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A bs t r ac: t 

In this paper multirate numerical integration tech- 
niques are introduced as a tool for simulating robotic 
systems. In contrast with traditional simulation tech- 
niques where a single global tame step i s  used, multi-  
rate methods seek a gain in ediciency by using larger 
step sizes fo r  the  slow varying components and smaller 
step sizes for components with rapidly changing solu- 
t ions.  W e  argue tha t  m a n y  robotic sys tems  inherently 
posses different t i m e  scales, and therefore can benefit 
f r o m  multirate techniques. W e  have developed a multi-  
rate version of the  popular A d a m s  Predictor Corrector 
methods,  which has  a variety cf modern  features.  W e  
present results o n  the accuracy, stability and e f i c i e n c y  
of the algorithm along with siniulation results. 

1 Introduction 
Traditionally, when simulating a system of equations 
numerically, synchronization across all components is 
required therefore a single global time step is used. 
While the time step may change adaptively as the sim- 
ulation proceeds, at each step the selection of step size 
is determined by the most ill- behaved component of 
the system. For example, in a system with many slow 
changing components and only one high frequency os- 
cillatory component, a time 5.tep of 0.1 sec may be 
perfectly acceptable for the slow subsystems, however 
a global time step of 0.0001 sec must be used to ac- 
commodate the oscillatory component. The idea be- 
hind multistep numerical integration methods is, re- 
duce the computational effort required by using the 
largest possible integration time step for each compo- 
nent of the system resulting in an asynchronous inte- 
gration scheme. The idea dates back to  the 1960’s, [l] 
seems to have introduced it; [2] and others developed it 
further in the 80’s. More recently, other variants of the 
method have been developed, ( [3], [4], [5]). Areas of 
application include simulating integrated circuits and 
molecular and stellar dynamics. 
Many robotic systems exhibit multiple time scales and 
hierarchy in the dynamics. In many cases, the hierar- 

chy comes from the controller [6 ] ,  [7]. As a motivating 
example, we will consider the notion of hierarchically 
abstracted sys tems  presented in [8]; where a complex 
control system is decomposed into a sequence of in- 
creasingly simplified abstract systems. The idea be- 
hind this technique is that a fully detailed model may 
be impractical for long range planning and optimiza- 
tion so some simplification is done at a higher level; 
while at a lower level increasingly detailed system 
models are used and inputs are calculated to  track the 
high level outputs. For example, in a typical robotic 
system one may have a planning module running at  
1 Hz, an inverse kinematic solver running at 100 Hz, 
while the motor control loop may run at 10kHz. In 
such systems, a three level hierarchical description re- 
sults in the following set of equations: 

X I  = U 1  (1) 
x, = f 2  (X , )U,Z  (2) 
x, = f 3 ( 5 3 )  + d 5 3 b 3 .  ( 3 )  

The first level is the trajectory generation or the plan- 
ning level where the dynamic system is abstracted with 
one or more integrators. At a lower level, the kinemat- 
ics and therefore the Jacobian f,(z2) become impor- 
tant. Finally, at the lowest level, the rigid body dy- 
namics are described by an affine system. Coupling is 
introduced through the feedback terms. If, for exam- 
ple the goal of eq.(2) is to track trajectories produced 
by eq.(l), u2 may depend on both 2 1  and 2 2 .  Likewise, 
the input in eq.(3) may take the form u ~ ( Q , x ~ , Q )  to  
track eq.(2). If one so desired, a fourth level could 
even be added to the model where the inputs are mo- 
tor currents and actuator nonlinearities, such as mo- 
tor saturation and deadzone effects, are accounted for. 
While planning based on eq.(l) may yield sub-optimal 
motion plans, the complexity of the planning problem 
decreases dramatically. Such approaches to planning 
and control are becoming more common as the com- 
plexity of robotic systems increases. 
In robotic systems with contacts between nominally 
rigid bodies, it is also natural to see dynamics with 
multiple time scales [9]. The dynamics of contact in- 
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teraction evolve at a time scale that is determined by 
the very high stiffness of the contacting rigid bodies 
[lo, 111. For example, impacts between rigid bodies 
may last less than several microseconds and may ne- 
cessitate integration rates of hundreds of nanoseconds 
[12], while the slowly evolving rigid body dynamics 
driven by position controllers may require integration 
rates of milliseconds. A typical two-level hierarchy in 
such systems has the following set of equations: 

