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Abstract— We address the problem of testing complex reactive
control systems and validating the effectiveness of multi-agent
controllers. Testing and validation involve searching for condi-
tions that lead to system failure by exploring all adversarial
inputs and disturbances for errant trajectories. This problem of
testing is related to motion planning, with one main difference.
Unlike motion planning problems, systems are typically not
controllable with respect to disturbances or adversarial inputs
and therefore, the reachable set of states is a small subset of
the entire state space. In both cases however, there is a goal or
specification setconsisting of a set of points in state space that is
of interest, either for demonstrating failure or for validation.

In this paper we consider the application of the Rapidly-
exploring Random Tree algorithm to the testing and validation
problem. Because of the differences between testing and motion
planning, we propose three modifications to the original RRT
algorithm. First, we introduce a new distance function which
incorporates information about the system’s dynamics to select
nodes for extension. Second, we introduce a weighting to penalize
nodes which are repeatedly selected but fail to extend. Third,
we propose a scheme for adaptively modifying the sampling
probability distribution based on tree growth. We demonstrate
the application of the algorithm via three simple and one
large scale example and provide computational statistics. Our
algorithms are applicable beyond the testing problem to motion
planning for systems that are not small time locally controllable.

I. I NTRODUCTION

As the use of logic-based or reactive control laws grows in
both robotics and other fields, so does the need for automated
design and analysis tools. The focus to date in the auto-
mated safety verification literature has been on the solution
of the reachability problem, initially through symbolic meth-
ods (e.g., [11], [18]) and later through numerical techniques
(e.g., [6], [17]). However, the class of systems for which
the reachability problem is tractable is quite limited in both
expressiveness and dimensionality. An alternative approach
to exhaustively proving safety is to simply search for a
single counter example – a series of inputs, disturbances or
parameters that causes a system to fail. We term this semi-
decision approach theTesting Problem.

Inspired by the connections between the Testing Problem for
complex control systems and the Motion Planning problem,
we have recently applied the Rapidly-exploring Random Tree
(RRT) algorithm [13] to the testing problem [1], [7] with

considerable success. RRT algorithm is an incremental search-
ing algorithm which explores state space fast and uniformly.
However, the two problems are different. Perhaps the most
significant difference between the two problems lies in the
nature of the system dynamics in each case. Robotic systems
are almost always controllable (by design), so the reachable
space is often the entire free space. With the exception of
any workspace obstacles, whose configurations are known
in advance, the tree can be expected to extend to fill the
entire state space. On the other hand, when we test complex
control systems, it is frequently with respect to disturbances
or adversarial inputs. These systems are frequentlynot con-
trollable with respect to disturbances or adversarial inputs —
in fact, the reachable set is usually a tiny fraction of the
entire state space. In such systems, the traditional uniform
sampling distribution, combined with the inherent Voronoibias
of the RRT algorithm, leads to a slow reduction (improvement)
in dispersion (coverage). The issue is not easily remedied
because, unlike C-space obstacles, the reachable set is nota
priori known.

Accordingly, we propose three modifications to the original
RRT algorithm. First, we develop a new distance function
which encodes local information about the system’s dynamic
constraints with a first order approximation. Second, because
the reachable state space is generally a small fraction of
the total state space, we introduce a weighting factor which
penalizes the repeated extension of boundary nodes. Finally,
we propose a scheme for adaptively modifying the sampling
probability distribution between the traditional uniformdistri-
bution and heavily biased toward the specification set based
on tree growth.

The paper is organized as follows. In Section II-A we
formally define the testing problem. Section II-B reviews the
original RRT algorithm and reviews the most relevant litera-
ture. Section III examines three key features of the traditional
RRT algorithm which are troublesome for testing problems;
proposes methods to remedy them and presents simple illus-
trative examples, complete with comparative computational
statistics. A new algorithm unifying the enhancements is
presented in Section IV. The algorithm is used to solve a multi-
agent pursuit-evasion problem and performance statisticsare
discussed. Concluding remarks follow in Section V.



