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Abstract. Most robot control and planning algorithms are complexgiming a combination
of reactive controllers, behavior-based controllers,@gltberative controllers. The switching
between different behaviors or controllers makes suclesyshybridj.e.combining discrete
and continuous dynamics. While proofs of convergence, sitmss and stability are often
available for simple controllers under a carefully crafsed of operating conditions, there
is no systematic approach to experimenting with, testing,\alidating the performance of
complex hybrid control systems. In this paper we addrespitblelem of generating sets of
conditions (inputs, disturbances, and parameters) thgtitrbie used to "test” a given hybrid
system. We use the method of Rapidly exploring Random TiRB3 §) to obtain test inputs.
We extend the traditional RRT, which only searches overinantis inputs, to a new algo-
rithm, called the Rapidly exploring Random Forest of TrédRRET), which can also search
over time invariant parameters by growing a set of treesdchgarameter value choice. We
introduce new measures for coverage and tree growth tlmtsalis to dynamically allocate
our resources among the set of trees and to plant new treestiWbg@rowth rate of existing
ones slows to an unacceptable level. We demonstrate thieatgh of RRFT to testing and
validation of aerial robotic control systems.

1 Introduction

Hybrid systems provide mathematical models of discretéioaous dynamic sys-
tems. Many robotic systems including walking robots, gig@and manipulation,
or logic-based software controlled robots can be modeltetbuthis framework. In
fact most robot control and planning algorithms are compiexolving a combi-
nation of reactive controllers [2], behavior-based cdigre [23], and deliberative
controllers [11,16]. While it is possible to analyze eachtcoller in isolation it is
well known that the interaction between discrete and cootis time dynamics of
such systems can produce rich and often unexpected behBwiothis reason, as
these systems grow in complexity and sophistication, tleel fier automated design
tools increases. The focus to date in the literature hasde#re formal verification
of safe operation, via the solution of the reachability peaf initially through sym-
bolic methods [27,17] and later through numerical techei[8,1,5,24,9]. How-
ever, it soon became apparent that the class of hybrid deswstems for which
the reachability problem was decidable is quite limited athbexpressiveness and
dimensionality.
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Test generatior a well established concept for software design — is a velgti
new approach to analyzing control systems. Rather thareprontroller safety ex-
haustively, our approach is to try to generate a set of testas@s, using Rapidly
Exploring Random Trees (RRT), that cause the system tolfadddition to con-
sidering traditional continuous inputs, we have extendedrhethod to consider
uncertain time invariant parameters. We call our algorithe rapidly exploring
Forest of Trees (RRFT). The merit of this approach as contpaita reachability
analysis is that decidability issues do not come into plagabee we are not at-
tempting to represent or manipulate a reachable set. Thebdik of the approach
is that it is a semi-decision method, meaning that we candispyrovesystem safety
by counter-example — safety cannot be proved. Despite thistthck we feel that
randomized approaches hold the most promise for addressimglex nonlinear
real-world problems for which trial and error testing is safficient; and formal
analysis is intractable. Similar work has recently appeavhich uses genetic al-
gorithms [26]. Some works have used RRTs as a synthesisdoblybrid control
systems [10,4]; but the idea of using RRTs to explore a systéaults has only
appeared in passing [15,8].

Our approach consists of drawing a parallel to, and usinfpoakstfrom, motion
planning. Informally themotion planning problens: given a robot with dynamics
and constraints (obstacles), to find a path (if one existeh fihe starting configura-
tion to the goal configuration of robot in some complex higmelnsional configu-
ration space. Similarly, the goal of test generation is td &irsequence of inputs (or
disturbances) and parameters (if one exists) which wit takybrid system from an
initial state to some unsafe set in the hybrid state spaterdstingly motion plan-
ning research experienced a similar evolution from exaghfmlic) methods [28],
followed by the result that the problem was fundamentallylii@], to a shift toward
approximate methods that worked well in practice [25]. Mesently research ac-
tivity focuses orrandomizedpproaches to the problem which have been shown to
scale well with dimension.

