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Abstract 

In this papel; the problem of motion planning in environ- 
ments with both known static obstacles and unpredictable 
dynamic constraints is considered. A methodology is intro- 
duced in which the motion plan for the static environment 
is modijied on-line to accommodate the unpredictable con- 
straints in such a way that the completeness properties of 
the original motion plan are preserved. At the heart of 
the approach is the idea that Navigation functions are in- 
deed Lyapunov functions; and that the traditional method 
of forcing the robot to track the negative gradient of field 
is not the only input which stabilizes the system. This extra 
freedom in selecting the input is used to accommodate the 
dynamic constraints. A computational method for select- 
ing the appropriate inputs is given. The method is used to 
solve two sample problems. The constraints in these cases 
are used to model collisions with other robots and, in the 
second example, a team of robots traveling in formation. 
Finally, some preliminary work on extending the approach 
to nonholonomic systems is presented. 

1 Introduction 

Most solutions to the motion planning problem have the 
desirable attribute of completeness meaning that they are 
guaranteed to find a solution if one exists or report failure 
if no solution exists. The draw back of such approaches 
is that, when unexpected changes to the model of the en- 
vironment occur, there is no satisfactory way of modify- 
ing the motion plan online which preserves the complete- 
ness properties of the original solution. In contrast, reac- 
tive planning ([l]) is a paradigm in which the actions of 
the robot are simply a function of its sensor inputs and are 
computed in real time in response to changes in the envi- 
ronment. They have the advantage of enabling robust op- 
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eration in dynamic and changing environments; however 
suffer from a lack of completeness. It is difficult to estab- 
lish performance guarantees except in a very limited set 
of special cases. In this paper we introduce a new plan- 
ning methodology which attempts to bridge the gap be- 
tween these two approaches. We assume that the robot is 
provided with a map of the static obstacles in the environ- 
ment up-front and that the robot is capable of generating a 
corresponding static solution to the planning problem. A 
list of reactive requirements or constraints whose time de- 
pendence is not known in advance are also provided. We 
present a way of modifying the motion plan for the static 
environment online to locally accommodate the dynamic 
constraints whenever possible. 
Since we place few restrictions on the dynamic nature of 
the constraints one cannot always guarantee that the prob- 
lem can be globally solved. However, we provide a method 
that can determine if a local solution exists and either com- 
pute one, or report failure and alert the high level planner 
that a global replanning is needed as a last resort. The mo- 
tivation for this is: (1) a global replanning is expensive and 
we would like to rely on reactive solutions whenever pos- 
sible without sacrificing completeness; and (2) since we 
have no prior knowledge of the time-dependence of the 
constraints it is impossible to account for them up front. 
Similar problems have been addressed in the literature. 
Game theoretic approaches treat the dynamic constraints 
as controlled by an adversarial agent and attempt to find 
the worst case inputs for the system, [2] and [3]. In [4] a 
method of altering a Navigation function to account for un- 
modeled obstacles (topological alterations) or poorly mod- 
eled obstacle geometries (geometric alterations) is pro- 
posed. A method termed reflexive collision avoidance, is 
developed [5] which is essentially an obstacle avoidance 
controller that accounts for the robot's dynamics. In [6] ho- 
motopic deformations to preplanned trajectories are com- 
puted which enable the robot to circumvent unmodeled 
obstacles. A behavior-based or reactive control paradigm 
which switches between several simple controllers based 



on changes in the environment is advocated in [I]. Our 
approach differs from these in several ways. Most impor- 
tantly in some sense, it preserves the completeness prop- 
erties of the “static solution” by not introducing spurious 
equilibria and reporting when no local solution exists. It 
can also account for more general types of dynamic con- 
straints, other than simple obstacle avoidance. It is also 
relatively cheap from a computationally point of view. 

2 Problem statement 

Static Problem (Basic Motion Planning) Given a robot 
R, with a fully actuated, holonomic, kinematic model Q = 
U, a goal configuration qg, and a group of sets Oi where 
i = 1,. . . , N describing the known static obstacles in the 
environment; assign an input G(q, t) which steers the robot 
from any initial position qo to the goal qg (provided qo and 
qg are in the same connected subset of the workspace) - 
while not hitting any static obstacles Oi. We refer to the 
map G(q, t) as the static solution. 

