
Accurate Event Detection
for Simulating Hybrid Systems

Joel M. Esposito1, Vijay Kumar1, and George J. Pappas2

1 MEAM Department, University of Pennsylvania, Philadelphia, PA 19104,
2 EE Department, University of Pennsylvania, Philadelphia, PA 19104

{jme,kumar,pappasg}@grip.cis.upenn.edu

Abstract. It has been observed that there are a variety of situations
in which the most popular hybrid simulation methods can fail to prop-
erly detect the occurrence of discrete events. In this paper, we present
a method for detecting discrete which, using techniques borrowed from
control theory, selects integration step sizes in such a way that the sim-
ulation slows down as the state approaches a set which triggers an event
(a guard set). Our method guarantees that the state will approach the
boundary of this set exponentially; and in the case of linear or polyno-
mial guard descriptions, terminating on it, without entering it. Given
that any system with a nonlinear guard description can be transformed
to an equivalent system with a linear guard description, this technique is
applicable to a broad class of systems. Even in situations where nonlinear
guards have not been transformed to the canonical form, the method is
still increases the chances of detecting and event in practice. We show
how to extend the method to guard sets which are constructed from many
simple sets using boolean operators (e.g. polyhedral or semi-algebraic
sets) . The technique is easily used in combination with existing numer-
ical integration methods and does not adversely affect the underlying
accuracy or stability of the algorithms.

1 Motivation and Previous Work

Numerical simulation is an important tool for designing and analyzing hybrid
systems. In addition to simulation, numerical approximation techniques are in-
creasingly being used in approximate reachability computations, verification and
other forms of automated analysis [5], [6], [13]. It is well known that when sim-
ulating hybrid systems failure to detect an event can have disastrous results on
the global solution due to the discontinuous nature of the problem. Several docu-
ments detailing requirements for hybrid simulators list accurate event detection
as one primary concern [14], [11].

Figure 1a illustrates graphically the behavior of a generic hybrid system
model. At the initial time t0, the mode q1 is active and the continuous system
flows according to the differential equation ẋ = f1(x) with initial condition
x0 = x(t0). Once the condition Guard is true the transition from q1 to q2 is
enabled; the state may be reset instantaneously and the system enters mode q2
where it then flows according to ẋ = f2(x). The problem we are concerned with

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 204–217, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Accurate Event Detection for Simulating Hybrid Systems 205

a) b)

x’ = f1(x) x’= f2(x)

q1 q2
Guard

Case 1 Case 2 Case 3

Fig. 1. (a) Conceptual model of a generic Hybrid System, (b) three situations for which
popular simulators fail to properly detect or localize events.

is correctly detecting the discrete transitions. More formally: problem Given
f : Rn → Rn, x0 = x(t0) ∈ Rn and g : Rn → R such that g(x0) < 0, simulate
ẋ = f(x), for the time interval [t0, t∗] where t∗ must be computed as the first
time instant such that g(x(t)) ≥ 0. problem We assume the guard set has a
non-empty interior and is described as Guard = {x : g(x) ≥ 0} where g(x) is
a continuously differentiable. See [12] for an interesting discussion of the unique
difficulties associated with solving such problems. It is well known that systems
of differential equations with nonlinear guards can be transformed to a equivalent
systems with linear guards by appending a new state variable z = g(x) then the
new system is

ẋ = f(x) ⇔ ẋ = f(x), ż =
∂g

∂x
· f(x)

g(x) ≥ 0 z ≥ 0. (1)

Most hybrid system simulators([1], [9], [18]) divide the task into an event
detection phase followed by an event localization phase. They proceed with the
detection phase by checking if g(x(t0)) ≥ 0. If the condition is false, numerically
integrate the differential equation through one time step, to t1 = t0 + h and
check if g(x(t1)) ≥ 0. This procedure is repeated until a step is taken for which
g(x(tk)) ≥ 0 is true, at which point an event is assumed to have occured in the
interval (tk−1, tk]. Note that the step size h is selected without considering the
guard dynamics. Some tools then activate a localization phase to determine the
time of occurrence more precisely, but some simply assume the event occured at
tk. The localization phase is typically a variant on the bisection or bracketing
algorithms found in the classical numerical analysis literature. Once the event is
localized the integration is stopped, and the transitions occur.

