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Abstract— We address the problem of testing complex reactive considerable success. RRT algorithm is an incrementatisear
control systems and validating the effectiveness of multi-agent jng algorithm which explores state space fast and unifarmly
c_ontrollers. Testing and valldatlon involve sgarchlng for con_dl- However, the two problems are different. Perhaps the most
tions that lead to system failure by exploring all adversarial . .. - L
inputs and disturbances for errant trajectories. This problem of significant difference bet\Ne(T:*n t_he two problems Ile_s in the
testingis related to motion planning with one main difference. nature of the system dynamics in each case. Robotic systems
Unlike motion planning problems, systems are typically not are almost always controllable (by design), so the reaehabl
controllable with respect to disturbances or adversarial inputs space is often the entire free space. With the exception of
and therefore, the reachable set of states is a sma!l subset Ofany workspace obstacles, whose configurations are known
the entire state space. In both cases however, there is a goal or. .
specification setonsisting of a set of points in state space that is In .Tsldvance, the tree can be expected to extend to fill the
of interest, either for demonstrating failure or for validation. entire state space. On the other hand, when we test complex

In this paper we consider the application of the Rapidly- control systems, it is frequently with respect to distuideEm
exploring Random Tree algorithm to the testing and validation or adversarial inputs. These systems are frequamilycon-
problem. Because of the differences between testing and motionq|1able with respect to disturbances or adversarial igps

planning, we propose three modifications to the original RRT . - . .
algorithm. First, we introduce a new distance function which in fact, the reachable set is usually a tiny fraction of the

incorporates information about the system’s dynamics to select entire_statg space. In SUC_h systems, the traditional _Ln_nifor
nodes for extension. Second, we introduce a weighting to penalizesampling distribution, combined with the inherent Vorohizis

nodes which are repeatedly selected but fail to extend. Third, of the RRT algorithm, leads to a slow reduction (improverhent
we propose a scheme for adaptively modifying the sampling i gispersion (coverage). The issue is not easily remedied

probability distribution based on tree growth. We demonstrate . .
the application of the algorithm via three simple and one because, unlike C-space obstacles, the reachable set & not

large scale example and provide computational statistics. Our Priori knO_W”- o o
algorithms are applicable beyond the testing problem to motion ~ Accordingly, we propose three modifications to the original

planning for systems that are not small time locally controllable. RRT algorithm. First, we develop a new distance function
which encodes local information about the system’s dynamic
constraints with a first order approximation. Second, begau
the reachable state space is generally a small fraction of
As the use of logic-based or reactive control laws grows the total state space, we introduce a weighting factor which
both robotics and other fields, so does the need for automageshalizes the repeated extension of boundary nodes. ¥inall
design and analysis tools. The focus to date in the autwe propose a scheme for adaptively modifying the sampling
mated safety verification literature has been on the salutiprobability distribution between the traditional unifomiistri-
of the reachability problem, initially through symbolic the bution and heavily biased toward the specification set based
ods (e.g., [11], [18]) and later through numerical teche®&ju on tree growth.
(e.g., [6], [17]). However, the class of systems for which The paper is organized as follows. In Section II-A we
the reachability problem is tractable is quite limited inttbo formally define the testing problem. Section II-B reviews th
expressiveness and dimensionality. An alternative amproeoriginal RRT algorithm and reviews the most relevant litera
to exhaustively proving safety is to simply search for #ure. Section Il examines three key features of the trail
single counter example — a series of inputs, disturbancesRRT algorithm which are troublesome for testing problems;
parameters that causes a system to fail. We term this seprieposes methods to remedy them and presents simple illus-
decision approach th@esting Problem trative examples, complete with comparative computationa
Inspired by the connections between the Testing Problem &iatistics. A new algorithm unifying the enhancements is
complex control systems and the Motion Planning problemresented in Section IV. The algorithm is used to solve aimult
we have recently applied the Rapidly-exploring Random Tregent pursuit-evasion problem and performance statiaties
(RRT) algorithm [13] to the testing problem [1], [7] withdiscussed. Concluding remarks follow in Section V.