Here z1 represents the gross rigid body motion while 
z 2  models the compliant contact state. 
More generally, the techniques presented in this paper 
are applicable to hierarchical systems of the following 
closed loop form: 

j.,,L = f,(q ,..., XJ. 
Closed loop systems in the form of eq.(6) appear in 
the control systcm literature under the name of cas- 
caded systems. Of course when a particular equation 
in the above system is said to depend on the variables 
x3, . . . , xk: this is the maximal set of variables it may 
depend on. Also note that the variables 21, . . . z, may 
be vectors, representing subsystems. 
There has been a growing trend to study robotic 
systems, and other controlled systems as hierar- 
chies [13], [8], [74], [15]. This trend has been paral- 
leled in the computer aided design community with 
the introduction of several packages capable of mod- 
eling and simulating hierarchical control systems (see 
for example [16] or [17]). However, despite the seem- 
ingly natural connection, multirate methods have not 
appeared in the robotics literature. The goal of this 
paper is to introduce a new multirate method which is 
well suited to simulating robotic systems and analyze 
its performance. The paper is organized as follows: 
Sect. 2 presents the simulation algorithm; Sect. 3 looks 
at  the accuracy, stability and efficiency of the method; 
Sect. 4 describes the implementation briefly and illus- 
trates the use of the technique to simulate a mobile 
robot; finally in Sect. 5 we suggest some other appli- 
cation areas. 

2 The algorithm 
While multirate methods can and have been extended 
to systems of equations with structures other than 
lower triangular form, they are best suited to equa- 
tions such as eq.(6). It is assumed that: if i < j ,  in 

h2 = 112 h i  

Figure 1: Multirate technique with TI  = 7-2 = 112. 

some sense, xi evolves slower than xj; and the fi's are 
sufficiently continuous and satisfy all the criteria to 
ensure the existence and uniqueness of the solution to 
the differential equation. 
In this section we develop a multirate version of an 
mth order predictor-corrector (PC) pair. Multirate 
versions of other numerical integration schemes such 
as, BDF or extrapolation methods, have appeared else- 
where in the literature. The multirate Adams method 
differs from tradition version in that the systems is 
integrated asynchronously one component at a time. 
For each component a different time step may be used. 
Here hi is the step size for the for the i th equation; and 
hi 2 hj for i < j .  The integer ratio, ri of step sizes for 
adjacent levels in the hiera.rchy is given by the relation 
hi = rihifl for i = 1,. . . , n - 1, as seen in Fig. 1. 
The decision of which equation to integrate at  a given 
time is made according to the slowest-first criterion 
which was shown in [2] to have superior performance 
versus the fastest  f irs t  methods.  The slowest first cri- 
terion selects to advance the equation which has been 
simulated through the least amount of time so far. 
Since the step sizes are all integer multiples of one 
another, often there will be several equations that ful- 
fill the criterion. In the case of such a tie we integrate 
the one with the smallest index (the slowest equation) 
first. For a review of the traditional version of the al- 
gorithm see [18] for example. The multirate algorithm 
proceeds as follows: 

1. Select the equation to be integrated according the 

2. Compute the predicted value " ~ : ( t k + l )  using val- 

slowest first rule. 

ues computed in previous steps 

xr(tk+l) = Z i ( t k )  + 
h i C b j f i  (~l(~k:fl--j),...,~i(~kfl--j)) 

m 

j=1 
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3. 

4. 

5. 

6. 

7. 

where the p’s are constants (see below). 

Evaluate the derivative at the predicted point: 

f,“ = fi ( a @ k + l ) ,  . “,~i--l(tk+l),ZP(tk+l)) 

Since different equations are being integrated ai, 
different rates, values for 51 through x,-1 used in 
the above step may not have been computed ex- 
actly at the mesh point ( t k +  I), in which case they 
must be derived from interpolation polynomials. 

Apply the corrector equation 

~ ( t k + i )  = ~ ( t k )  + ht {P;f,P 
m-1 

+ 1 P,* f z  ( ~ l ( t k + l - - g ) ,  . . ’ , G ( t k f 1 - g ) ) )  
g=l 

where p*’s are constants (see below). 