II. BACKGROUND AND RELATED WORK

A. Problem Statement

Definition 2.1: We define aFinite Time Control System
as a tupleC = (X,U, T, Init, f) where

• X ⊂ R
n is a set offree state variables;

• U ⊂ R
m is a compact set of input values;

• T = [t0, tf ] ⊂ R is a compact time interval the system
evolves over;

• Init ⊂ X is a compact set of possible initial conditions;
• f : X × U → R

n is a vector field which prescribes the
time derivative of the state variables.

We are generally interested in systems with collections
of rigid bodies with very complicated dynamics, espe-
cially high-dimensional continuous systems or hybrid (dis-
crete/continuous) and switched systems wheref may be a
non-smooth function ofx. We do not impose any structure
on the nature of the dynamics (except assuming that solutions
exist in the sense of Fillipov). Note that in the case of rigid
body systemsX is essentiallyCfree × TCfree. We use the
term “input” in the most general sense in that it can include
yet unspecified feedback control inputs, human in the loop
inputs, and disturbances.

Problem 2.2:Testing Problem: Given a tuple(C, x0, S),
where

• C = (X,U, T, Init, f) is a finite time control system,
• x0 ∈ Init, and
• S is a specification set,

the goal is to determine an open loop control lawU : T → U
such that∃t ∈ T for which x(t) ∈ S.
In other words, the goal is to determine a counter-example
– an input sequence which will cause the system to fail by
enteringS – if one exists. However, in order to make the
problem algorithmically tractable, instead of searching the set
of all possible functionsU : T → U , the search must be
restricted to some subset of functions with finite dimensional
parametrization.

For the sake of convenience we make three additional
assumptions. First, assumeX ⊂ R

n is defined in such a way
that a point inR

n can be easily tested for membership inX.
Second, assume the specification setS can be defined as the
sub-level set of some functionS = {x|x ∈ X, s(x) ≤ 0}.
Finally, we restrict our search overU to piecewise constant
functions of time withk segments, each of time durationδt.
Thus, instead of the continuous mapU , we consider the search
over Ū : T → U , as the search for a k-vector of parameters.
With ui ∈ U

ū = [u1, u2, . . . , uk]T

so the inputu(t) is given by

u(t) = ui ∈ U if to + (i− 1)δt ≤ t < to + (i)δt

for i = 1, . . . , k.

B. Related Work

We base our approach on the Rapidly-exploring Random
Tree (RRT) algorithm [13]. A very basic algorithm is given in
Algorithms 1 and 2, whereρ is some suitable metric andpdf
is a probability distribution. RRTs are attractive becausethey
work directly in the space of admissible inputs making them
suitable for systems with dynamic constraints and because
they areprobabilistically complete[13]. While much work
on safety verification exists, the approach of using RRTs to
analyze hybrid systems is recent. In [8] RRTs were used
to design trajectories of hybrid systems. The first published
work using RRTs for analyzing hybrid systems is [3], [15].
In a similar vein, a blimp system control law was validated
under unpredictable but bounded disturbances [10]. In [2],
the reachable set for aircraft collision avoidance problemwas
obtained and several extensions of the RRT approach were
mentioned. We have applied a variant of this method [1] to
testing hypotheses and establishing properties of biological
networks.

We review two developments from [7], used later in this
paper: coverage estimation and the RRFT algorithm. First, the
coverage of the state space with tree nodes is important both
because it can be used as a termination criteria in the event a
solution is not found and because it provides a methodology
for comparing the effectiveness of two algorithms that is
not dependent on the goal position. TypicallyDispersion is
used [12] which is loosely defined as the radius of the largest
ball in X which does not contain a tree node. We reject it
on the grounds that it is difficult to compute and because,
by only focusing on the largest such ball, it yields an overly
conservative estimate of coverage. We introduce a coverage
measure which can be thought of as a discretized average
dispersion. Given an RRT(T ) and a set of grid pointsG ⊂ X
with spacingδx

c(T , G) = 1−
1

|G| · δx

∑

xg∈G

min(ρ(xg, T ), δx). (II.1)

Second, the Rapidly-exploring Random Forest of Trees
(RRFT) algorithm searches over time invariant parameters and
initial conditions by planting many RRTs at a sampling of
parameter values. Individual trees are grown and terminated
by monitoring c. Both c and the RRFT method are used in
Sect. IV.

