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Abstract 
 
This paper describes the use of a platinum resistance temperature detector to develop a 
calibration experiment and to introduce metrology principles. The Callender-Van Dusen 
equation is used to analyze the temperature-resistance characteristic of a detector. 
Linearity of this characteristic is explored using a MATLAB simulation. Resistance is 
measured at four different temperatures to estimate all of the parameters in Callender-
Van Dusen equation. Since the uncertainty of temperature and resistance measurements 
during calibration determines the accuracy of the temperature measurements using 
platinum detector, it is necessary to assess the calibration errors. A simulation package is 
developed that applies different levels of errors into measurements used for parameter 
estimation. The goal is to study the influence of calibration uncertainty on the 
temperature detector’s readings. The next challenge is a practical realization of the 
calibration process. A simple experiment is proposed and the least square fit is used to 
estimate the parameters.  
 
 
1. Introduction 
 
Electrical resistivity of metals and semiconductors increases when they are heated. This 
mechanism is used in temperature measurements. Platinum resistance temperature 
detectors yield a reproducible resistance temperature relationship as resistance varies with 
temperature. The relationship between resistance and temperature for platinum wire 
resistance temperature detectors is given by Callender-Van Dusen equation [1]: 
 

Rt = R0  {1 + a[t + b(1-t/100)(t/100) + d(1-t/100)(t/100)3]}               (1) 
 
Where  Rt  = resistance at temperature t, 
 R0  = ice point resistance at 0.01°C, 
 a   = temperature coefficient of resistance near 0°C, 
 b   = temperature coefficient of resistance near 100°C, 
 d  = Van Dusen constant, 
 t    = temperature in degrees Celsius. 

 



Typical values are a= 0.003926, b= 1.491 and d = 0 when t > 0°C, and d = 0.1103 when t 
< 0°C. Based on this information a typical temperature-resistance characteristic for a 
platinum resistance temperature detector is as shown in figure 1. 
 
 

 
Figure (1)  Resistance vs. Temperature for a Platinum Resistance Temperature Detector 
 
 
2. Calibration Experiment Analysis 
 
The first step in the analysis is to establish a working range. In order to calibrate a 
platinum resistance temperature detector, we must measure its resistance at four different 
temperatures and use equation (1) to calculate parameters a, b, d and R0. It is obvious that 
measurements need to be performed at 0 °C and 100 °C in order to calculate R0 and a. 
From the practical point of view it is relatively easy to provide boiling water in a student 
laboratory to reach 100 °C. Ice can be used to produce 0 °C. To estimate the parameter b, 
measurements must be made at room temperature. To estimate d it is necessary to 
establish a temperature well below 0 °C. This could prove relatively difficult in a student 
lab. Based on the above discussion a good working range could be temperatures from -
30°C to 100°C. 
 
Measurement uncertainty is obtained by taking into account all of the errors associated 
with a measurement process. In our case measurement uncertainty will depend upon how 
well temperature and resistance are measured. The instruments used in the experiment 
determine the errors related to these measurements.  
 



A simulation routine has been developed that uses the model given in equation (1) and 
introduces random errors in measuring resistance and temperature. Errors have standard 
deviation equal to instrument accuracy and have a zero mean.  In the first case it was 
assumed that resistance and temperature could be measured with uncertainty of 1mili 
Ohm and 0. 1 °C respectively.  To more realistically portray the experiment, ten 
measurements were taken at each temperature point [-30 °, 0 °C, 50 °C, 100°C].  This is 
the level of accuracy easily achieved in a student laboratory. The results are plotted in 
figure 2. The obtained parameters, a, b, d and R0, as well as deviation from the model 
suggest that the equipment used is not adequate for such an experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (2)  Case 1: Comparison Between the Model and the Simulation Using Realistic 

Instruments. a = 0.0039204, b = 6.1676, d = 1.2922 and R0 = 1001.399 
 
In the second case it was assumed that measuring instruments are accurate at the level of 
national standards so that resistance and temperature can be measured with uncertainty of 
1 micro Ohm and 0. 45 mili °C. respectively. The results are demonstrated in figure 3.  
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Figure (3)  Case 2: Comparison Between the Model and the Simulation Using National 

Standards. a = 0.003926, b = 0.12223, d = 1.4906 and R0 = 1000.0018 
 
This simple analysis shows students the importance of accuracy of the instrument that 
they use. Students too often assume that the instruments are accurate to the number of 
digits displayed. Based upon this exercise students are expected to reasonably estimate 
uncertainty level with which they will calibrate a platinum temperature detector. 
 
A calibration procedure is practically determined by a required measurement uncertainty. 
In order to optimize the calibration process it is essential to determine the minimal effort 
required to achieve desired performance. If it proves that the influence of a certain 
parameter on the necessary uncertainty level is negligible, then a set of measurements 
related to its estimation can be dropped.  
 
Let us explore how much error will be introduced if only “linear” parameters, α and R0, 
are estimated. The basis for this analysis is the fact that for some applications the 
platinum resistance temperature detector may be approximately linear and all the other 
errors may be negligible. Let us consider linear approximation given by equation (2). 
 