Although this basic technique, first introduced in [4], seems to work well for
many problems there are several situations in which it is prone to failure. The
situations, discussed below, are illustrated in Figure 1b. The first case is when
the trajectory is sufficiently oscullatory that the guard has an even number of
roots in the interval t∗ ∈ (tk, tk+1]. A similar situation occurs when the guard
set is “thin” or has sharp corners. These two cases are essentially equivalent.
Both are situations in which many of the most common detection methods can
fail. As second class of problems for which the standard technique fails, consider
the case when the right hand side of the differential equation is ill-defined for
some x such that g(x) ≥ 0. Perhaps the nature of the system is such that model

206 J.M. Esposito, V. Kumar, and G.J. Pappas

is only valid in certain regions of the state space. Since the right hand side of
the ODE cannot be evaluated at the new point, bisection methods cannot be
used to locate the root more precisely. In this situation, almost all common event
localization methods fail.

Cellier [4] was the first to note that state events warrant special treatment
and advocated the discontinuity locking approach still used today. Gear [8]
demonstrated the inefficiencies that can result if special techniques are not used.
Carver [3] was the first person to notice that the rate of change of the event
function along the flow field (i.e. the Lie derivative) was a critical quantity in
event detection. The idea of differentiating the guard and appending it as an ex-
tra state variable to be integrated was introduced there as well. In each of these
cases events were detected by simply looking for sign changes in the guard after
integrating through one step. As a result they fail to detect an event when there
are multiple transitions in a single step. Building on this work, Shampine and his
colleagues [12] exploit the fact that interpolation polynomials can be generated
for the guard dynamics and are able to correctly identify event occurrences using
Strum sequences when the guards are of polynomial expressions but do not use
this information to select step sizes. Several similar algorithms for event detec-
tion in differential algebraic equations were evaluated in [15]. These techniques
are able to detect multiple transition however they tend to be expensive. Most
recently, Park and Barton [17] combine some of these ideas and uses methods
from interval arithmetic to create efficient tests to determine intervals where it
is possible an event had occured. This event detection method seems to be the
most reliable technique in the literature, it is streamlined and well suited to stiff
problems. However since all of the techniques use the discontinuity locking ap-
proach, none of these provides a methodology to select step sizes to ensure that
the state never crosses the event surface; thus all fail to localize and event which
occurs in the neighborhood of a model singularity.

The idea in this paper is to develop an event detection technique that is
not vulnerable to these pitfalls. Using an analogy to control theory we treat
the simulated system as a control system, the integration step size as an input,
and the guard as the output. The problem is the to select a “feedback law” (a
rule for selecting step sizes) such that as the simulation proceeds the system
approaches the event surface (g(x) = 0) asymptotically, without overshoot (
g(x) < 0 always). Since the state approaches the guard asymptotically there
is a better chance events are detected and since there is no overshoot there is
no risk of crossing a model singularity. In Section 2 we review Linear Multistep
numerical integration techniques and introduce the control theoretic concept of
input/output linearization which our algorithm is inspired by; in Section 3 we
develop in detail the ideas used in the method, culminating in a conceptual
algorithm; in Section 4 we successfully solve two example problems which can
be problematic for other methods and discuss some of the limitations of the
proposed algorithm; finally in Section 5 we summarize our results and comment
on future directions.

Accurate Event Detection for Simulating Hybrid Systems 207

2 Key Concepts

In this section we review numerical integration of ordinary differential equations
using Linear Multistep Methods, our prefered integration method. We also in-
troduce the key idea behind our algorithm which draws on the control theoretic
concept of input-output linearization.

2.1 Review: Numerical Integration with Linear Multistep Methods

Given the system ẋ = f(x, t) and x(0) = x0, it is customary to denote the
approximate solution at the discrete time tk as xk = x(tk), and then the value
of the time derivative may be written as fk = f(xk). It is also convention to
define the time step as hk = tk − tk−1. The most general form of a m-step linear
multistep method (LMSM) is