Algorithm 1 Generate RRT:T

Initialize RRT: T .addVertex(x0)
while 6 ∃x ∈ T such thats(x) ≤ 0 do

Extend(T )
end while

There have been several enhancements to the basic RRT
algorithm. In [5] a method for penalizing the repeated selection
of collision prone nodes for extension is introduced. In [16] a
node selection strategy is described which increases the natural
Voronoi bias of the method for the purposes of dispersion
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Fig. 1. The reachable space is shown as the shaded gray region. The
arrows indicate the possible velocity vectors at each node.Nodes selected
for extension on the basis of their distance fromxrand (xB) may be difficult
to connect from when the system is not small time locally controllable. xA

is a better candidate for extension.

Algorithm 2 Extend(T )

xrand ∈ X ← pdf()
xnear ← arg minxj∈T ρ(x

j , xrand)

unew = arg minu∈Ū{ρ(x
rand, xnear +

∫ δt
f(x, u)dt)}

xnew = xnear +
∫ δt

f(x, unew(t))dt
T .addVertex(xnew)
T .addEdge(unew, xnear → xnew)

reduction. However, neither approach is able to reduce the
dispersion (which must be measured within the reachable
set) for uncontrollable systems. Biasing the sampling toward
regions close to the goal state has been tried in [14], [15]
and [3] with some success. However the sample bias factor
is fixed a priori and it can lead to difficulties in non-convex
systems because of the presence of local minima. In [10], a
metric accounting for under-actuated dynamics is suggested
but is specific to the aerial robots example considered there.

III. E NHANCEMENTS TO THERRT ALGORITHM

In this section, we propose three modifications to the
original RRT algorithm, all designed to deal with systems that
may only traverse a small fraction of the entire state space and
in which there are no obvious metrics to establish proximity
relationships. Recall that the Voronoi bias coupled with the
use of a uniform distribution decreases the dispersion of the
tree nodes inX. However, for uncontrollable systems it may
be impossible to reduce the dispersion of the tree nodes inX
below a critical value, which is an unknown constant. Instead
the goal is to simply find a solution quickly while reducing the
dispersion of the tree nodeswithin the reachable space, R, by
using heuristics to account for the system’s motion constraints.

A. Dynamics-based selection of proximal node

Example 3.1:Consider the trivial example

ẋ1 = 2, ẋ2 = u, (III.1)

whereu ∈ U = [1, 2]. The reachable space, which is normally
unknown can easily be computed by hand in this case, and
is shown as the shaded region in Fig. 1. A statexrand is
generated and the planner must select the “closest” tree node,
xnear to attempt to connect from. Line 2 of Algorithm 2
(traditional RRT) selectsxnear ← xB for extension based on

proximity to xrand ∈ X, as determined by a distance metric
ρ that is implicitly assumed to be a Euclidean metric.

However, none of the possible velocity vectors at that
state (indicated as region between the thick arrows) are able
to proceed in the required direction. Despite the fact that
ρ(xA, xrand) > ρ(xB , xrand), xA is actually more suited
to extension because the possible velocity vectors includea
direction that moves towardxrand. In addition to testing prob-
lems, this situation arises in a variety of robotic applications
where the system is nonholonomic (e.g., wheeled carts), and
particularly in systems with constraints on forward velocities
(e.g., unmanned aerial vehicles). Ideally both distance and
velocity constraints should be used to estimate a “time to
connection”.