Rlinear = R0 (1 + a t)                        (2) 
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The measure of non-linearity of a platinum resistance temperature detector is the 
difference between the equation (1) and (2). Temperature deviation from linear 
approximation for a platinum resistance temperature detector is plotted in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4)  Temperature Deviation From Linear Approximation 
 
 
From the calibration point of view it is much easier to establish only two parameters, Ro 
and a, as compared to four needed for the full representation shown in figure (1). Figure 
(4) demonstrates the level of errors at the order of +- 0.5 °C over the range –30°C to 
100°C in the case of linear approximation. This is a systematic error that has to be taken 
into account when estimating total calibration uncertainty. 
 
Figure (5) shows the simulated residual error between actual temperature and that 
computed by equation (1).  This suggests that the simulation error is not significant in our 
determining the uncertainty of the calibration process. 
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Figure (5)  Difference Between the Ideal Temperature and the Fit. 
 
These plots are not difficult to generate using MATALAB and they certainly need to be 
included in students’ analysis experience.   
 
3. The Experiment 
 
The actual experiment was very simple. It was performed using a 100-Ohm platinum 
resistance sensor, a bucket of ice, and a pot full of boiling water. A digital ohmmeter and 
a digital thermometer were used to make 10 measurements in the range from 0°C to 
100°C.  Since it was not possible to get the temperature to fall all the way to 0°C and to 
rise up to 100°C (see Table 1.) due to the very simple apparatus, search algorithm was 
developed to best estimate the parameters Ro, a and b. A reasonable range of values with 
very fine resolution was given for each parameter and the minimal residue was found. A 
MATLAB routine is given in Appendix A. Estimated values for the parameters are listed 
in Table 2. 
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Temperature   Resistance     
 
   25.0000       110.0740 
   24.9000      110.0650 
    5.9000       102.5200 
    6.3000       102.5510 
    4.1000       101.9670 
   72.2000      129.6400 
   68.3000      127.2400 
   64.6000      125.7800 
   88.6000       135.7300 

84.5000              133.8000 
 

Table (1)  Measured temperature and resistance  
 
 
Temperature                 R0       a         b 
 
  25.0000    100.4216     0.0038    2.7809 
   24.9000    100.3212     0.0039    0.4878 
    5.9000     99.8996     0.0044    0.9290 
    6.3000     99.8193     0.0043    1.4139 
    4.1000    100.2409     0.0041    1.8460 
   72.2000    101.7667     0.0038    2.6120 
   68.3000     98.7954     0.0042    0.6374 
   64.6000     99.8996     0.0040    3.1154 
   88.6000     99.7792     0.0040    4.3297 
   84.5000    100.8231     0.0038    4.0920 
 
Table (2)  Measured Temperatures and Estimated Values for Parameters 
 
Manufacturer’s calibrated values for the sensor are Ro=100.040 and α=0.0038. 
 
The most dominant influence on the parameter estimations accuracy is the uncertainty of 
the thermometer used. It had resolution of 0. 1°C and uncertainty of 0.3 °C. The results 
obtained are significant due to the fact that the least square fit algorithm is used to 
estimate parameters for each measured temperature.  
 
4. Summary 
 
A simple experiment is developed to measure temperature-resistance characteristic of a 
platinum resistance temperature detector. The characteristic is analyzed using MATLAB. 
Preliminary experimental results are shown. This calibration exercise introduces students 
to several aspects of metrology: Learning about models for physical devices and how to 
use them in order to simulate sensor’s performance over extended operating range; 



Dealing with non-linear characteristics and estimating the error of non-linearity; 
Realizing what is the influence on the parameter estimation of instrumentation used in the 
experiment; Setting up very simple experiment and making set of measurements; 
Analyzing data using least square fit algorithm to obtain optimal estimates for the 
parameters.  
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Appendix A MATLAB Script File Meas.m 
 
clear 
format long e 
measresv=[110.074 110.065 102.520 102.551 101.967 129.640 127.240 125.780 135.730 
133.800]’; 
meastempv=[25 24.9 5.9 6.3 4.1 72.2 68.3 64.6 88.6 84.5]’; 
alfa=0.003856; 
beta=1.5; 
r0nom=100; 
 
A1=ones(size(meastempv));B1=meastempv;C1=(B1/100-(B1.^2)/(100)^2); 
ABC=[A1 B1 C1]; 
result=inv(ABC’*ABC)*(ABC)’*measresv; 
r0out=result(1) 
alfaout=result(2)/r0out 
betaout=result(3)/alfaout/r0out 
r=(measresv-ABC*result)/r0nom; 
r1=(measresv-r0out*(ones(size(measresv))+alfaout*B1))/r0nom; 
r2=r1-r 
 
deltar=abs(r0out-r0nom)*10; 
resid=0.1*ones(size(measresv)); 
for k=1:10; 
   measres=measresv(k); 
   meastemp=meastempv(k); 
   for r0=r0out-deltar:deltar/100:r0out+deltar;r0 
      for alfa=alfaout-alfaout/10:alfaout/100:alfaout+alfaout/10; 
         for beta=0:0.0001:5; 
         residue=r0*(1+alfa*(meastemp+beta*(1-meastemp/100)*(meastemp/100)))-
measres; 
         if abs(residue)<resid(k) 
            resid(k)=abs(residue); 
            alfaf(k)=alfa;betaf(k)=beta;r0f(k)=r0; 
         end 
      end 
   end 
end 
end 
 

 
 