I. INTRODUCTION



II. BACKGROUND AND RELATED WORK B. Related Work

We base our approach on the Rapidly-exploring Random
Tree (RRT) algorithm [13]. A very basic algorithm is given in
Definition 2.1: We define aFinite Time Control System Algorithms 1 and 2, where is some suitable metric angif
as a tupleC' = (X, U, T, Init, f) where is a probability distribution. RRTs are attractive becatrssy
« X C R" is a set offree state variables: work directly in the space of admissible inputs making them
« U C R™ is a compact set of input values; suitable for systems with dynamic constraints and because

T = [to,t;] C R is a compact time interval the Systemthey areprobgbilis_tically_complete[13]. While mu_ch work
evolves over: on safety verification exists, the approach of using RRTs to

Init C X is a compact set of possible initial conditions"’m‘"‘Iyze hybrid systems is recent. In [8] RRTs were used

« f:X xU — R" is a vector field which prescribes theto design trajectories of hybrid systems. The first publishe

time derivative of the state variables. work using RRTs for analyzing hybrid systems is [3], [15].

. . . . In a similar vein, a blimp system control law was validated
We are generally interested in systems with collections : .

L . . ) . under unpredictable but bounded disturbances [10]. In [2],
of rigid bodies with very complicated dynamics, espe; ) " .
) . . . . . . the reachable set for aircraft collision avoidance probieas
cially high-dimensional continuous systems or hybrid {dis

crete/continuous) and switched systems whrenay be a obtained and several extensions of the RRT approach were

non-smooth function of:. We do not impose any Structurementloned. We have applied a variant of this method [1] to

on the nature of the dynamics (except assuming that sotutiotﬁsnng hypotheses and establishing properties of bicibgi

exist in the sense of Fillipov). Note that in the case of rigi e\tl\\,/v(:rrkesvliew two developments from [7], used later in this
body systemsX is essentiallyCree X TCsree. We use the P '

term “input” in the most general sense in that it can includ@2Per- coverage estimation and the RRFT algorithm. First, t

- . : coverage of the state space with tree nodes is important both
yet unspecified feedback control inputs, human in the lo . o o
, ) ecause it can be used as a termination criteria in the event a
inputs, and disturbances.

i . . o solution is not found and because it provides a methodology
hProbIem 2.2:Testing Problem Given a tuple(C, z”, 5), for comparing the effectiveness of two algorithms that is
where not dependent on the goal position. Typicalyspersionis
o C=(X,U,T,Init, f) is a finite time control system, used [12] which is loosely defined as the radius of the largest

A. Problem Statement

o 20 € Init, and ball in X which does not contain a tree node. We reject it

« S is a specification set, on the grounds that it is difficult to compute and because,
the goal is to determine an open loop control w7 — U by only focusing on the largest such ball, it yields an overly
such thatdt € T for which z(t) € S. conservative estimate of coverage. We introduce a coverage

In other words, the goal is to determine a counter-examgii€asure which can be thought of as a discretized average
— an input sequence which will cause the system to fail I{jSPersion. Given an RRTT) and a set of grid points’ C X

entering S — if one exists. However, in order to make th&Vith spacingox

problem algorithmically tractable, instead of searching set 1

of all possible functiond/ : T' — U, the search must be oT,G) =1~ |G| - 6z

restricted to some subset of functions with finite dimenaion

parametrization. Second, the Rapidly-exploring Random Forest of Trees
For the sake of convenience we make three additiod&@RFT) algorithm searches over time invariant parameteds a

assumptions. First, assunde c R" is defined in such a way initial conditions by planting many RRTs at a sampling of

that a point inR™ can be easily tested for membershipn Parameter values. Individual trees are grown and ternunate

Second, assume the specification Setan be defined as theby monitoringc. Both ¢ and the RRFT method are used in

sub-level set of some functiof = {z|z € X,s(z) < 0}. Sect. IV.