To remedy the situation in Fig. 1 we propose replacing
ρ(xj , xrand) in Line 2 of Algorithm 2 with a local first order
approximation of the time-to-go.

t2go(x
j , xrand) =

{

ρ(xj , xrand)/g if g > 0
∞ if g ≤ 0

(III.2)

whereg represents the instantaneous speed with whichxrand

can be approached

g = max
u∈Ū

[

−
∂ρ(x, xrand)

∂x
f(x, u)|x=xj

]

Intuitively t2go computes the distance fromxj to xrand and
divides by a first order approximation of the speed with which
the distance can be decreased, givingt2go units of time. Note
that a negative value ofg implies that the distance is actually
increasing, which can be interpreted as infinite “time-to-go”
(to first order). In a given iteration if none of the existing
nodes have a finite value fort2go, one can be chosen at
random or based on some secondary criteria (such as distance
as determined byρ).

From a computational point of view the maximization may
be done by exhaustive search or by exploiting some problem
dependent feature. For example iff(x, u) is an affine function
of u and the setU is the Cartesian product of rectangles, the
maximization is a linear program inn dimensions which can
be solved efficiently. If no efficient methods exist to compute
this quantity, evaluating every node via this method can be
intensive. In such a case,t2go can be used as a secondary
criteria to selectxnear among the, for example, 10 closest
nodes according to the Euclidean metric.

We next consider an example that is from the verification
community. Although it is not central to robotics, it has
many of the properties that are central to multi-agent robotic
systems.

Example 3.2:The hybrid automata model of a thermostat
has been a popular example in the verification literature [9].
Fig. 2 shows the system model.x = (x1, x2, x3) ∈ X ⊂ R

3

wherex1 is the temperature in the room,x2 is the elapsed
time, andx3 is a timer that measures the cumulative amount
of time the heater has been on for. The dynamics have two
modes which denote the heater being “on” or “off”.U consists
of uon = [2, 4]; and uoff = [−3,−1]. The valuesuon and
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Fig. 3. The solution of the thermostat counter example via the RRT using
the dynamics-based selection of proximal nodes (Temperature vs. time).

uoff represent the possible heating and cooling rates in the
two modes. The conditionsx1 ≤ 1 and x1 ≥ 3 enable the
mode switchesoff → on andon→ off respectively. In [9]
a symbolic verification tool is used to answer the question:
“After an initialization period of two minutes, is it possible
for the heater to be on for more than two thirds of the total
time at any point during the first hour of operation?” Such a
question may be important from an energy consumption point
of view. Therefore the specification set is

S = {x ∈ X|2/3x2 − x3 ≤ 0 ∧ −x2 + 2 ≤ 0}.

The initial conditions were mode= “on”, and xo = [2 0 0]T .
Aside from being a classical verification example, the senario
is interesting in its own right. First, the system has quite
nontrivial dynamics, since the control inputs do not appear
in the right hand side of two of the state equations, or the
specification equations. This, together with the narrow range
of U , makes the reachable set,R a small subset ofX. The
set of possible velocity vectors at every point is very limited
making this an ideal example to demonstrate the Dynamics-
based selection of proximal node.

First the problem was solved 10 times selecting proximal
nodes based on the Euclidean metricρ; then 10 times with
the Dynamics-based selection functiont2go. In all cases, the
algorithm successfully computed a counter example as seen
in Fig. 3. Table I shows the computational statistics for two
algorithms.

B. History-based selection of proximal node

A second situation is shown in Fig. 4 where the traditional
RRT is applied to the system and, after 8 iterations, the
resulting tree is shown using dark circles and line segments.
Because the reachable set is so small, nodes on the boundary
will tend to have disproportionately large Voronoi regions,
such asxA in Fig. 4. When a uniform distribution is used to
generatexrand, most samples will fall outside the reachable
set and these boundary nodes will be selected for extension

Metric No. of Computation
Nodes Time (sec)

Euclidean 2284 376.4
t2go 1627 231

TABLE I

THERMOSTAT EXAMPLE : A COMPARISON OF THE USE OF THEEUCLIDEAN

METRIC AND t2go INTRODUCED IN SECT. III-A, AVERAGED OVER 10

TRIALS ON A 1GHZ PC.

largest Voronoi
cell

XA

XB

Fig. 4. The reachable space is shown as the shaded gray region, bold circles
and lines are the RRT, and dotted lines are the Voronoi cells.Nodes on
the boundary of the reachable space have disproportionately large Voronoi
regions, causing them to repeatedly be selected asxnear .

repeatedly. Each time, the same extremal inputs will be usedto
connectxA to xrand in vain, instead resulting inxB . Boundary
nodes which are repeatedly selected but fail to extend should
be penalized to counter balance this Voronoi bias so that they
are less likely to be selected in the future.