The primary differences between motion planning and tgdtinin the types of
systems considered. For example, motion planning appesait not traditionally
consider hybrid systems (though recent work has [10]). Aeotifference is that
in motion planning problems the state space is not simpl@ected, in the geo-
metric sense, due to the presence of obstacles, necegsitatiuse of sophisticated
collision detection algorithms. For hybrid system theestgace is usually simply
connected with a given mode. Perhaps most importantly tibbpstems are almost
always output controllable (by design), so the reachabéees|is the entire output
space. Therefore a solution usually exists, unlike tegtiodplems. As a result con-
siderations of when to stop growing the tree are rarely dised.

The contributions and outline of this paper are as follows

e Formally introduce the Test Generation problem for compglentrol systems,
point out the similarities to motion planning (Sections)2-3

¢ Define new coverage criteria for RRTs (Section 4).
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e Introduce the RRFT algorithm which is capable of searchioth lover tradi-
tional continuous inputs (like the RRBNd uncertain time invariant parame-
ters RRFT modifies its search strategy based on the run time ageestimates
(Section 5).

Incidentally, the algorithm can be used for motion planmngesting. Finally we
apply the algorithms to validate two controllers for rolbathmanned aerial vehicles
in 6.

2 Problem Statement

Definition 1. We define &inite Time Hybrid Control System with unknown pa-
rameters dependencies as (modified from the Hybrid Autorsa&a[22]) as a tuple
H=(X,Q,U,T, P, Init, f,Inv, E, G, R) where

X c RY is a set of continuous variables;

Q@ C Nis a set of discrete variables which index the system modes;

U C R™ is a compact set of continuous input values;

T = [to,ts] C Ris a compact time interval the system evolves over;

P C RP is a compact set of uncertain, time invariant parameters;

Init C Q x X is a set of possible initial conditions;

f:QxXxUxP — R is avector field which prescribes the time derivative
of the continuous variables €., = = f(q, x, u; p));

Inv: @Q — 2% assigns to eachp € Q an invariant set;

e F C @ x Qis a collection of edges describing the possible discratesition
(a.k.a.- mode switches);

G : E — 2X*P assigns to each = (¢,q') € E aguard; and

e R:Ex X — 2¥X assigns to each= (¢,¢') € E areset relation.

Throughout this paper we refer o, ¢) as the state of the hybrid system. Note that
we use the term “input signal” in the most general sense iritthan include yet un-
specified feedback control inputs, human in the loop typetsdisturbances, etc.
Note that the uncertain parameters can affect the contmapdiscrete dynamics.
Again, many robotic system can be modelled in this way (se& $¢ Examples of

P could include a control gain, the initial condition of an adsarial agent, or the
width of a narrow passage.

Definition 2. The Testing ProblemT P is specified as a tupleH, 2°, ¢°, s, U, 6t)
where

H is afinite time hybrid control system as described above;

a9, qO € Init;

U is user defined discretization bf;

ot is the fixed time period for which a constamtc U is applied such that
(ty —t,)/0t = kis an integer;

s: X x @ x P — Ris a specification;
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Given an initial state and a particular control functioft), s can be used to define
aset. Ifs(z, ¢;p) > 0, then(z, ¢) is an acceptable state inside the specification set
for p; otherwise it is unacceptable.

Problem 1.Given an initial state,(°, ¢°), the Testing Problemis to determine
{u1,us,...ux} € U, which define a piecewise constant control sequence

u(t)=u; if (i—1)-0t <t < (i)t 1)

fori =1,...,k,andp € P, ifthey exist, such thalt € T forwhichs(z(t), ¢(t); p) <
0.

In words, the goal of the test generator is to determine atesw@xample — an piece-
wise constant input sequence and a value of the time invariarertain parameters

which will cause the system to fail — if one exists. Note thaikirity to trajectory
planning (for example see problem statement in [7])

3 Testing Through Rapidly Exploring Random Trees

The similarities between the Testing Problem and the matianning problem,
suggest the use of a randomized methods such as ProbalRiztid Maps [13]
or Rapidly Exploring Random Trees (RRTs) [19]. We chooseRRE primarily
because it works directly with the set of admissible inputd & therefore di-
rectly applicable to systems with complex dynamics. Thgodathm has experi-
enced widespread success in solving a variety of high dilmeakand nonlinear
problems in motion planning and has recently been appliemidroller synthesis
problems for hybrid systems [10,15,4]. Figure 1 illustsatee concepts and a very
basic algorithm is given in Algorithms 1 and 2. Note thas a suitable metric func-
tion; and the notatiof;, ¢) + f& H (u)dt means: using;, ¢ as an initial condition,
simulate the evolution of the hybrid system farseconds using(t) as the control
input. Various versions of the algorithm can be generatedydifferent metrics, or
random distributions. In Sect. 5 we focus on stopping deténo solution is found.

