstruction
performance measured by SNR.

sampling rates down to 1/8 of the Nyquist-rate, and therefore,
enabling up to an order of magnitude improvement in the

performance of analog-to-digital converters.

V. CONCLUSIONS

In this paper, we presented a working prototype of compres-

sive analog-to-digital converter (CADC) based on a random

demodulation architecture. The compressive analog-to-digital

converter has the advantage of enhancing the performance

of communication and multimedia systems by increasing the

transmission rate for the same bandwidth. We reported suc-

cessful reconstruction of AM modulated signals at sampling

rates down to 1/8 of the Nyquist-rate, thus providing an up
to 87.5% savings in the bandwidth or the storage memory.
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