∑m
j=0 αjxk−j+1 = hk

∑m
j=0 βjfk−j+1, where αj

and βj are the coefficients of the method. Particular LMSM’s differ in how α
and β are selected. LMSM’s can be broadly divided into two categories: if β0 = 0
the method is called explicit, otherwise if β0 6= 0 the method is called implicit.
Although the techniques presented here can be applied to the entire class of
explicit LMSM’s, the explicit Adams family is by far the most popular and will
be used for the purposes of illustration. In such a method, α0 = 1, α1 = −1, and
αj = 0 for j > 1. The βj ’s are then selected such that the difference equation

xk+1 = xk + hk+1

m∑
j=1

βjfk−j+1, (2)

would exactly reproduce the analytical solution x(t) if it were a polynomial of
order m or lower. In general the accuracy of the method is proportional to
(hk)m. The Adams family of methods is very popular due to their large region
of stability and efficiency. See any numerical analysis text for further details [10].
Often in text books, values of β will be supplied as constants; however this is
only the case when the step size is constant. In general, β is a rational polynomial
function of the previous m step sizes, βj(hk, . . . , hk−m). Multistep methods, as
opposed to Runge-Kutta methods, are a natural choice for simulating hybrid
systems because the polynomial expressions for βj can be used as interpolants
to approximate the solution at off-mesh points.

2.2 Feedback Linearization Analogy in Continuous Time

One feature of explicit LMSM’s, not present in some other methods, is the fact
that xk+1 is defined by a difference equation which is affine in the step size
hk. This property allows one to draw comparison with nonlinear control systems
which often are affine in the input. Following this analogy the difference equation
of the numerical method would be the system dynamics, the step size is viewed
as the input and the guard function is considered to be the output equation.

For the purposes of illustrating our method, let us imagine for a moment
that, instead of belonging to the set of positive integers, we let the step number,

208 J.M. Esposito, V. Kumar, and G.J. Pappas

k, take on a continuum of values, k ∈ [0,∞). Further suppose that tk is then a
continuous function of the real variable k, denoted by t(k). Naturally it follows
that we would then write x(t(k)), and g(x(t(k))). Analogous to the discrete case
we then find that the “step size”, which is our input variable, can be viewed as
h(k) = dt

dk . The dynamics of the event function (our output function) are then

dg

dk
=

(
∂g

∂x

dx

dt

)
dt

dk
, (3)

since by definition dx
dt = f(x) this can be rewritten as,

dg

dk
= (Lfg)h(k). (4)

Note that the Lie derivative, Lfg = ∂g
∂x · f , has a geometric interpretation here

as the time derivative of g(x) along trajectories of the ODE.
We would like to select h(k) in such a way as to ensure that g(x) → 0 as

k → ∞. This may be accomplished by a technique from nonlinear control theory
called feedback linearization (see for example [2]). Assuming the Lie derivative
is non-zero, selecting

h(k) = −γ
g(x)
Lfg

, (5)

and substituting into eq.(4) results in

dg

dk
= −γg (6)

where γ is some positive constant to be selected by the user. The solution to the
ODE is then g(k) = g(0) exp−γ·k; which implies g(k) → 0 exponentially, as k →
∞. Thus, by judicious selection of the input, one may cancel the nonlinearities
and stabilize the guard dynamics. In terms of simulation, by selecting the step
size appropriately using eq.(5) we are able to re-parameterize time in order to
make the guard (as a function of the step number) behave as a linear differential
equation which has a stable equilibrium point on the surface g(x) = 0.

3 Simulation Algorithm

In this section we describe the ideas used in our simulation algorithm: methods
for computing step sizes depending on the form of the guards (Sect. 3.1– 3.3),
computation of candidate step sizes (Sect. 3.4), dealing with boolean combina-
tions of guards (Sect. 3.5), merging the candidate step size for event detection
with the ideal step sizes computed for integration accuracy and other implemen-
tation details (Sect. 3.6 and 3.7). Finally, in Section 3.8 these ideas are presented
as a concrete algorithm.

Accurate Event Detection for Simulating Hybrid Systems 209

While Sect. 2.2 contains a useful way of thinking of such systems, the simu-
lated system evolves in discrete time. For a linear multistep method the dynamics
are

x(tk + hk+1) = xk+1 = xk + hk+1{
m∑

j=1

βjfk−j+1} (7)

which implies the guard dynamics are

g(x(tk + hk+1)) = gk+1 = g(xk + hk+1{
m∑

j=1

βjfk−j+1}). (8)

Selecting hk+1 to produce the desired behavior is somewhat more difficult in
discrete time.