Finally, we restrict our search ovéf to piecewise constant _

functions of time withk segments, each of time duration A90rithm 1 Generate RRTZ

Thus, instead of the continuous mépwe consider the search  Initialize RRT: 7.addVertexz°)

overl{ : T — U, as the search for a k-vector of parameters. While Az € 7" such thats(x) < 0 do

Z min(p(z?,7),6x).  (Il.1)

z9€CG

With ' € U Extenda’ )
= [l b end while
so the inputu(t) is given by There have been several enhancements to the basic RRT
algorithm. In [5] a method for penalizing the repeated s@ec
ut) =u' €U if to+ (i —1)0t <t <t,+ (i)dt of collision prone nodes for extension is introduced. In][46

node selection strategy is described which increases theaha
fori=1,... k. Voronoi bias of the method for the purposes of dispersion



proximity to z"*"¢ ¢ X, as determined by a distance metric
p that is implicitly assumed to be a Euclidean metric.
However, none of the possible velocity vectors at that
o | state (indicated as region between the thick arrows) are abl
y to proceed in the required direction. Despite the fact that
}y p(a?, xrand) > p(xB grend) 24 is actually more suited
X to extension because the possible velocity vectors inchude
direction that moves toward *"¢. In addition to testing prob-
Fig. 1. The reachable space is shown as the shaded gray réffien lems, this situation arises in a variety of robotic applmas
arrows indicate the possible velocity vectors at each nditeles selected |\ hare the system is nonholonomie.q, wheeled carts), and

for extension on the basis of their distance frafi¢ () may be difficult . . . . .
to connect from when the system is not small time locally cdiatote. 2 Particularly in systems with constraints on forward velies

XB
’

is a better candidate for extension. (e.g, unmanned aerial vehicles). Ideally both distance and
velocity constraints should be used to estimate a “time to
Algorithm 2 Extend() connection”.
z" ¢ X« pdf() To remedy the situation in Fig. 1 we propose replacing
2" arg ming; e 7 p(27, z7"9) p(27,z7*"?) in Line 2 of Algorithm 2 with a local first order
u"v = arg Ininueg{p(xm”d,x”e” + fét flz,u)dt)} approximation of the time-to-go.
pnew — pnear + f& f(L, ,unew(t))dt

7T .addVertexg™c")

: J prand .
togo(x?, 27 _{ p(x?,z"" ) /g if g>0 (111.2)
T_addEdga(new’ prear _, l'new)

00 if <0

whereg represents the instantaneous speed with whi¢t?
can be approached

reduction. However, neither approach is able to reduce the Op(x, z"end)
dispersion (which must be measured within the reachable g =nex {_ o

set) for uncontrollable systems. Biasing the sampling tdwa ) , rand
regions close to the goal state has been tried in [14], [1E}tuitively t25, computes the distance front to ™" and

and [3] with some success. However the sample bias facfliyides by a first order approximation of the speed with which

is fixed a priori and it can lead to difficulties in non-convextN€ distance can be decreased, giving units of time. Note

systems because of the presence of local minima. In [10]1&t @ negative value of implies that the distance 'S actually
metric accounting for under-actuated dynamics is sugdestBCreasing, which can be interpreted as infinite “time-¢6-g

but is specific to the aerial robots example considered ther8© first order). In a given iteration if none of the existing
nodes have a finite value far,,, one can be chosen at

[Il. ENHANCEMENTS TO THERRT ALGORITHM random or based on some secondary criteria (such as distance
In this section, we propose three modifications to thes determined by).
original RRT algorithm, all designed to deal with systemstth From a computational point of view the maximization may
may only traverse a small fraction of the entire state spade @€ done by exhaustive search or by exploiting some problem
in which there are no obvious metrics to establish proximijependent feature. For examplefifz, u) is an affine function
relationships. Recall that the Voronoi bias coupled with thof v and the seU is the Cartesian product of rectangles, the
use of a uniform distribution decreases the dispersion ef tmaximization is a linear program in dimensions which can
tree nodes inX. However, for uncontrollable systems it maype solved efficiently. If no efficient methods exist to congput
be impossible to reduce the dispersion of the tree nodéé inthis quantity, evaluating every node via this method can be
below a critical value, which is an unknown constant. Indtedntensive. In such a case;,, can be used as a secondary
the goal is to simply find a solution quickly while reducingth criteria to selectz"*” among the, for example, 10 closest
dispersion of the tree nodesthin the reachable spag®, by nodes according to the Euclidean metric.
using heuristics to account for the system’s motion coitgsa ~ We next consider an example that is from the verification
) ) ] community. Although it is not central to robotics, it has
A. Dynamics-based selection of proximal node many of the properties that are central to multi-agent risbot
Example 3.1:Consider the trivial example systems.
. . Example 3.2:The hybrid automata model of a thermostat
i1 =2, I9=u, (1n.1) : P
has been a popular example in the verification literature [9]