Algorithm 1 Grow Test Set T
Initialize RRT: 7 .addvertexz?, ¢°)
while A(z,q) € T such thats(z,q) < 0do
Extend()
end while

4 Coverage Measures

It has been shown that, for a controllable system, the RRITultimately cover the
entire state space as the number of sample points goes fityifi#id]. Unfortunately,
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Fig. 1. The Testing algorithm (inspired by the RRT [19]). The testiseepresented as a tree
7 with nodes as state&;, ) and edges as inpuis € U. First a new state is generated at
random,z,qnd, grand- The algorithm then determines the closest statqr, gnear in the
tree to the random statéeft). It determines which:. € U brings z,car, gnear Closest to
Zrand, Qrand (CENtED. uneyw IS applied for a duratiot and the new node ew, gnew and
edgeun.., are added to the treeght).

Algorithm 2 Extend(/)
Trand, Qrand < random()
Tnears Gnear — NearestNeighbo®, (T and, Grand) )
Unew = arg min, ¢ - {p( (Trand; Grand); (Tnear, Gnear) + [°F H(u)dt)}
(xneuu Qnew) = (xneam Qnear) + fét H(unew (t))dt
7 .add vertex,.cw, Gnew)
T .addEdgedncw, (l’neam Qnear) - (xneuw q”ew))

because many of the systems we consider are not controllathiieespect to the
test inputs, the reachable set is not the entire space. #risdifficult in practice
to estimate coverage quality because the reachable set khown a priori. It is
therefore important for us to estimate coverage for twoaess

e Many testing problems may have no solution, meaning that¢tisenot a counter-
example to be found. In such a case we must decide when tontaterilgo-
rithm 1.

e |t is possible for Algorithm 1 to get stuck in “local minima'ué to its greedy
strategy [8] or to slow down because a tree is fully grown.

Regarding the second point, we can use coverage measuregetmihe when it
might be appropriate to alter the search strategy. Indeeexplore this further in
Section 5

4.1 Coverage: previous work

It has been pointed out many times [18] that coverag& diy 7 is related to the
Voronoi Diagramof the vertices of the tree. While this connection is usetul f
theoretical analysis the major problem is that it is impittto compute Voronoi
diagrams in dimensions over 2. TBéscrepancy(a concept from the Monte Carlo
literature) is also mentioned in [18] but it too is very difflcto compute. Another
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appealing idea to measure the growth or coverage of the RRT ¢éempute the
volume of the convex hull. Unfortunately the convex hull ism@ indicative of the
distribution of the points than it is of the coverage. Forrapée, in Figure 2 the left
and right panels represent two sample sets whose convexdralidentical. Obvi-
ously the sample shown to the right covers the state spater.det[21] a variant
of the convex hull is explored. Rather than compute the Hadlldree vertices, ver-
tices are grouped according to their depth from parent nobtes union of these
hulls clearly provides a better approximation however thlection of the group-
ing is somewhat arbitrary. It is not clear how to relate thsnro coverage due to
possible overlaps.
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Fig. 2. Two sample sets which have the same convex hull. The set olefthelearly has
inferior coverage to the set on right.
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Fig. 3. Two sample sets which have the same dispersion (the sizes ddtpest empty ball,
drawn with dashed line). The set on the left clearly has inferoverage to the set on right.