In order to accommodate coupling, construct an 
interpolation polynomial for x, which is valid from 
t k  to t k+l  so that component z, can be estimated 
by inferior levels at off-mesh points 

Evaluate the derivative using the corrected value 
of IC, for future use: 

In this algorithm the p’s and O*’s are weights asso- 
ciated with the particular predictor corrector method, 
but are generally selected such that, if the solution x ( t )  
was a polynomial of order < m, the solution would 
be replicated exactly (see [IS]). After completing the 
above sequence of steps, the truncation error is esti- 
mated using Milene’s method and the step size h, is 
adjusted accordingly. 
Steps 1, 4, and 6 are not present in the traditional 
version of the algorithm. Step i implements the slow- 
est first rule; Steps 4 and 6 are needed since the right 
hand sides in eq.(6) are partially coupled. Due to the 
lack of synchronization, values of the slow variables, 
needed to  evaluate the right hand sides of the fast vari- 
ables, may not have been computed at time t k + l .  Thus 
interpolants are used to approximate these values at 
off-mesh points. 

3 Analysis 
For the sake of brevity the results are presented here 
without formal proofs. The interested reader is re- 
ferred to [19] for the full derivations. As in most nii- 
merical analysis, we will perform the error analysis Zo- 
cally in Section 3.1 assuming the required past values 

of the xi’s and f i ’ s  used in the PC method are exact, 
then look at the errors introduced after one step. This 
local error analysis is then extended by simply show- 
ing that the error propagation is stable in Section 3.2, 
rather than analyzing the accuinulated error directly. 
An efficiency analysis follows in Section 3.3. 

3.1 Integration error analysis 
In this section we analyze the accuracy of the method 
compared to traditional simuhtion techniques. Such 
an analysis is important (1) to determine the expected 
performance of the method, (2) provide a method to 
control and estimate truncation errors and hence select 
an appropriate step size at runtime, and ( 3 )  provide a 
basis for selecting acceptable interpolating functions. 
It is easily shown that the error in multirate simula- 
tion, e M  can be expressed as the sum of errors as- 
sociated with the traditional PC method eT and an 
additional term which accounts for the fact that inter- 
polated values are used to accommodate coupling er ,  
(i.e. eM = eT + e l ) .  The error associated with the 
traditional implementation of a m-step PC method 
is known to be O(hm) ,  therefore it suffices to  derive 
only e l .  In particular we would like to show that the 
contributions to the overall error from er are small 
compared with eT and hence the multirate method es- 
sentially has the same performance characteristics as 
the traditional method. 
Terms contributing to er are introduced only during 
the corrector step since it is that step which relies on 
interpolating the slow variables, the predictor step pro- 
duces the same result regardless of whether traditional 
or multirate techniques are used. Let 5 indicate an 
interpolated quantity while J: indicates the value re- 
sulting from simply applying the traditional technique. 
After various algebraic manipulations, we get 

er = hiPo { fi ( % l ( t k ) ,  . . . , % l ( t k ) , I C P ( t k ) )  

- f i  (lil(tk),...,5i-l(tk),xP(tk)) } 

Assuming [5j ( t k )  -.“cj ( t k ) ]  is small we can expand the 
second term about Z j ( t k ) .  We then have, to first order 

where the partial derivative is evaluated at % , ( t k ) .  
This term is effectively a measure of how sensitive our 
method is to errors in estimating f i  due to inexact in- 
terpolation of slow variables. Note that this term is 
multiplied with hi which is typically small. Since the 
error contribution from er should not dominate e T ,  
we select 5, to be mth order polynomials. Thus the 
interpolation errors vary with the mth power of the 
interpolation interval, h,. Recall that the larger step 
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sizes of higher layers in the hierarchy can be expressed 
in terms of smaller step sizes as hi-1 = ri-lhi and in 
general h, = rlhi. Using these relations, 

" 
e r  

Thus the dominant error term, e T ,  is the same as that 
of the traditional Adams PC method. Note that as the 
step size of the slower equations approach that of the 
fastest equations (i.e. rl + l), the er term vanishes 
and the error expression reduces to that of the tra- 
ditional technique. It also tells us that any arbitrary 
choice of interpolants is not acceptable. Had linear in- 
terpolants, for example, been used the e l  term would 
be O(h2)  rather than O(hrnf1); and hence, the domi- 
nant contributer to the overall error. 