whereu € U = [1,2]. The reachable space, which is normallyig. 2 shows the system model.= (z,72,23) € X C R3
unknown can easily be computed by hand in this case, antliere z; is the temperature in the room; is the elapsed
is shown as the shaded region in Fig. 1. A staté”® is time, andzs is a timer that measures the cumulative amount
generated and the planner must select the “closest” tree, naaf time the heater has been on for. The dynamics have two
™" to attempt to connect from. Line 2 of Algorithm 2modes which denote the heater being “on” or “off".consists
(traditional RRT) selects™**" « z¥ for extension based on of u,, = [2,4]; and Uosr = [—3,—1]. The valuesu,, and

f(@,u)|p=gi



Metric No. of | Computation
Nodes | Time (sec)

Euclidean | 2284 376.4
t2go 1627 231
TABLE T

THERMOSTAT EXAMPLE: A COMPARISON OF THE USE OF THEEUCLIDEAN

METRIC AND t24, INTRODUCED IN SECT. IlI-A, AVERAGED OVER 10
Fig. 2. The system dynamics of the thermostat. TRIALS ON A 1GHz PC.

largest Voronoi
cell

XA

Turn heater on
1 2 3 4 X

Fig. 3. The solution of the thermostat counter example via tR& Bsing Fig. 4. The reachable space is shown as the shaded gray regidrcircles

the dynamics-based selection of proximal nodes (Temperagurtme). and lines are the RRT, and dotted lines are the Voronoi chltxles on
the boundary of the reachable space have disproportigniele Voronoi
regions, causing them to repeatedly be selected"88".

uors represent the possible heating and cooling rates in the

two modes. The conditions; < 1 andz; > 3 enable the \oneatedly. Each time, the same extremal inputs will be tsed
mode switches ff — on andon — of f respectively. In [9] onnectyA to 277 in vain, instead resulting in. Boundary
a symbolic verification tool is used to answer the questiofgges which are repeatedly selected but fail to extend ghoul

“After an initialization period of two minutes, is it pos## pe penalized to counter balance this Voronoi bias so that the
for the heater to be on for more than two thirds of the totalg |ess likely to be selected in the future.

time at any point during the first hour of operation?” Such a 1 5 node is selected for extention a&€¢®” in Line 2 of

question may be important from an energy consumption POiRfyorithm 2 and the minimization in Line 3 produces an input
of view. Therefore the specification set is u™® which has been applied previously, the resultirity®
S ={r e X|2/3x5 —x3 <OA —25+2 < 0} is already an element of . When this happens we say the

o - node has “failed to extend”; and determine the next b&sY
The initial conditions were mode: “on”, and z° = [20 0]7.  \which extends the tree (suggested in [5]).
Aside from being a classical verification example, the senar For eachz?/ € 7 we propose storing the number of times
is interesting in its own right. First, the system has quitthe node has failed to extend. This value can be used to
nontrivial dynamics, since the control inputs do not appegpmpute a penalty weight to discourage the repeated smiecti
in the right hand side of two of the state equations, or th§ poundary nodes which fail to extend. Lef,, and nmax
specification equations. This, together with the narrovgeanpe the least and greatest valuesndfin the tree at a given
of U, makes the reachable s&, a small subset oX. The jteration. TheHistory-based weightings defined as
set of possible velocity vectors at every point is very ledit
making this an ideal example to demonstrate the Dynamics-