It appears that the most accepted measure to date Bispersion(see [12] or
more recently [18]). Assuming we have a sample)$etvhich containsV points,
over the spacg, it is defined as

(X, p) = sup min p(z, 7) (2)
reX TEX
and can be thought of as the radius of the largest empty bail and obviously
depends greatly on the choice of mewidVhile its use has been advocated for an-
alyzing planners we reject it for computation on two grourgdlyit is impractical to
compute in high dimensions; and, (2) it is an overly conddre@overage measure
because it only considers theggestball. For example, in Figure 3 the left and right
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Fig. 4. A grid is super imposed on the state space. The shaded regitinate unreachable
sets. The distances from the grid points to the closest nmees (shown as dashed arrows)
and the grid spacing i&

panels represent two sample sets with the same dispersimin@ly the sample
shown on the right covers the state better.

4.2 New Coverage Measures

We have three goals: to measure the coverage of the state Xpbyg the tree7;
to measure the growth of the trdeand to measure the coverage of the set of time
invariant parameter® by a countable finite set of valués

RRT CoverageWe begin by overlaying a grid of, points and spacing on the
state space. We calculate the minimum distance from eadhpgint j to the set
of nodes in the treg];. The quantitymin(d;, §) may be thought of as the radius
of the largest ball centered at each grid point which doesootain a tree node or
adjacent grid points (see Figure 4). Given a tfewe define its coverage(7), as

oT) = % Zg min(d;, §) 3
j=1

Ng

which is the average of all the node distances, normalizeétidgrid spacing.

Our measure is similar to an approximation of an “averagspelision, but far
less conservative and faster to compute. Clearly this nmedasua monotonically
decreasing function. If it goes to zero on a given grid itsteis that any set whose
distance along its smallest dimension is greater than tidespacing has been en-
tered. Said another way, the state space is covered up tolaties equal to the grid
spacing. Overall one of the advantages of this measuretisthigagrid size can be
as fine or coarse as one chooses. Finer grids will require distance queries but
are more accurate indications of coverage. Of course gadse generated in the
“output” or specification space to measure coverage theveeisFrom a compu-
tational point of view it should be stressed that this lististances can be updated
incrementally as new tree nodes are added, since the affeztch new node is
local.
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RRT Growth The derivative ofe(7") with respect to the number of vertices in the
tree,n.,, indicates the growth. Therefore

9(T) = —de(T) /dn,, (4)

In practice the derivative is actually a finite differencelame may choose to look
at the change in over the course of adding several new vertice$ to

Time invariant parameter set coveragehe set of parameters over which we may
tests the system may be generated directly since they asubjgct to differential
constraints and therefore the sample set can be enginedradd a certain coverage
of P. Halton sequences [12] have naturally low dispersions aadleap to com-
pute. Therefore we define the coveragdiising the dispersion defined in eq.(2)
normalized by, gz -

5 Forest of Random Trees Algorithm

The original RRT given in Alg. 1 only addresses time varyinguts such as(t).
Recall that the evolution of our system is characterizedrbg tnvariant parameters,
p € P as well. In our RRFT algorithm (see Alg. 3), the repeatediappbn of the
RRT algorithm results in a tree for every choigec P (called the seed value).
Accordingly, we need to considerset of treeqa forest) that rapidly explore the
state space. We call a RRT grown (or rootedpatc P, 7,.. Initially we plant
trees atP = {p,...,pn, },» wheren; is the maximum number of active trees we
can consider concurrently. At any point if a counter exanpl®und (a state and
parametes(z, ¢; p;) < 0 for which (z, ¢) € 7,,,) the algorithm terminates.

Because we have limited computational resources, we mugtelbow to allo-
cate them in growing the trees — choosing which to grow andalwvto terminate.
As the RRT algorithm progresses, we monitor the progressach ¢ree. If at any
point the growth of one of the trees as measured(#dy;: ) drops below a threshold
g, the tree is considered no longer actively growing; or, & toverage:(7,: ) is
less than a thresholg] the tree is considered fully grown. In either case the tsee i
terminated. Provided the sétis not adequately covered with seeds (as measured
by the dispersion) a new “seed” is planted and a new treetigtied. The process
of planting and growing new trees continues until a countangle is discovered,
or until P is sufficiently covered{(P) < @) with seed values, whose trees have
stopped growing.

One key component of this approach is that each RRT can beutethin par-
allel on a different CPU'’s, therefore we assume a fixed coatmrtal resource that
will dictate the number of trees that can be simultaneousiymuted in parallel.

