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The Sampling Theorem

Theorem 1. Suppose f is a continuous-time signal whose highest

frequency is at most W/2 Hz. Then

f(t) =
∑

n∈Z
f
( n
W

)
sinc(Wt− n).

where sinc(x) = sin(πx)/πx.

§ The Nyquist rate W is twice the highest frequency

§ The cardinal series represents a bandlimited signal by uniform samples

taken at the Nyquist rate
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Analog-to-Digital Converters (ADCs)

§ An ADC consists of a low-pass filter , a sampler and a quantizer

§ For sampling rate R, low-pass filter has cutoff R/2 to prevent aliasing

§ Ideal sampler produces a sequence of amplitude values:

f 7−→ {f(nT ) : n ∈ Z}

where the sampling interval T = R−1

§ The quantizer maps the real sample values to a discrete set of levels

§ Commonly, analog signals are acquired by sampling at the Nyquist rate

and samples are processed with digital technology
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ADCs: State of the Art

§ The best current technology (2005) gives

§ 18 effective bits at 2.5 MS/s (MegaSamples/sec)

§ 13 effective bits at 100 MS/s

§ Performance degradation about 1 effective bit per frequency octave

§ The standard performance metric is

P = 2# effective bits · sampling frequency

§ At all sampling rates, one effective bit improvement every 6 years

References: [Walden 1999, 2006]
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Train Wreck

§ Modern applications already exceed ADC capabilities

§ The Moore’s Law for ADCs is too shallow to help

Conclusion:

We need fundamentally new approaches

Idea: Exploit structure...
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Example: An FM Signal
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Data provided by L3 Communications
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Sparse, Bandlimited Signals

A normalized model for signals sparse in time–frequency:

§ Let W exceed the signal bandwidth (in Hz)

§ Let Ω ⊂ {−W/2 + 1, . . . ,−1, 0, 1, . . . ,W/2} be integer frequencies

§ For each one-second time interval, signal has the form

f(t) =
∑
ω∈Ω

a(ω) e2πiωt for t ∈ [0, 1)

§ The set Ω of frequencies can change every second

§ In each time interval, number of frequencies |Ω| = K �W

Other models: [Mishali–Eldar–T 2008, 2009]
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Information and Signal Acquisition

§ Signals in our model contain little information

§ In each time interval, have K frequencies and K coefficients

§ Total: About K logW bits of information

§ Idea: We should be able to acquire signals with about K logW
nonadaptive measurements

§ Challenge: Achieve goal with current ADC hardware

§ Approach: Use randomness!
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Random Demodulator: Intuition

§ With clustered frequencies, demodulate to baseband and low-pass filter

0 0

demodulation +

low-pass filtering

§ Don’t know locations, so demodulate randomly and low-pass filter

§ Analogy with spread-spectrum communications methods
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Random Demodulator: System Model

Pseudorandom
Number
Generator

Seed

§ pc(t) alternates randomly between levels ±1 at Nyquist rate W

§ Sampler runs at rate R�W
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input signal x(t) input signal X(ω)

pseudorandom
sequence p

c
(t)

pseudorandom sequence
spectrum P

c
(ω)

modulated input
modulated input and

integrator (low−pass filter)
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Exploded View of Passband
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Reconstruction from Samples

§ The matrix Φ summarizes the action of the random demodulator

Φ = HDF : CW −→ CR

§ Maps a (sparse) amplitude vector s to a vector of samples y

§ Given samples y = Φs, signal reconstruction can be formulated as

ŝ = arg min ‖c‖0 subject to Φc = y

§ The `0 function counts nonzero entries of a vector
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Signal Reconstruction Algorithms

Approach 1: Convex Relaxation

§ Can often find sparsest amplitude vector by solving

ŝ = arg min ‖c‖1 subject to Φc = y (P1)

Approach 2: Greedy Pursuit

§ Identify a small set of significant frequencies and iteratively refine

§ Examples: OMP and CoSaMP

References: [Candès et al. 2006, Donoho 2006, Tropp–Gilbert 2007,

Tropp–Needell 2008]
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Shifting the Burden

§ These algorithms are much more computationally intensive than linear

reconstruction via cardinal series

§ Move the work from the analog front end to the digital back end

Moore’s Law for ICs

saves us from

Moore’s Law for ADCs!
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Simulations

Goal: Estimate sampling rate R to achieve success probability 99%

For each of 500 trials,

§ Draw a random demodulator with dimensions R×W
§ Choose a random set of K frequencies

§ Set their amplitudes equal to one

§ Take measurements of the signal

§ Recover with `1 minimization (via IRLS)

Define success at rate R when 99% of trials result in

‖s− ŝ‖ < εmach
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Reconstruction of FM Signal
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(a) Original Signal (1.25 MHz)
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(b) Rand Demod (0.63 MHz)
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(c) Rand Demod (0.31 MHz)
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(d) Rand Demod (0.16 MHz)
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On Walden Pond
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To learn more...

E-mail: jtropp@acm.caltech.edu

Web: http://acm.caltech.edu/~jtropp

http://www.dsp.rice.edu/cs/

http://www.dsp.rice.edu/a2i/
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