Dynamic Problem In addition to all the data givenfin 
the static problem, a partially ordered list of inequalities 
gj(q,  t) 5 0 (where j = 1,. . . , M) which represent the 
reactive requirements is given. Note that the time depen- 
dent portion of the constraint dynamics may not be known 
in advance. The problem is then to satisfy all the require- 
ments of the static solution while not violating any of the 
inequality constraints qg. The algorithm for generating the 
dynamic solution u(q, 91, . . . , gM, t) should be such that it 
is guaranteed to produce a solution locally consistent with 
the constraints if one exists and report failure otherwise. 

3 Approach 

The key observation which we exploit to solve the above 
problem is that Navigation functions, V(q), which solve 
the static problem, are actually Lyapunov functions. The 
traditional control law of U = -VV is not the only input 
capable of rendering V < 0; there is in fact a uncountable 
set of such inputs. We exploit this freedom in choosing U 
to satisfy the additional dynamic constraints whenever pos- 
sible. In this section we prove that this set of inputs exist, 
construct it, and give a computational method for assigning 
the inputs to the system. 

Navigation functions We assume that a Navigation 
function,V has been constructed which solves the static 
problem (i.e. a function that steers the robot to qg while 
avoiding 01, . . . , OM). We choose to base our methodol- 
ogy on Navigation functions[7] because they represent an 
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Figure 1: An illustration of the vectors -VV, and 
[-VV]l in R3. Any velocity vector in the same half plane 
as -VV also decreases V(q). 

algorithmically complete closed loop solution to the plan- 
ning problem. Typically, the robot’s input is U = -VV 
which causes the robot to reach the goal and halt while 
avoiding obstacles (and hence represents what we call a 
solution to the static planning problem). Navigation Func- 
tions can be though of as Lyapunov functions for the sys- 
tem 4 = u(q), where u(q) = -VV(q), because V(q) is 
positive definite by construction and, by definition of the 
control policy, the value of V is always decreasing along 
system trajectories 

v = vv .u(q) = -vv. vv 5 0. (1) 

Sets of stabilizing inputs It is apparent however that this 
control policy is not unique- any control policy which ren- 
ders V = -VV q 0 also solves the planning prob- 
lem. This fact is observed in [4] and in 181; the set of all 
input vectors which decrease some cost-to-go function is 
termed the “cone of progress”. However in both of these 
contexts the fact is used passively to address sensor uncer- 
tainty. Here however we wish to actually construct a pa- 
rameterized family of control laws which solve the static , 

planning problem. 

Proposition 1 If q E Rn, defne mutually perpendicular 
vectorJields [VV(q)]f, where i = 1,. . . , n - 1, which are 
also everywhere perpendicular to VV(q). Further assume 
each of these vectors has been normalized and is of unit 
length. See Fig. 1. Then the control law 

n-1 n-1 

u,(q) = -@-E C y y 2 V V ( q ) + C  Cyi[vv(q)ll (2) 

c;.&q < 1. 

i=l i=l 

also solves the static planning problem, provided 

The set of vector fields ua represents all the vectors which 
lie in the same half-tangent space as -VV. To prove the 
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proposition we show the robot (1) reaches the goal and (2) 
does not hit any obstacles. First we prove that q + qg : 

Proof 1 Observe that V ( q )  serves as a common Lyapunov 
function for the equation q = U ,  regardless of the values 
of ai since 

n-1 n-1 

v = vv * ((E a; - 1)1/2VV(q) + ai[vv(q)];) 
i= 1 i= 1 

n-1 
= -(1 - a y / 2 v v ( q )  * VV(q) 5 0 

i= 1 

provided ~~~~ a: < 1. Note that the new control law 
is free of local minima since the V = 0 @ q  = qg by 
definition of the navigationfunction. 0 
To show the second requirement: 
Proof 2 Ifthe obstacles are dejined by a closed s u ~ a c e  C 
let A(C) be the unit normal pointing toward the interior of 
the free space. Then probing that the robot does not hit the 
obstacles is equivalent to proving q - A 2 0 using q = U ,  