3.1 Symbolic Inverse

In theory, provided the guard is an invertible function (with respect to time
along a given integral curve), we can select

hk+1 =
−xk + g−1(γg(xk))

f̄β
(9)

where the vector f̄β =
∑m

j=1 βjfk−j+1, yielding the difference equation gk+1 =
γgk, which has the solution gk = g0γ

k and converges exponentially to g = 0
provided 0 ≤ γ < 1. This naturally assumes one can compute the symbolic
inverse of the guard, g−1(hk+1), which is an unrealistic assumption in practice.

3.2 Exact Linearization

While it is unlikely that one would have a symbolic expression for the inverse of
g(x(t)), exact linearization is possible for all guards with Taylor series expansions
of finite length (i.e polynomial or linear guards). We illustrate this idea with
linear guards, since they can be used to model a wide class of systems either
through approximation or by transforming nonlinear guards to linear ones using
eq.(1). If our event function is of the form g(x) = a · x + b, where a ∈ Rn and
b ∈ R are constant eq.(4) becomes

gk+1(hk+1) = gk + hk+1
∂g

∂x
f̄β (10)

which is essentially a Taylor series expansion in hk+1 about xk. Since ∂g
∂x f̄β is

simply the Lie derivative Lf̄β
g, select

hk+1 =
(γ − 1)gk

Lf̄β
g

. (11)

Polynomial guards can be handled in a similar manner, by calculating and in-
verting their Taylor series expansions in hk+1.

210 J.M. Esposito, V. Kumar, and G.J. Pappas

3.3 Approximate Linearization

If nonlinear guards with a Taylor series expansion of infinite length are not
transformed to linear guards, an approximate linearization technique can be
used. Approximations using a Taylor series expansion gives

gk+1(hk+1) = g(xk) + Lf̄β
ghk+1 +

1
2
L2

f̄β
gh2

k+1 + . . . (12)

It is possible to compute the inverse of g as a function of h for the Taylor series
expansion using a result due to Grobner often referred to as the Lie series

g−1(h) =
∞∑

p=0

1
p!

{ 1
∂g
∂x · f

∂

∂h
}ph‖x=xk,h=0 · [(γ − 1)gk]p. (13)

While the result is defined as an infinite series, a finite number of terms can
be used to compute an approximate linearization. One sided convergence is no
longer guaranteed since uncanceled terms act as forcing functions, but by se-
lecting a small value of γ the state still approaches the event surface slowly,
increasing the likelihood that the event will be detected. This method seems to
work well in practice since h is typically small implying that the higher order
terms are usually correspondingly small

3.4 Computation of Step Sizes

As mentioned earlier, the β’s for the Adams Method are only constant in the
special case of constant step size. Since we are proposing to adjust the step
size dynamically, the β’s in the above discussion are not constant, but rather
are rational polynomial functions of hk+1. Computing the correct step size with
eq.(11), for example, then entails finding the roots of a polynomial in hk+1. For
example in the case of two step Adams method β1 = (2hk)/hk+1 and β2 =
1 − (2hk)/hk+1. Substituting the expressions for β into eq.(11) and rearranging
gives

z = Roots[ah2
k+1 + bhk+1 + c] (14)

where a = 1/2 · hk[∂g/∂x · (fk + fk−1)], b = ∂g/∂x · fk and c = −(γ − 1)g(xk).
Eq.(14) must be solved for hk+1 at every time step. Similar polynomials can be
constructed using eq.(9) or eq.(13). Various algorithms for computing the roots
of polynomials exist, most involve constructing the companion matrix and com-
puting its eigenvalues. In general the polynomial equation determining hk+1 will
have m roots (for an m-step multistep method), however only positive real roots
should be considered as candidates for event times, since negative roots corre-
spond to past events, while complex roots are physically meaningless. Assume the
positive real roots have been ordered from smallest to largest {r1, r2, . . . , rp} ⊂ z,
then in the simplest case of a single guard, r1 corresponds to the first event
and hence is the proper choice for hk+1. If there are no positive real roots set
hk+1 = ∞.

Accurate Event Detection for Simulating Hybrid Systems 211

3.5 Boolean Combinations of Guards

In many realistic system models, complex guards may be composed of several
algebraic inequalities joined or modified by boolean operators (e.g. polyhedrals
or semi-algebraic sets). If the guard is (ga(x) ≥ 0)

∨
(gb(x) ≥ 0), the situation

is accommodated by computing ra
1 and rb

1, the smallest positive real roots for
eq.(14) using ga(x) and gb(x), and selecting hk+1 = min[ra

1 , rb
1].