If a node is selected for extention asxnear in Line 2 of
Algorithm 2 and the minimization in Line 3 produces an input
unew which has been applied previously, the resultingxnew

is already an element ofT . When this happens we say the
node has “failed to extend”; and determine the next bestunew

which extends the tree (suggested in [5]).
For eachxj ∈ T we propose storing the number of times

the node has failed to extendnj . This value can be used to
compute a penalty weight to discourage the repeated selection
of boundary nodes which fail to extend. Letnmin andnmax

be the least and greatest values ofnj in the tree at a given
iteration. TheHistory-based weightingis defined as

H(xj , xrand; ρ) =
ρ(xj , xrand)− ρmin

ρmax − ρmin

+
nj − nmin

nmax − nmin

(III.3)
whereρmin = minxi∈T ρ(x

i, xrand) and ρmax is defined in
a similar manner. These bounds are used to normalize the
distances so that the impact of the second term is not problem
dependent. Note that any distance function, includingt2go can
be substituted forρ.

Example 3.3:The RRT algorithm is used to find trajectories
of the linear dynamic system with bounded control inputs in
the form of

ẋ = Ax+Bu+ b (III.4)

wherex ∈ X = [−200 200] × [−200 200] and u ∈ U =
[−10 10]× [−10 10].

Fig. 5 shows trajectories generated by the RRT algorithm
using the Euclidean metric (left) and using the History-based
weighting described above (right). Note that reachable set
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Fig. 5. RRT for a linear system using the Euclidean metric (left) vs. a History-
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the reachable space is much more dense when using the weighting.
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Fig. 6. Value ofnj for each node (sorted in descending order) using the
unweighted Euclidean metric (left) and History-based weighting (right).

is small fraction of the environment. The interior of the
reachable region with the History-based selection of proximal
node method is much more densely covered than Euclidean
metric. Fig. 6 showsnj for each node inT . Nodes are
sorted in descending order to facilitate the visualization. In
the conventional RRT algorithm, a smaller portion of nodes
(on the boundary of the reachable set) have disproportionately
high values ofnj .

C. Adaptively biased sample generation

Intuitively, biasing the sampling distribution forxrand to
generate a disproportionate number of samples inside the set S
is effective when the system is easily steered towardS (i.e. the
system is output controllable with respect tos(x)). In general,
biasing the sample distribution toward the goal can make sense
but it is difficult to decidea priori which problems will benefit.

We update the amount of biasing for everyNs iterations of
the RRT algorithm, whereNs is user defined number. If in a
given iterationρ(xnear, xrand) > ρ(xnew, xrand), whereρ is
a metric function, we call such an iterationsuccessfulbecause
the tree has grown towardxrand. We count the number of
successful iterationsns, out of thenβ iterations where random
states are generated inside the set defined bys(x) ≤ 0 and
compute

β =
ns

nβ

(III.5)

If xnear is not successful in growing towardxrand inside the
specification set or the best candidate forxnew from xnear

is already in a tree in the above test, we eliminate thexnear

from consideration asxnear for the testing in future iterations
to prevent it from being chosen repeatedly. Values ofβ close
to unity indicate biasing sample generation insideS has been
beneficial.
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Fig. 7. The distributionB(x; µ, β) with µ = 0 and various values ofβ.

Our proposed probability density functionB(x;µ, β), to be
used in Line 1 of Algorithm 2, resembles a Gaussian over
some compact set,a ≤ x ≤ b

B(x;µ, β) =







N(x;µ, σ(β))+
Ct/(b− a), a ≤ x ≤ b

0 else
(III.6)

whereN(x;µ, σ(β)) is the Gaussian distribution with mean
µ and standard deviationσ(β). The last term,Ct/(b − a), is
added to ensure that the area under the curve is equal to one.
Ct represents the area of the truncated portions abovex = b
and belowx = a

Ct =

∫ a

−∞

N(x;µ, σ)dx+

∫ ∞

b

N(x;µ, σ)dx.