6 Examples

We demonstrate the algorithm on two examples involving Riolkdénmanned Arial
Vehicles.
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Algorithm 3 Test Generatior, = RRFT(H, 2, ¢°, s,U, g, ¢, i, ny)

Generate initial seed sét = {p1, ..., pn, } Wherep; € P
fori=1,...n:do
Initialize RRT: 7, .addvertex¢®, ¢°)
end for
while n: # 0 do
fori=1,...n¢do
Extend(,,)
if 3(x, q) € Tp, such thats(x, ¢; p) < 0then
return7,,
break (test case found)
else
it 9(7p;) < g, OR,¢(Tp,;) < cthen
terminate7,,
Nng < N¢g — 1
if u(P) > pthen
ng «—ng +1
Generate new; € P via Halton sequence and appendio
Initialize RRT: 7, .addvertex¢?, ¢°)
end if
end if
end if
end for
end while

6.1 Example 1: Aircraft conflict resolution

As a first example we test an aircraft collision avoidancequol proposed in [24].
We test over a continuous input(¢), a wind disturbance) and a constant parameter
(p, the minimum separation distance) and consider a scematidving 5 aircraft.
The problem has 15 states, which is considerably largerghaiolems which have
been considered in the literature on reachability and eatifn.

Each aircraft has three state¥; = (z,y,6) and there aré aircraft so the
continuous state spaceX= X; x ... X5. The continuous dynamigs: @ x X x
U x P are

x; = veos(6;) + (—dy sin(6;) + da cos(6;))(— sin(6;)) (5)
yl = vsin(;) + (—dy sin(6;) + da cos(8;))(cos(6;)) (6)
0 = w(g;p) (7)

Wherev is a constant forward velocity; = [d1 da]T € [—w,w] x [~w,w] is a
wind disturbance whose normal component to the planesaheir dynamics (this
is the main difference versus [24]). Note thgand p do not explicitly appear in
the dynamics but rather determineg the preset yaw rate control law. The control
law was designed to bring each plane frdmit to its own predetermined final
destination(z?, y{) without colliding. The functiono switches depending on the

79
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mode. At the start positions, the aircrafts argyia- 1, (headingmode) and rotate
until pointing toward their goal positions, sq1) = 6,04, — 0;. Once they reach the
desired heading, they switch o= 2 (cruise modg w(2) = 0, and cruise straight
toward the goals. If two aircrafts get within a distapdem of each other, each of the
two aircraft enterg = 3 (avoidmode) and makes instantanecu$0° turns, then
it follows a half circle with angular velocity(3) = c. After finishing the circular
turn, they make instantaneous turns again until pointirthé@r own goal positions
and return to cruise mode. In case the aircraft sees anotfceafawithin p km
during the avoid mode, it makes90° turn again and executes the same operation
as above. This is illustrated in (see Figurkef). The specification is the minimum
distance between all pairs of planes.

When |lu|| < 0.03km/sec andp = 5.25km a collision among the aircraft
was discovered (see Figuraifht) after about 8,600 nodes and 5 parameters were
explored. A uniform distribution was used to generate sas)@nd a simple metric
based on a weighted Euclidean distance is utilized

p:d+wa|A9| (8)

whered is a Euclidean distance between twa y) positions,Af € (—x, =] is
a heading difference, and,, is a weight factor. Figure 6 shows7) and g(7)
for the trees. Figure 7 shows the coverage of the seeqi&BY, as new seeds are
generated. Three initial seeds are planted and two new seedgenerated until
solution trajectory is found. Therefore total 5 seeds aeel tio obtain the trajectory.
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Fig. 5. The modes of operation for the aircraft collision avoidaexample (left). Testing the
aircrafts withv = 0.3km/sec, w = 0.03rad/sec, andp = [4.5, 5.5]km under bounded
disturbanced|u|| < 0.03km/sec (right). We define the collision distance &km. Circles
represent initial positions and rectangles are goal mostiA collision is discovered after
exploring about 8,600 nodes with= 5.25km.