n- 1 n-I 

(-(1 - c a y / 2 v v ( q )  + c ai[vv(q)];) * ii (3) 
i= 1 i=l 

Recall that navigation functions are uniformly maximal on 
the boundary of thefree space, so -VV(q) is parallel to 
A(C)for all q E C, so --VV(q) - A(q)  > O and VV(q)l - 
f i (q)  = 0. Therefore eq.(3) becomes 

n-1 

(1 - a y 2 ( - v v .  A) 2 0 0 
i=l 

Thus all controllers in the set U ,  solve the static planning 
problem. Finally we add that since the set of stabilizing in- 
puts U ,  results in a set of closed loop systems which share 
V(q) as a common Lyapunov function, it can be shown 
(see [9]) that a system whose right hand side switches be- 
tween these inputs is also stabilizing, regardless of the na- 
ture of the switching sequence. This implies that we are 
free to choose the values of a online, in a possibly dis- 
continuous or time varying fashion, without affecting the 
overall stability of the system or the completeness of the 
solution. 

Constraints Since the constraints are unpredictable in 
nature we do not always take them into account. As an 
objective measure of when to react to changes in the envi- 
ronment we introduce a quantity Atj which is an estimate 
of the time to constraint activation ( gj (q ( t ) ,  t )  = 0 ) 

(5)  

This quantity also encodes information about the kine- 
matics of the robot. Small positive values of Atj imply 
that a constraint activation is impending; while negative 
values (moving away from the level surface gj  = 0) or 
large positive values are not a cause for concern. Thus if 
0 5 Atj 5 Sj, gj  is added to the list of active constraints, 
where Sj is some predetermine constant termed the look 
ahead time. 
Once a constraint becomes active, our goal is to select an 
input which makes gj 5 0. The time derivative of gj  is 
conveniently expressed as the sum of two quantities: 

the first term represents the robot’s own influence on gj  and 
is assumed to be known; the second represents the dynamic 
nature of g j  and must be either sensed online or some as- 
sumptions must be placed on its value. We assume the 
robot has an expression for g j  and is equipped with sensor 
enabling it to measure its value online. In this work we 
only consider what are referred to in the optimal control 
literature as first order constraints, that is constraints for 
which % # 0 Vq; although the extension for higher order 
constraints is straightforward. 

Computational issues The objective then is to introduce 
a computational method for selecting an input, from the 
set of all inputs U, (which, by construction, solve the 
static problem), that forces the derivative of any active con- 
straints to be strictly non-positive. A constraint gj  is con- 
sidered active if 0 5 Ati < &; at any given time P < M 
constraints are active. Let G = [gl ... gpIT E RP 
be the constraint vector and G, = $$f E R P x N  and 
Gt = E RP.  In the absence of additional con- 
straints, we assume the nominal input is U ,  = -VV (i.e. 
a1 = 0,. . . an.-l = 0). The problem can be phrased as 

. n-I 

(7) 

such that G,u, 5 -Gt where the inequality is evaluated 
componentwise; U ,  is defined in eq.(2) and V(q) is com- 
puted using one of the algorithms mentioned in Sect. 1. 
This problem is computationally identical to the “direction 
finding” sub-problem which is solved as part of the non- 
linear programming method called the Method of Feasible 
Directions (see [lo] for example). Well studied and effi- 
cient techniques are available for solving it. Most of the 
approaches involve using a series of projections of -VV 
onto the constraint directions to determine if a solution ex- 
ists and to compute the one “closest” to the optimum. 
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Figure 2: The addition of a constraint, 91, with no time 
dependence further constrains the set of directions to the 
union of the half spaces containing -VV and Vgl 