Obviously µ should be selected so thats(µ) ≤ 0. The
standard deviation ofN(x;µ, σ(β)) effectively determines the
bias and should be computed usingβ ∈ [0, 1]

σ(β) = (1− β)(σmax − σmin) + σmin, (III.7)

whereσmax andσmin are user-defined values of the maximum
and minimum standard deviations.

Fig. 7 illustrates the shape ofB(x;µ, β) with different val-
ues ofβ. Distribution (III.6) can be easily implemented using
any random normal generator and rejecting points generated
outside the compact domain.

Example 3.4:We consider a hovercraft in constant altitude
flight with 6 states,x = (x1, x2, θ, v1, v2, ω). The dynamic
equations are

mv̇1 = (f1 + f2) cos(θ) + fx1air(x, vair(x))

mv̇2 = (f1 + f2) sin(θ) + fx2air(x, vair(x))

Jω̇ = (f2 − f1)l + τair(x, vair(x))

The control inputs areu = [f1 f2]
T (forward actuating

forces) andU = [−10, 10] × [−10, 10]. Forces due to wind
disturbances in thex1, x2 andθ directions arefx1air, fx2air,
and τair whose exact expressions are omitted for brevity but
are quadratic in the difference between the craft’s velocity
and the wind velocityvair and vary with the orientation of the
craft. Note that the state is partitioned into two regions (indoor
and outdoor) which define the wind velocity differently:

vair =

{

[−αvx2 βvx1]
T ,

√

(x1)2 + (x2)2 ≤ 100

[0 0]T ,
√

(x1)2 + (x2)2 > 100
.
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Fig. 8. RRTs of the hovercraft problem with uniform sampling (left) and
with adaptive bias (right).
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Fig. 9. The evolution of the biasing factorβ for the hovercraft problem.

We would like to determine if a hovercraft under these
wind conditions can reach some goal zone,S = {(x1, x2) ∈
[190, 200]× [0, 10]}. Note that when outdoors the wind forces
are significantly greater in magnitude than the control inputs,
making the system uncontrollable.

The initial state isx0 = [0 0 0 0 0 0]T . The distribution
(III.6) was used to solve the problem 10 times on a 1GHz PC.
Fig. 8 shows the solutions of the problem with the uniform
sampling distribution and adaptive bias. Fig. 9 shows howβ
changes as the algorithm evolves. The adaptive algorithm is
able to exploit the situations in which biasing is effective. As
shown in Table II, the adaptive biasing algorithm improves
the efficiency of RRT method compared to other fixed bias
strategies rather dramatically.

Sampling Method No. of Nodes Computation Time (sec)
Uniform 3556 1753.5

Med. Bias 1017 490.2
Heavy Bias 912 408.3

Adaptive Bias 678 342.5
TABLE II

HOVERCRAFTEXAMPLE : A COMPARISON OF THE SAMPLING STRATEGY

INTRODUCED HERE(ADAPTIVE BIAS) TO FIXED-BIAS SAMPLING

STRATEGIES, AVERAGED OVER 10 TRIALS ON A 1GHZ PC.

IV. U NIFIED ALGORITHM

A. Unified algorithm

Algorithm 3 and 4 present the unification of the enhance-
ments presented in the previous section. Note that, since
most robotic problems are controllable, the Algorithm 1 can
terminate when a solution is found. In our case, it is a distinct
possibility that no solution exists so we impose a secondary
termination criteria. The change in coverage over the trailing
N iterations∆c , measures the growth of the tree. If∆c drops
below some user-defined∆cmin we terminate the search.