In the case of (ga(x) ≥ 0)
∧

(gb(x) ≥ 0), we compute at time tk the sets of
positive ordered real roots {ra

1 , ra
2 , . . . , } and {rb

1, r
b
2, . . . , } using eq.(14). Then

1. if ga(xk) < 0 but gb(xk) ≥ 0; and if ra
1 < rb

1, let hk+1 = ra
1 .

2. if gb(xk) < 0 but ga(xk) ≥ 0; and if rb
1 < ra

1 , let hk+1 = rb
1.

3. if both ga(x) < 0 and gb(x) < 0; and if either ra
1 < rb

1 < ra
2 or rb

1 < ra
1 < rb

2;
let hk+1 = rb

2 or ra
2 respectively.

Guards prefaced with a ¬ operator can be converted to the standard form by
changing their sign, that is by using −g(x) ≥ 0 rather than g(x) ≥ 0.

3.6 Final Selection

In practice, event considerations are not the only criteria which determine the
appropriate step size to be used in simulation. Often the simulation will specify
some minimum step size, hmin , below which roundoff errors affect the stability
of the computation. In addition, most modern numerical integrators estimate
an ideal step size based on truncation error considerations, herr. The resulting
step size selected by our algorithm based on event detection, hk+1, can be easily
incorporated into existing integration algorithms by selecting the actual step size
as

h = max[hmin, min(hk+1, herr)]. (15)

In this way the original accuracy and stability properties of the integration al-
gorithm are preserved.

3.7 Termination Criteria

In cases where the guards have a Taylor series expansion of finite length, γ = 0
will yield exact and rapid convergence to the event surface; therefore the algo-
rithm should be terminated when g(xk+1) = 0 If the guards are more general
nonlinear functions , exact convergence is not guaranteed. In such situations,
conservatively selecting 0 < γ < 1 will cause the simulator to take successively
smaller steps toward the surface. However, selecting γ too large results in slow
convergence rate and a very small γ can risk overshooting the guard, in practice
we have found 0.05 < γ < 0.5 to be a good selection. Slowing down the sim-
ulation in this manner has the effect of dramatically increasing the chances an
event will be properly detected and may event be useful when exact lineariza-
tion is possible. Since steps are taken in such a way that the value of the guard
approaches zero asymptotically, it may take an infinite number of steps to reach
zero exactly. Therefore the user must set a small threshold ε ≥ 0 such that the
procedure is terminated when g(x) ≥ −ε. Alternatively one could choose to stop
the procedure once the computed time step is smaller than hmin.

212 J.M. Esposito, V. Kumar, and G.J. Pappas

3.8 Algorithm

All of these ideas are assembled into an algorithm and implemented in Matlab.
Given by the user upon initialization:

– A set of atomic propositions of the form ga(x) ≤ 0, gb(x) ≤ 0, gc(x) ≤ 0,
. . . joined or modified using the operators

∨
,
∧

, and ¬.
– the gain, 0 ≤ γ < 1; and termination tolerance ε ≥ 0.

Preprocessing

1. convert any guards of the form ¬g(x) ≤ 0 to −g(x) ≤ 0.
2. if desired, convert any nonlinear guards to linear guards, using the transfor-

mation described in eq.(1), by appending an extra state variable.

Repeat until termination
Get from the integration algorithm at each iteration:

– m previous derivatives used in the multistep integration method, fk, fk−1,
. . . , fk−m

– ideal step size for controlling the truncation error,herr and minimum allow-
able step size, hmin

Main Algorithm

1. for each atomic proposition ga, gb, . . . , gi, . . . compute a candidate step size
using the appropriate method:
a) symbolic inverse o(gi(x))−1 given by user –

Roots [hf̄β(h) + xk − (gi)−1(γgi(xk))] = zi

b) gi(x) is linear or has been converted to linear form and Lf̄β
g 6= 0 –

Roots [hLf̄β(h)g
i − (γ − 1)gi(xk)] = zi

c) gi(x) is a polynomial of order N –

Roots [
N∑

p=1

Lp

f̄β(h)g
i h

p

p!
− (γ − 1)gi(xk)] = zi

d) nonlinear gi(x) – compute roots, zi, using Lie series (eq. 13).
2. for each set of roots from the previous step za, zb, etc. discard any negative

or complex roots. If there are no positive real roots for a given zi set hi = ∞;
otherwise sort the positive real roots in ascending order ri = {r1, r2, . . . }.