. Jj prand) _ . 7 _ .
based selection of proximal node. H (27, z"md; p) = pla?, 2™7) — prmin 4 ¥~ Mmin
First the problem was solved 10 times selecting proximal Pmax = Pmin fmax n‘f‘fﬁg)

nodes based on the Euclidean meficthen 10 times with Where pmin = ming:cq p(z', 279"%) and pmax is defined in

the Dynamics-based selection functiog,. In all cases, the 5 simjlar manner. These bounds are used to normalize the
algorithm successfully computed a counter example as S@getances so that the impact of the second term is not problem
in Fig. 3. Table | shows the computational statistics for W@ependent. Note that any distance function, including can

algorithms. be substituted fop.
B. History-based selection of proximal node fE:aerle 363:The.RRT aIgorithrE is usedd t(;) find tra;jgctorie§
A second situation is shown in Fig. 4 where the tradition?ollqet fgmlqni?r ynamic system with bounded control Inputs in

RRT is applied to the system and, after 8 iterations, the
resulting tree is shown using dark circles and line segments
Because the reachable set is so small, nodes on the bounddrgrez € X = [—200 200] x [—200 200] andu € U =

will tend to have disproportionately large Voronoi regipng—10 10] x [—10 10].

such asr? in Fig. 4. When a uniform distribution is used to Fig. 5 shows trajectories generated by the RRT algorithm
generater™*"¢, most samples will fall outside the reachablaising the Euclidean metrideft) and using the History-based
set and these boundary nodes will be selected for extensimeighting described aboveright). Note that reachable set

i=Ar+ Bu+b (I11.4)
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Fig. 7. The distributionB(z; with ¢ = 0 and various values of.
Fig. 5. RRT for a linear system using the Euclidean meteift)(vs. a History- g (@51, ) " o

based selection of proximal noddaght). After 5000 nodes the coverage of
the reachable space is much more dense when using the weighting

Our proposed probability density functid®(z; i, 3), to be
used in Line 1 of Algorithm 2, resembles a Gaussian over
some compact set, < x <b

N (x5 p,0(B))+
B(z;u, ) = Ci/(b—a), a<z<b (11.6)
0 else
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No. of cases to fail to extend
N
o

No. of cases to fail to extend
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[S)
JRS)

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Nodes sorted in descending order Nodes sorted in descending order

A where N (z; u, 0(5)) is the Gaussian distribution with mean
Fig. 6. Value ofn? for each node (sorted in descending order) using th iati _ ;
unweighted Euclidean metrideft) and History-based weightingight). ﬁ and standard dewaﬂom(ﬁ). The last term'ct/@ a), IS
added to ensure that the area under the curve is equal to one.
C; represents the area of the truncated portions aboveb

is small fraction of the environment. The interior of thé'ind belowz = a

reachable region with the History-based selection of pnaki “ e

node method is much more densely covered than Euclidean ~ C* = /_Oo N(x;"’a)dx+/b N(@; p, o)dz,

metric. Fig. 6 showsn’ for each node in7. Nodes are .

sorted in descending order to facilitate the visualization ~ Obviously x should be selected so thafu) < 0. The
the conventional RRT algorithm, a smaller portion of node¥andard deviation aN (z; 1, o(13)) effectively determines the
(on the boundary of the reachable set) have disproporgnatias and should be computed usifig= [0, 1]

high values ofn’. o(8) = (1 — B)(Fmax — Omin) + Tmin, (n.7)

C. Adaptively biased sample generation whereo .« andoi, are user-defined values of the maximum
Intuitively, biasing the sampling distribution for™e”¢ to and minimum standard deviations.

generate a disproportionate number of samples inside th# se Fig. 7 illustrates the shape @(z; 1, 3) with different val-

is effective when the system is easily steered towf(de. the ues of3. Distribution (111.6) can be easily implemented using

system is output controllable with respectsi@:)). In general, any random normal generator and rejecting points generated

biasing the sample distribution toward the goal can maksese®utside the compact domain.