Algorithm 3 Generate enhanced-RRT:T

Initialize RRT: T .addVertex(x0 ← xinit, n0 ← 0)
Global: β = 1
while ( 6 ∃x ∈ T such thats(x) ≤ 0) AND ∆c ≥ ∆cmin do

enhanced-Extend(T )
end while

Algorithm 4 enhanced-Extend(T )
σ = (1− β)(σmax − σmin) + σmin

xrand ∈ X ← B(x;µ, β) (see eq.(III.6) )
xnear ← arg minxj∈T [H(xj , xrand; t2go)] (see
eq.(III.2),(III.3))
unew = arg minu∈Ū [t2go(x

rand, xnear +
∫ δt

f(x, u)dt)]

xnew = xnear +
∫ δt

f(x, unew(t))dt
if xnew = xj ∈ T then
nj + +
Ū ← Ū − unew

goto computeunew

end if
T .addVertex(xnew, nnew = 0)
T .addEdge(unew, xnear → xnew)
resetŪ
if Ns iterationsthen
β = ns

nβ

end if

B. A Multiagent Problem

We consider a problem where multiple autonomous vehicles
must guard against an intruder entering a designated area. This
scenario has applications in games such as “capture the flag”
and can be viewed as a variant of the art-gallery problem.
It has applications in homeland security where autonomous
vehicles (boats, airplanes, ground robots) can be deployedto
detect unidentified vehicles entering a cordoned-off area or an
exclusion zone.

In this example, we examine a circular area,SE guarded by
4 robots. Each robot has sensor foot prints which are assumed
to be circular with radiusRd for detection andRc for capture,
as shown in Fig. 10. The guarding scheme is shown in Fig. 11.
Initially, the guard robots distribute evenly along the perimeter
of the exclusion zone. If the intruder enters the detection range
of a guard robot, the robot pursues the intruder and other
robots redistribute evenly along the circleCE . If the intruder
escapes the detection range of the pursuing robot, the robot
returns to the perimeter and all robots redistribute evenly. The
question we wish to answer is as follows. If an intruder or an
adversary is allowed to start anywhere in a specified regionSI ,
and the guard robots are evenly distributed on the circleCE ,
can the intruder enter the exclusion zone (SE) uncaptured? The
answer to our question can only be found by searching for an
initial condition and a control input function for the intruder
which drives it into the exclusion zone without crossing anyof
the capture ranges. We assume each of the intruder and guard
robots has 5 states,xi = (xi

1
, xi

2
, θi, vi, ωi) and 2 control



inputs,ui = (ui
1
, ui

2
) wherex1 andu1 indicate states and input

of the intruder. The dynamics with nonholonomic constraints
are given by:

ẋi
1

= vicos(θi), ẋi
2

= visin(θi), θ̇i = ωi

v̇i = ui
1
, ω̇i = ui

2
.

(IV.1)

We can define the free spaceX = X1 ×X2 × · · · ×X5 \
⋃

5

i=2
B(xi(t), Rc) ⊂ R

25 where

Xi = {(xi
1
, xi

2
, θi, vi, ωi) ∈ R

5|(xi
1
)2 + (xi

2
)2 ≤ R2

I}

B(xi(t), Rc) = {(xi
1
, xi

2
)|(x1

1
− xi

1
)2 + (x1

2
− xi

2
)2 ≤ R2

c}.

Then the specification setS is defined by

S = {x ∈ X|(x1

1
)2 + (x1

2
)2 < R2

s}

whereRs is the radius of the circleCE .
To evenly distribute guard robots along the perimeter, we

use the algorithm proposed in [4]. Each guard robot is subject
to the force

τ j = −k∇ψ2(qj)− Cq̇j +
∑

k∈Nj

Fr(q
j , qk) (IV.2)

where qj = (xj
1
, xj

2
) ∈ R

2 is the position of robotj, ψ :
R

2 → R is an implicit function description of the perimeter
of the exclusion zone that must be guarded andNj is the set
of robots neighboring robotj. Fr is a Coloumb-like repulsive
force that ensures that the robots do not cluster together, while
C is a constant which provides a viscous damping term. The
force is applied to a point that is at a finite distance away
from a robot to address nonholonomic constraints. A detailed
description of the control law including a proof of convergence
to different shapes is provided in [4]. However, the analysis
in the paper cannot be used to predict the transients as each
guard robot moves toward the perimeter.