3.2 Stability 
The stability of the method is more difficult to an- 
alyze since traditional techniques for determining the 
stability of numerical operators fail for multirate meth- 
ods. Fortunately, when the slow components are not 
coupled to the fast components, which is the case in 
eq.(6), the stability of the multirate Adams scheme 
is the same as the stability of the traditional Adanis 
scheme [2]. This is essentially because the interpola- 
tion error is alwilys bounded; whereas, in the case of 
slow to fast coupling, extrapolation is needed to eval- 
uate the right hand side and the errors may become 
unbounded. The stability characteristics of the tradi- 
tional Adams mcthods are excellent (though they are 
not suitable for stiff problems). 

3.3 Efficiency 
Recall that the motivation for introducing multirate 
methods in robotics was to increase the simulation ef- 
ficiency. Despite the fact that larger step sizes can 
be used, multirate simulation techniques are not al- 
ways more efficient than traditional techniques since 
there is some overhead associated with constructing 
and evaluating the interpolation polynomials. A de- 
tailed and lengthly efficiency analysis appears in [19], 
but for the purpose of illustration we make a number 
of simplifying assumptions here: a fixed step size (as 
a function of time), the right hand sides of each of the 
subsystems (f1, . . . fn), are equally expensive to eval- 
uate, the difference in step sizes in the various levels 
of the hierarchy it1 the modular simulation is constant 
(the step size at any given level is twice the size of the 
step size being used one level below and half that of 
one level above). 
We are interested in computing the speed up ratio, E ,  
which reflects how much faster (or slower) the multi- 

rate simulation is vs. the global simulation. It is com- 
puted by dividing the computational cost required to  
simulate a given system with the multirate technique 
by the cost of the traditional simulation. A small value 
of E implies a great efficiency gain is possible with 
multirate simulation. 
In the traditional simulation, all components are inte- 
grated using the maximum acceptable step size for the 
fastest  component, h. Ignoring minor overhead and 
the irregularities introduced in the start up process, 
the steps required to simulate one component through 
one step h (associated computational costs denoted in 
parenthesis) are: predict ( P C ) ,  evaluate right hand 
side ( R H S ) ,  correct (PC)  and reevaluate right hand 
side ( R H S ) .  For the multirate simulator, assume that 
the fastest component is integrated at the same rate as 
in the global simulator, h, and that at each higher level 
the step size is double that of the previous. At each 
step at level i in the multirate simulator all the steps of 
traditional method are computed in addition to evalu- 
ating the interpolation polynomials of the (n-i) slower 
variables ( P E ) ,  and generating the interpolation coef- 
ficients (CG). However since larger step sizes are used, 
fewer total steps need to be taken. 
Tallying the required computation per step and com- 
puting the speed-up ratio yields 

(9) 
CG P E  

( R H S  + PC) + (RHS + PC) ' E = ~1 + c2 

with 

2 - 1  2n - 4 + 
n 2n 

Q=-...Zs c 2 = %  c 3 =  

each of the coefficients is strictly a function of the num- 
ber of subsystems n and the ratio of step sizes across 
the hierarchy (in this case assumed to be 2n) ;  While 
the terms they multiply are specific to both the imple- 
mentation and the particular set of ODE being inte- 
grated ( R H S ) .  
In our implementation with a 5th order Adams 
method: CG M 40 flops (floating point  operations); 
PC = 11; P E  = 8 flops. Figure 2 shows the predicted 
efficiency of the method calculated with eq.(9), as a 
function of the complexity of evaluating the right hand 
sides of ode's ( R H S )  for 3, 4, and 5 level hierarchies. 
Note that the point at  which the multirate simulation 
becomes faster (when E 5 l ) ,  is low enough (15-25 
flops per R N S )  that many robotic systems will fall 
in that category. For example, systems controlled us- 
ing feedback linearization require inverting a matrix: 
R H S  M 40, systems which require computing inverse 
kinematics: R H S  M 200, or systems which require 
computing rigid body contact models: R H S  M 2000. 
Observe that the benefits of multirate simulation be- 
come more pronounced as the number of subsystems 
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Figure 2:  Efficiency as a function of the cost of evalu- 
ating the rieht hand side. 

0 4 7 7  
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Figure 3: Simulation of the hierarchically controlled 
cart. The (2, y) coordinates arI2 plotted at each level. 

increases. It also should be mentioned that, while the 
ratio of step sizes of neighboring levels in the hierar- 
chy used to compute Fig. 2 if; 2, the efficiency gain 
increases as this ratio increases. 