3. Using ra, rb, . . . , recursively compute a composite step size,r∗ for each
boolean conjunction using the rules in section 3.5.

4. combine this result with the step size computed in the integration algorithm
using h = max[hmin,min(r∗, herr)]

5. integrate through one step of size h. If g(xk+1) ≥ −ε terminate; else, repeat

Accurate Event Detection for Simulating Hybrid Systems 213

Example 1 Example 2

Fig. 2. Two examples: (1) an autonomous robot navigating a corridor; (2) a planar
two link manipulator with workspace limitations.

4 Examples and Discussion

In this section we illustrate the effectiveness of our algorithm using the two
examples shown in Figure 2. The first, controlling a car-like robot, represents
a situation in which other event detection methods fail, because the guard set
possesses “sharp” corners. The second, a planar manipulator with workspace
limitations, illustrates a situation in which many event localization methods fail
due to a model singularity. We also discuss some shortcomings of the proposed
algorithm.

Example 1. Consider the nonholonomic cart trying to navigate an indoor envi-
ronment as shown in Figure 2. The kinematic equations are

 ẋ
ẏ

θ̇


 =


 cos(θ) 0

sin(θ) 0
0 1


[

u1
u2

]
(16)

where the inputs u1 and u2 are the forward velocity and turning rate. The details
of the robot control problem and the history of u1 and u2 are omitted here, but
it is assumed to be provided by a controller. The goal here is to verify the efficacy
of the controller and in particular, to verify that the robot does not collide with
the obstacles. For the sake of simplicity, we ignore the physical size of the robot
and simply think of it as a point. Thus the guard(s) for the simulation are given
by the equations of the walls

((y − 0.5 ≥ 0)
∨

(x − 3.5 ≥ 0))
∨

((−y − 0.4 ≥ 0)
∧

(2.8 − x ≥ 0)). (17)

Figure 3a displays a situation for which the standard algorithm fails. Inte-
gration points are computed which happen to land just outside the guard region.
Thus the simulator detects no collision when in fact the robot has collided with
the walls, near the corner (x = 2.8, y = −0.4). Figure 3b illustrates the method
presented in this paper. Observe how the integrator slows down as it approaches
the event surface. Note that in this example the gain was selected in such a
way as to produce a very gradual slow down, for the purposes of illustrating the
technique. In practice, since the guards are linear, a gain of γ = 0 could have
been used to force fast convergence.

214 J.M. Esposito, V. Kumar, and G.J. Pappas

1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 3. Simulations of the mobile robot in example 1: (a) standard simulation technique
fails to detect the collision; (b) our method slows down as it approaches the event
surface.

Example 2. Consider the planar two link manipulator, as shown in Figure 2,
with the kinematic equations [

θ̇1

θ̇2

]
=

[
ω1
ω2

]
(18)

desired (x, y) positions for the end point are fed to the controller from a high
level planner and the model is required to calculate θ1 and θ2 to achieve these
positions. If the length of the proximal link is l1 and the distal link is l2, the
appropriate inverse kinematics relation to compute θ1, θ2 as a function of (x, y)
are

θ1 = arctan 2

[
−y√

x2 + y2
,

−x√
x2 + y2

]
± cos−1

[
−(x2 + y2 + l21 − l22)

2l1
√

x2 + y2

]
(19)

θ2 = arctan 2
[
y − l1 sin(θ1)

l2
,
x − l1 cos(θ1)

l2

]
− θ1 (20)

Note that it is possible for the high level planner to be unaware of the specifics of
the manipulator and specify (x, y) points which are outside the set of reachable
positions of the manipulator, in such cases the arguments of the cos−1 function
would fall outside of the range of [−1, 1] and the right hand side of the differential
equation becomes ill-defined. In this case, given l1 > l2 the guard would be

(
√

(x2 + y2) ≤ (l1 + l2))
∧

(
√

(x2 + y2) ≥ (l1 − l2)) (21)

with x = l1 cos θ1 + l2 cos(θ1 + θ2),y = l1 sin θ1 + l2 sin(θ1 + θ2).
Figure 4a displays a simulation of the two link manipulator attempting to

track a reference trajectory, which is a straight line in Cartesian space. In this
case the reference trajectory eventually falls outside the workspace of the manip-
ulator, where the right hand side of the differential equation becomes complex.
The traditional integrator generates a point near the edge of the workspace and
its next point falls outside the workspace. Because the vector field is ill-defined
there, it is unable to correctly compute this new point, nor is it able to activate