Note that the reachable set of states inX is a small subset of
the entire state due to the fact that the system is uncontrollable
and U is bounded. Finally, note that the intruder can start
anywhere in the setSI . In other words, the initial condition for
the intruder must be chosen from this finite set, each condition
leading to a RRT.

We apply the RRFT algorithm with enhancements suggested
in Sec. IV-A to the problem. The control inputs areu =
(u1

1
, u1

2
) ∈ U = [−6 6] × [−π/12 π/12] with RI = 300m,

Rs = 100m, Rd = 100m andRc = 40m. Fig. 12 shows the
forest of trees where a solution trajectory is found, visualizing
the position of the intruder. Eight initial conditions are gener-
ated and a forest starts to grow until a solution is found. Dueto
the space limitation, we show only the trajectories obtained for
the algorithm with the “dynamics-based selection of proximal
node”. However, the Table III shows the statistics obtainedfor
this example with all the options. The second column shows
the average number of nodes used to find a solution trajectory
for the intruder robot (one such trajectory is shown in Fig. 12).
The third column shows the computation time with different
options. The first main point to note from these two columns is
that the standard algorithm takes four times as long requiring

Intruder
Guard robot 

Exclusion Zone (SE)

Initial region for intruder (SI)

Initial positions for guard robots

Initially, evenly distributed

detection range (Rd)

capture range (Rc)

RI

CE

Fig. 10. Initial conditions for guard robots and intruder. Each robot has a
detection rangeRd within which the intruder is detected, and capture ragne
Rc within which the intruder is captured.

Intruder detected
Pursue the intruder

Redistribute

Fig. 11. Guarding scheme of the robots. Distribute until the intruder is
detected (left) ; and pursue if the intruder is within the detection range ofa
guard robot (right).

three times the number of nodes to find the same solution.
The second main point in this example is that adaptive biasing
allows the most improvement in efficiency. The fourth column
shows a snapshot of the coverage measure after 5000 nodes
have been visited for all cases. The N/A is used because it
is less meaningful to show this number for adaptive sampling
when improving coverage is not the driving force behind using
the adaptive bias.

Enhancement No. of Computation Coverage
Method Nodes Time (sec) Measure

No Enhancement 20544 9020.9 0.0190
Dynamics-based 12960 3655.6 0.0196
History-based 8176 3101.8 0.0246

Adaptively biased 6398 1791.6 N/A
Three Enhancements 7520 2429.2 N/A

TABLE III

GUARD-INTRUDER EXAMPLE : A COMPARISON OF THE ALGORITHM, WITH

AND WITHOUT ENHANCEMENTS AVERAGED OVER10 TRIALS ON A 3GHZ

PC.

V. CONCLUSION

The RRT algorithm has been successful in solving complex
motion planning problems. We explore the application of this
algorithm and its variants to the problem of testing complex
reactive control systems and validating the effectivenessof
multi-agent controllers. Testing and validation involve search-
ing for conditions that lead to system failure by exploring
all adversarial inputs and disturbances for errant trajectories.
Unlike motion planning problems, the systems may not be
controllable with respect to disturbances or adversarial inputs
and the reachable set of states is generally a small subset
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Fig. 12. The forest of RRTs with 8 different initial conditions. A solution
trajectory of the intruder is highlighted on the right.

of the entire state space. Because of the differences between
testing and motion planning, we propose three modificationsto
the original RRT algorithm. First, we develop a new distance
function which encodes local information about the system’s
dynamics with a first order approximation. Second, because
the reachable state space is generally a small fraction of the
total state space, we modify the node selection strategy to
discourage the repeated selection of boundary nodes. Finally,
we propose a scheme for adaptively modifying the sampling
probability distribution based on tree growth to the specifica-
tion set. We demonstrate the application of the algorithm via
three simple examples and one large scale (25 dimensions)
multi-agent pursuit-evasion and provide computational statis-
tics demonstrating a reduction of computation time by a factor
of three.
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