but it is difficult to decidea priori which problems will benefit. ~ Example 3.4:We consider a hovercraft in constant altitude
We update the amount of biasing for eve¥y iterations of flight with 6 states,z = (21, 22,6, v1,v2,w). The dynamic

the RRT algorithm, wheréV, is user defined number. If in a€quations are

given iterationp(zmeer, zmand) > p(xmew xrend) wherep is

a metric function, we call such an iteratisnccessfubecause moy = (fr+ f2) c08(0) + farair (2, vair (2))
the tree has grown toward™"?. We count the number of mie = (fi+ f2)sin(0) + frzair(@, Vair ()
successful iterations,, out of then s iterations where random Jo = (fa— fu)l + Tair(T, Vair(x))
states are generated inside the set defined(by < 0 and
compute The control inputs areu = [f; f2]7 (forward actuating
B= s (11.5) fqrces) andU_: [—10,10] x [—1_0,10_}. Forces due to wind
ng disturbances in the,, o and@ directions aref,, air, froair:

e ] ) and e and 7,; whose exact expressions are omitted for brevity but
If z"°*" is not successful in growing towaﬁ:f‘w '”S'di;‘ﬂe are quadratic in the difference between the craft’s vejocit
specification set or the best candidate idt" from and the wind velocity,;, and vary with the orientation of the

is already in a tree in the above test, we eliminate 4h&" ¢ att Note that the state is partitioned into two regiomsigior
from consideration as™“*" for the testing in future iterations 4 outdoor) which define the wind velocity differently:

to prevent it from being chosen repeatedly. Valuegi aflose
to unity indicate biasing sample generation inskiéas been [ [—ayzz Buzi]”, (71)% + (22)? <100
beneficial. w“r [00]7, (21)2 + (22)2 > 100 °



Algorithm 3 Generate enhanced-RRT:

- \-‘:," 1’:/‘ - ) \ NN

= 3
)

Initialize RRT: 7.addVertexz® « z n0 — 0)

Global: 5 =1

while (Az € 7 such thats(z) < 0) AND Ac > Acp,in do
enhanced-Extend()

end while

nitial positiof / goalregion |/
e / i

[
100 150 250 S0 0 50 100 200

X1 1

-50 0 50 150

Fig. 8. RRTs of the hovercraft problem with uniform samplineft{ and

Algorithm 4 enhanced-Extend)

with adaptive biasr{ght).
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Fig. 9. The evolution of the biasing factadr for the hovercraft problem.

We would like to determine if a hovercraft under these
wind conditions can reach some goal zoSe= {(x1,z2) €
[190, 200] x [0, 10]}. Note that when outdoors the wind forces
are significantly greater in magnitude than the control tapu

0= (1 - ﬁ)(amax - Umin) + Omin

27 ¢ X « B(x;p, 3) (see eq.(111.6) )

phear — arg ming; ¢ 7 [H (27, 79", t240)]
eq.(I11.2),(111.3))

ue = arg min, ¢ g [tago ("9, 2T 4 fat [z, u)dt)]
xnew — xnear + f‘;t f(x,u"ew(t))dt

if 27" = g7 ¢ T then

(see

n’ + +

U U—urew

goto computeu™*"
end if

T .addVertexg¢"c?, n"* = 0)
T.adQEdga(”ew, e — pnew)
resetU
if N, iterationsthen
B =ne
ng

end if

making the system uncontrollable.

The initial state isz® = [0 0 0 0 0 0]T. The distribution
(11.6) was used to solve the problem 10 times on a 1GHz P
Fig. 8 shows the solutions of the problem with the uniform
sampling distribution and adaptive bias. Fig. 9 shows hibw

g: A Multiagent Problem

We consider a problem where multiple autonomous vehicles

changes as the algorithm evolves. The adaptive algorithmni!St guard against an intruder entering a designated anésa. T

able to exploit the situations in which biasing is effectiges SCenario has applications in games such as “capture the flag”
shown in Table II, the adaptive biasing algorithm improvednd can be viewed as a variant of the art-gallery problem.