Accurate Event Detection for Simulating Hybrid Systems 215

a) b)

1.05 1.1 1.15 1.2 1.25 1.3 1.35
1.75

1.8

1.85

1.9

1.95

2

2.05

1.05 1.1 1.15 1.2 1.25 1.3 1.35
1.75

1.8

1.85

1.9

1.95

2

2.05

Fig. 4. Simulations of the two link manipulator from example 2: (a) root bracketing
methods cannot be used since the vector field is ill-defined out side the workspace; (b)
our method approaches the surface asymptotically without every requiring a function
evaluation outside the workspace.

its root finding algorithm (bracketing technique) since it requires an initial point
on each side of the guard. The output of our algorithm is shown in Figure 4b.
Successively smaller steps are taken as the state approaches the boundary of the
workspace.

Discussion. It should be said that, although our method is capable of termi-
nating the simulation at tk such that g(xk) = 0 exactly, in some situations, or
coming arbitrarily close to it in others, it can only be considered accurate insofar
as the underlying integration method accurately reproduces the exact solution to
the differential equation. That is to say that while g(xk) will equal zero exactly,
xk itself is not exact since it is generated through an approximation algorithm,
as in all numerical analysis. Other limitations include:

– In eq.(11), which determines the step size, one must divide by the quantity
Lf̄β

g. Obviously the method is not applicable when this quantity is zero.
Infact, by the inverse function theorem, Lf̄β

g = 0 implies that the inverse
of g(t) used in eq.(9) does not exist. Geometrically, the differential equation
is flowing purely tangential to the boundary of the guard set, an alternative
method is required.

– The method requires solving for roots of eq.(14) at every step, despite the
fact that that specialized algorithms exist, this computation can be a bit
time consuming for higher order methods (higher order polynomials). We feel
that given the importance of discrete event detection in accurate simulation
this additional effort is worthwhile although an efficient exclusion test would
improve the performance.

5 Conclusions and Future Work

It has been observed that there are a variety of situations in which one of the
most popular hybrid simulation methods can fail to properly detect or localize

216 J.M. Esposito, V. Kumar, and G.J. Pappas

the occurrence of discrete events: either due to a multiple number of zero cross-
ings within a single step or because of model singularities. We present a method
for detecting discrete events which, using techniques borrowed from control the-
ory, selects integration step sizes in such a way that the simulation slows down
as it approaches a guard. Our method guarantees that the simulation will land
exactly on the event surface for any guard which has a Taylor series expansion
of finite length. Given that any nonlinear guard can be transformed to a linear
form, this technique is applicable to a broad class of systems. Even in situations
where nonlinear guards have not been transformed to the canonical form, the
method is still quite useful in practice. We show how to extend the method
to complex guards which are built up from many simple algebraic inequalities
using the boolean operators and, or and not. In this way polyhedral or semi-
algebraic guards sets can be handled. The technique is easily used in combination
with existing integration algorithms and does not adversely affect the underly-
ing accuracy or stability of the numerical integration technique. Ultimately the
framework presented here will be coded in Java (presently written in Matlab)
and incorporated into the CHARON [16] simulation suite.

While our method requires a variable step size integration method, it has
been observed that when simulating large systems such as Automated Highway
Systems with 1000+ vehicles, traditional variable step size schemes are unac-
ceptable since they require all components to be simulated at the same rate.
Thus if only two of the vehicles actually necessitate a step size reduction, the
entire system must be slowed down to the smallest common step size, creat-
ing gross inefficiencies. To address this problem, we are currently considering
using the techniques presented here in conjunction with multirate integration
methods such as those presented in [7]. When integrating a systems of ODEs,
multirate methods use a different step size for each component. Thus, when a
particular component of the set of equations is changing rapidly a small step size
may be used without unnecessarily slowing down the integration rate for other
slowly changing components. Multirate implementation would prevent agents
not involved in the event from being simulated at an unnecessarily slow rate.
We believe that these two techniques complement each other and can be used
to develop a powerful simulation tool for multiagent and hierarchical hybrid
systems.