4 Implementation. 
The algorithm has been implemented in Matlab, us- 
ing a 5th order PC pair. It supports automatic step 
size selection, both across time and across levels of the 
hierarchy, to monitor and conixol truncation error to 
a user defined tolerance as the simulation proceeds. 
The user may specify groups of variables, called sub- 
systems, that should be computed at the same rate. 
The method will be part of the simulation suite for 
the CHARON modeling language [17]. 
In Section 1, the idea of hierarchical control was mo- 
tivated. As an example problem we simulated a hi- 
erarchical model of a standard differential drive cart. 
Equation (1) which is essentially a holonomic cart 
model was used for trajectory generation (level-1); a 
nonholonomic model of the cart is written in the form 
of eq.(2) and the controller calculates wheel velocities 
at level-2 to track the output of the trajectory genera- 
tor a t  level-l; finally, at level4 torques are computed 
so that the full dynamic model of the cart tracks the 

C I  .................... 1, 
J., . . . . . . . . . .  

. . . . . . . . . . . .  

. . . . . . . . . .  

Figure 4: Illustration of the frequency at which the 
different levels in the hierarchy are integrated. 
constrained kinematic reference trajectory. In addition 
we also added a forth level of in the hierarchy which 
models a second dynamic cart attempting to  follow the 
first cart at a prespecified distance. Figure 3 ,  shows 
the results of simulating this system with the tool pre- 
sented in this paper. The position coordinates of eqs. 
(1, 2 ,  3 )  are plotted. 
In this particular case we compared the performance 
of our (non0ptimized)code vs. that of a popular built 
in Matlab ode solver(ode45), using the same error tol- 
erances. The multirate code required only 27% of the 
number of floating point (about 4 times faster) opera- 
tion used by the built-in solver. Figure 4 shows the fre- 
quency with which the multirate algorithm integrates 
the various levels in the hierarchy. As expected the 
first level in the hierarchy is integrated with a large 
steps size (hl x 0.6) while the lowest level is inte- 
grated with a much smaller step size to capture the 
fast changing dynamics (hq M 0.015). These step sizes 
are selected dynamically to maintain a desired level 
of estimated integration error while maximizing the 
efficiency of the simulation. R.ecal1 that in the tra- 
ditional simulation all components would have been 
integrated with a global stepsize corresponding to the 
fastest component ( h  M 0.015). In general the speed 
up factor is a function of several parameters, espe- 
cially the desired integration accuracy. Figure 5 de- 
picts this relationship. For this example the efficiency 
gain is more dramatic than the conservative estimate 
indicates in Fig. 2 .  This is because, while the analysis 
was performed assuming the ratio of stepsizes used in 
neighboring layers in the hierarchy was two, this par- 
ticular example permitted ratios as high as 8. Notice 
that the benefits of multirate simulation increase as 
the error tolerances become tighter. 

5 Conclusions 
In this paper we have introduced multirate predic- 
tor corrector techniques for simulating robotic systems 
possessing multiple time scales. The method is shown 
to have accuracy on the same order as that of the tra- 
ditional predictor-corrector pair and the same stability 
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Figure 5: Experimental results for the mobile robot 
example on the efficiency of the multirate technique 
as a function of the integration tolerance. 

properties, for the class of systems discussed here. The 
efficiency analysis indicates that a significant reduction 
of computation time is possible (a conservative analy- 
sis suggests 30-80% for some representative systems), 
when the system is sufficiently complex. 
Other robotic systems that could potentially benefit 
from this type of simulation are: (1) Compliant con- 
tact models for rigid body simulation. The com liant 
contact point represents the fast dynamics whife the 
gross motion is comparatively slow. (2) Large mul- 
tiagent systems, such as platoons of automated high- 
way vehicles; or simulations of man independent rigid 
bodies. Here one does not want to STOW down the entire 
simulation when only two agents collide. (3) Hierarchi- 
cally abstracted systJems such as the one presented in 
this paper or [13]. This may be particularly useful in 
undulatory locomotion systems, as indicated in [15]. 
Future work will focus on developin techni ues for 
systems where the right hand side o f  the dif?erential 
equations changes discontinuously when certain events 
occur (hybrid systems). For example, in rigid body dy- 
namics an event would be a change in contact states, 
whereupon the governing equations suddenly transi- 
tion from unconst,rained motion to rolling or sliding. 
Multirate techniques will hopefully allow one to simu- 
late the bodies undergoing critical transitions at  a finer 
level of detail (smaller time step), increasing the likeli- 
hood that these events are properly detected, without 
slowing down the integration of unaffected bodies. 
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