the efficiency of RRT method compared to other fixed bids Nas applications in homeland security where autonomous
strategies rather dramatically. vehicles (boats, airplanes, ground robots) can be deplayed

detect unidentified vehicles entering a cordoned-off areano

Sampling Method| No. of Nodes| Computation Time (sec exclusion zone.
’\;Je”c;‘fogi:ls igig 1479503_’-25 In this example, we examine a circular aréa, guarded by
Heavy Bias 912 408.3 4 robots. Each robot has sensor foot prints which are assumed
Adaptive Bias %7\8B - 342.5 to be circular with radiug?, for detection and?, for capture,

as shown in Fig. 10. The guarding scheme is shown in Fig. 11.
Initially, the guard robots distribute evenly along theipeter
of the exclusion zone. If the intruder enters the detectaomye
of a guard robot, the robot pursues the intruder and other
robots redistribute evenly along the ciralg;. If the intruder
escapes the detection range of the pursuing robot, the robot
IV. UNIFIED ALGORITHM - LS
N _ returns to the perimeter and all robots redistribute everihe

A. Unified algorithm question we wish to answer is as follows. If an intruder or an

Algorithm 3 and 4 present the unification of the enhancadversary is allowed to start anywhere in a specified re§ion
ments presented in the previous section. Note that, sireed the guard robots are evenly distributed on the cittle
most robotic problems are controllable, the Algorithm 1 cagan the intruder enter the exclusion zoSg ) uncaptured? The
terminate when a solution is found. In our case, it is a distinanswer to our question can only be found by searching for an
possibility that no solution exists so we impose a secondanjtial condition and a control input function for the intter
termination criteria. The change in coverage over theitigiil which drives it into the exclusion zone without crossing afy
N iterationsAc , measures the growth of the tree At drops the capture ranges. We assume each of the intruder and guard
below some user-definefic,,;,, we terminate the search.  robots has 5 states;’ = (z¢,z%,6% v*,w’) and 2 control

HOVERCRAFTEXAMPLE: A COMPARISON OF THE SAMPLING STRATEGY
INTRODUCED HERE(ADAPTIVE BIAS) TO FIXED-BIAS SAMPLING
STRATEGIES AVERAGED OVER 10 TRIALS ON A 1GHz PC.



inputs,u’ = (u},u}) wherez! andu! indicate states and input
of the intruder. The dynamics with nonholonomic constiint
are given by:

Initial region for intruder (S,)

Guard robot detection range (R;)

o . . . P p ., . Initial positions for guard robots P /
CL:li — U.lcos.(at)7 $L2 — Ulsln(at), 91, — wZ (lVl) Initially, evenly distributed ! \\,I
vt =}, wb = ub. MRS
We can define the free spadé = X7 x Xo x -+ x X5\ capture range (R)
U;_, B(z'(t), R.) C R* where
X; = {(m’l, 3337 0%, vt W) € Rﬂ(ﬂi)z 4 (1”2)2 < R%} Fig. 10. Initial conditions for guard robots and intrudeach robot has a
. S . . detection rangd?, within which the intruder is detected, and capture ragne
B2t (t R) = 7 7 1 7\2 1 7\2 < R2 . > X X
(z'(t), Re) = {(2, z3)|(xy — x1)" + (x5 — 25)° < R} R. within which the intruder is captured.
Then the specification sét is defined by

S ={z € X[(21)” + (23)” < R}

where R, is the radius of the circl€s.

To evenly distribute guard robots along the perimeter, we
use the algorithm proposed in [4]. Each guard robot is stibjec
to the force

A

Redistribute

7= _kVU3A() — O F.d?. oF IV.2) Fig. 11. Guarding scheme of the robots. Distribute until theeuder is
¥ (q ) ¢+ Z T(q q ) ( ) detected left) ; and pursue if the intruder is within the detection rangeaof
keN; guard robot (ight).