6.2 Example 2: Unmanned blimp control law

In this section, we consider the validation of a feedbackrobalgorithm for way-
point to waypoint navigation of an unmanned outdoor blimplemunpredictable
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Fig. 6. Coverage of the trees. New trees are started when the grauhsltows below a
specified thresholdg(= 1 x 107'° used in this example). Solution is discovered in one
of the initial seeds.
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Fig. 7. The coverage improveg:(P) decreases) as new trees are seeded. A collision is dis-
covered ats=5.

but bounded disturbances. The blimp has a 12-dimensiaatal space. Closed loop
control laws use proportional inertial feedback to keeplitmp at the desired al-
titude with the target speed and to move from one inertialpeéyt to the next.
Waypoints are generated in the 3-dim spacey, z). Change of the waypoints can
be considered as a system mode change. We bound theityui(ind disturbance)
by limiting the magnitude of the wind gust and the rate of denf wind veloc-
ity. The max. change rate of wind directiong5(1/s) and the max. change rate
of wind direction8°/m and the magnitude is bounded fas|| < 0.03km/sec.
For detailed description of the feedback control law, samgpstrategy, metric de-
sign, and the bounded wind disturbance, refer to [15]. Is ¢thise the time invariant
parameters we will test over is the position of the waypoifitee waypoints are
specified by a high level planner which does not account f@btimp’s dynamics.
We would like to see if it is possible for this planner to sfge waypoint which
would cause the blimp to collide with the obstacle.
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Figure 8 shows the trajectories of the blimp. The initialard velocity is
0.5m/sec. The target forward velocity ism/sec. The starting waypoint if©0 0 —
5|7 and the goal waypointig50 — 150 — 10]. We assume the high level planner
can generate intermediate waypoipts [80 100]7 x [-80 —60]% x (-10) to avoid
a collision. We assume the navigation plan is achieved ibtimep can reach within
20m of the goal waypoint avoiding the obstacle under the vdisturbance. A
counter-example is discovered with the intermediate way@d[95 — 62.2 — 10]7
after exploring about 9,000 nodes. The solution requirésrihutes of computa-
tion time on 1.4GHz PC. Coverage criteria are shown in Figuesd Figure 10.
In this application, the RRFT analysis technique allowsdasigner to efficiently
explore the safeness of the blimp closed loop flight conénaklfor navigation plans
in the presence of obstacles.

>-100

obstacle obstacle

Fig. 8. RRFT of the blimp under wind disturbande:|| < 0.03km/sec and uncertain in-
termediate waypoints (left). Solution trajectory is ohtad after exploring about 9000 nodes

(right)

0 500 1500 2000 0 500

1000 1000
no. of iteration no. of iteration

Fig.9. Coverage of the trees. New trees are started when the grawhsltows below a
specified thresholdg(= 1 x 107'° used in this example). Solution is discovered in one
of the initial seeds.



Adaptive RRTs for Validation 13

1

0.9r
0.8r
0.7
0.6 &

0.5r

u(P)

0.4r

0.3F o 4

0.21

0.1r

G0 1 2 3 4 5 6 7 8
total no. of seeds, n,

Fig. 10. The coverage improveg(P) decreases) as new trees are seeded. A solution is dis-
covered aih=8.

7 Conclusion

The RRT method is a powerful technique to explore high-disiamal configuration

spaces and find motion plans for systems with kinematic andyc constraints. In
this paper, we presented two enhancements to this methoal mokel application.

First, we showed how sets of time-invariant parametric tiagaies can be explored
with this method to generate a forest of trees. Second, welaiged an on-line

measure of dispersion that allows us to adapt the growtheofdirest to the growth

rate of the tree. We presented the application of both methodhe testing and
validation of hybrid robot control systems, systems thahdblend themselves to
proofs of convergence and stability. In both these examplesause the controller
is fixed, the resulting trees do not expand to fill the confijaraspace. Instead,
they fill a "tube” of configuration space that is defined by a#le disturbances
and external inputs. The first example showed the abilitynelyeze multiple-agent
systems with uncertainties, while the second example adddethe generation of
worst case disturbances for the analysis of full dynamic etedf aerial vehicles.

The adaptation of the growth of the individual tree to cogeran configuration

or state space is a direction of current research and is texpar a forthcoming

publication [14].
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