Acknowledgments. We gratefully acknowledge support from DARPA grant
MOBIES F33615-00-C1707 and NSF CDS-97-03220. The first author is also
partially supported by a DoE GAANN grant.

References

1. A. Gollu A. Deshpande and L. Semenzato. Shift programming language and run-
time system for dynamic networks of hybrid automata. California PATH, 1995.

2. A.Isidori. Nonlinear Control Systems. Springer, London, 1995.
3. M.B. Carver. Efficeint integration over discontinuities in ordinary differential equa-

tion simulations. Mathematics and Computers in Simulation, XX:190–196, 1978.

Accurate Event Detection for Simulating Hybrid Systems 217

4. F. Cellier. Combined discrete/ continuous system simulation by use of digital com-
puters: techniques and tools. PhD thesis, ETH Zurich, Zurich, Switzerland, 1979.

5. A. Chutinam and B. Krogh. Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In F. Vaandrager and J. H. van Schup-
pen, editors, Hybrid Systems : Computation and Control, volume 1569 of Lecture
Notes in Computer Science. Springer Verlag, 1999.

6. T. Dang and O. Maler. Reachability analysis via face lifting. In T. Henzinger
and S. Sastry, editors, Hybrid Systems : Computation and Control, volume 1386 of
Lecture Notes in Computer Science, pages 96–109. Springer Verlag, Berlin, 1998.

7. J. Esposito and V. Kumar. Efficient dynamic simulation of robotic systems with
hierarchy. submitted to International Conference on Robotics and Automation
2001.

8. C.W. Gear and O.Osterby. Solving ordinary differential equations with disconti-
nuities. Technical report, Dept. of Comput. Sci., University of Illinois, 1981.

9. D. Bruck H. Elmqvist and M. Otter. Dymola – user’s manual. Dynasim AB
Research Park Ideon, Lund Switzerland, 1996.

10. S. Campbell K.Benan and L. Petzold. Numerical solutions of initial value problems.
North Holland, London, 1989.

11. S. Kowaleski, M.Fritz, H. Graf, J.Preubig, S.Simon, O.Stursberg, and H.Treseler.
A case study in tool-aided analysis of discretely controled continuous systems: the
two tanks problem. In Hybrid Systems V, Lecture Notes in Computer Science.
Springer Verlag, 1998.

12. L.F.Shampine, I.Gladwell, and R.W.Brankin. Reliable solution of special event lo-
cation problems for ODEs. ACM transactions on Mathematical Software, 17(1):11–
25, March 1991.

13. Ian Mitchell and Claire Tomlin. Level set methods for computation in hybrid
systems. In N. Lynch and B. H. Krogh, editors, Hybrid Systems : Computation
and Control, volume 1790 of Lecture Notes in Computer Science, pages 310–323.
Springer Verlag, 2000.

14. P.Mosterman. An overview of hybrid simulation phenomena and their support by
simulation packages. In F.W. Vaandrager and J. H. van Schuppen, editors, Hybrid
Systems : Computation and Control, volume 1569 of Lecture Notes in Computer
Science, pages 163–177. Springer Verlag, 1999.

15. A.J. Preston and M.Berzins. Algorithms for the location of discontinuities in
dynamic simualtion problems. Computers in Chemical Engineering, 15(10):701–
713, 1991.

16. R.Alur, R. Grosse, Y.Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in charon. Hybrid Systems Computation and Control: Third international
workshop, 3:6–19, 2000.

17. T.Park and P.Barton. State event location in differential-algebraic models. ACM
transactions on modeling and computer simulation, 6(2):137–165, 1996.

18. J.Liu X.Lui, T.J.Koo, B.Sinopoli, S.Sastry, and E.A.Lee. A hierarchical hybrid
system model and its simulation. Proceedings of the 38th Conference on Decision
and Control, pages 2407–2411, 1999.

	Motivation and Previous Work
	Key Concepts
	Review: Numerical Integration with Linear Multistep Methods
	Feedback Linearization Analogy in Continuous Time

	Simulation Algorithm
	Symbolic Inverse
	Exact Linearization
	Approximate Linearization
	Computation of Step Sizes
	Boolean Combinations of Guards
	Final Selection
	Termination Criteria
	Algorithm

	Examples and Discussion
	Conclusions and Future Work