where ¢/ = (27,2]) € R? is the position of robotj, 1 :
R? — R is an implicit function description of the perimeter. . , .
of the exclusion zone that must be guarded afdis the set Erhrzgiélcrgﬁz rtrr:aeinnugr?teirn?I]i2Z?(Z?ﬂtcieﬁigdthtgteajznlﬁlesggtsli%n-
of robots neighboring robgt. F,. is a Coloumb-like repulsive P P P

force that ensures that the robots do not cluster togetteie w a::O\\;vvs the rr?ostr:rrlpr(f)\:ﬁmentvlnr eﬁ|C|r?1ncy. 'I;he E)urrtgoc(;nolu:r;
C is a constant which provides a viscous damping term. TRAOWS @ shapshot of the coverage measure aite odes
have been visited for all cases. The N/A is used because it

force is applied to a point that is at a finite distance awa less meaningful to show this number for adaptive samplin
from a robot to address nonholonomic constraints. A detailé 9 p pling

description of the control law including a proof of convenge Wwhen improving coverage is not the driving force behind gsin

to different shapes is provided in [4]. However, the analys}he adaptive bias.
in the paper cannot be used to predict the transients as each

. Enhancement No. of | Computation| Coverage
guard robot moves toward the perimeter. Method Nodes | Time (sec) | Measure
Note that the reachable set of statesinis a small subset of No Enhancement | 20544 9020.9 0.0190
the entire state due to the fact that the system is uncoailell Dzir‘s"’t‘cr;:';_z'ab:;jd %21%%0 gi’gig 8:8222
and U is bounded. Finally, note that the intruder can start Adaptively biased | 6398 1791.6 N/A
anywhere in the sef;. In other words, the initial condition for Three Enhancements 7520 2429.2 N/A
the intruder must be chosen from this finite set, each camditi TABLE Il
leading to a RRT. GUARD-INTRUDER EXAMPLE: A COMPARISON OF THE ALGORITHM WITH
We apply the RRFT algorithm with enhancements suggest@flp wiTHouT ENHANCEMENTS AVERAGED OVER10 TRIALS ON A 3GHz
in Sec. IV-A to the problem. The control inputs ate = PC.

(ul,ud) € U = [-6 6] x [-m/12 7/12] with R; = 300m,
R, = 100m, Ry = 100m and R, = 40m. Fig. 12 shows the
forest of trees where a solution trajectory is found, viiirady
the position of the intruder. Eight initial conditions arengr-
ated and a forest starts to grow until a solution is found. @ue The RRT algorithm has been successful in solving complex
the space limitation, we show only the trajectories obtifoe motion planning problems. We explore the application o$ thi
the algorithm with the “dynamics-based selection of pradimalgorithm and its variants to the problem of testing complex
node”. However, the Table 11l shows the statistics obtaifeed reactive control systems and validating the effectivenafss
this example with all the options. The second column showsulti-agent controllers. Testing and validation invoheagch-

the average number of nodes used to find a solution trajectamg for conditions that lead to system failure by exploring
for the intruder robot (one such trajectory is shown in F). 1 all adversarial inputs and disturbances for errant trajees.

The third column shows the computation time with differert/nlike motion planning problems, the systems may not be
options. The first main point to note from these two columns gontrollable with respect to disturbances or adversanialiis

that the standard algorithm takes four times as long raggiriand the reachable set of states is generally a small subset

V. CONCLUSION



200 200
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Fig. 12. The forest of RRTs with 8 different initial conditis. A solution
trajectory of the intruder is highlighted on the right.

(3]

(4]

(5]

(6]

(7]

of the entire state space. Because of the differences betweg

testing and motion planning, we propose three modifications

the original RRT algorithm. First, we develop a new distanc?g]
function which encodes local information about the syssem’

dynamics with a first order approximation. Second, because
the reachable state space is generally a small fractioneof Ko
total state space, we modify the node selection strategy to
discourage the repeated selection of boundary nodes.\Fingl1]
we propose a scheme for adaptively modifying the sampling
probability distribution based on tree growth to the speaifi [17)
tion set. We demonstrate the application of the algorithen vi

three simple examples and one large scale (25 dimensioHa

multi-agent pursuit-evasion and provide computationatist

tics demonstrating a reduction of computation time by aciact

of three.
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