Geometric insight behind the problem can be gained from 
recognizing that the j t h  inequality defines a cone, cj  (or 
the complement of a cone) with its apex at the origin in 
the tangent space of the body fixed frame; while the set of 
vectors U = {ua : a: 5 l} defines a half space. 
Figures 2 illustrates this in R2. 
It should be said that if U n c1 n - - n Cj = 8 there is no 
input that can simultaneously solve both the static planning 
problem and satisfy the reactive objectives. The algorithm 
used to calculate the inputs is capable of recognizing this 
and reports that a high level replanning is required; or that 
some reactive constraints must be discarded according to 
some predetermined priority rankings until a feasible solu- 
tion exists. If the cone is not empty, an infinite number of 
solutions exist and the optimization problem can be solved 
at each step. Since this need only be solved at points along 
the trajectory its cheaper than a global replan however its 
may not be globally optimal. 

n-1 

4 Applications 

Our framework is general enough that it can be used to 
solve a fairly diverse group of applications, the most ob- 
vious of which is dynamic obstacle avoidance. However 
more general types of constraints can be specified as well. 

Obstacle avoidance We consider a situation in which the 
robot has a perfect map of the static obstacles in the envi- 
ronment; however, the presence moving obstacles (humans 
or other robots) complicates the problem. We assume the 
robot can measure the position and velocity of these mov- 
ing obstacles but has no a priori knowledge of their trajec- 
tories. If Q1 ( t ) ,  . . . , Q M ( t )  are the position vectors of the 

Fig. 3 illustrates such a scenario. Important things to note 
about this example are: (1) R has no prior knowledge of the 
trajectory of the convoy; (2) the avoidance is performed in 
an online, purely reactive fashion without having to recom- 
pute the static plan; and (3) at all times during the execution 
V < 0, so the completeness of the navigation function is 
preserved (no local minima or limit cycles are introduced). 

Formation control Consider a situation in which a 
group of robots must travel from the respective starting 
configurations to their goal configurations; however they 
are to do so in formation whenever possible. If at anytime 
it is not feasible to achieve both of these objectives than it 
should report failure, break away from the formation and 
proceed to its goal. By a formation we mean that the robots 
must try to achieve and maintain some predetermined rela- 
tive separation and bearing from each other. Such behavior 
is desirable in many applications, for example in the case 
of unmanned air vehicles, formation flight results in greater 
fuel economy. In other cooperative tasks close proximity 
of teammates is crucial. 
In such situations we can assign one robot the role of leader 
and assume the follower robots can measure the position 
and velocity of the leader but have no a priori knowledge 
of its motion plan. Consider robot-i and let qi( t )  be its 
position vector. This dynamic constraint is expressed as 

9 = -11% - qf(t>1l2 1.0 (9) 

where q: is the desired position of qi in the formation. 
Fig. 4, shows a simulation of such an example. 

5 Nonholonomic systems 

In practice most mobile robots are nonholonomic; there- 
fore extending the methodology outlined in the first part of 
this paper to systems with velocity constraints is important 
from both a theoretical a d  practical point of view. 

Dipolar fields A dipolar field is a type of scalar field with 
the special property that systems which track its negated 
gradient have integral curves which are feasible trajecto- 
ries for nonholonomic mobile robots. This idea is intro- 
duced in [ll]. The basic dipolar scalar field is V(q)  = 
141 l/(qf + qz). As is the case for Navigation functions, 
various coordinate transformations are used to create a 
field which steers the system around stationary obstacles. 

dynamic obstacles, and T j  are their radii. The d y n e c ’  Using this methodology, potential fields can be built for 
nonholonomic systems in static environments which share 
all of the completeness properties of Navigation Functions. 
This idea is developed further in [12] where an associated 

constraints for the robot are 
- 

g j  = -(Ib - Gj(t>I12 - (r + r j>> I 0. (8) 
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Figure 3: (L) The Robot (on the right) proceeds to the goal (on the left). (C) The robot tries to steer to the right around the 
moving convoy but is blocked by a static obstacle. Finally (R) the robot loops around to pass the convoy safely on the left. 

0 

Figure 4: (L) The robots assume formation. (C) Traveling in formation. (R) Breaking off to pursue individual objectives. 

controller is introduced that stabilizes 8 so that the non- 
holonomic system is able to track the gradient direction. 
This controller is developed through a backstepping ap- 
proach, by looking at how a holonomic system would move 
under the influence of the dipolar field and then deriv- 
ing a controller for the nonholonomic system which would 
mimic the trajectory of the holonomic system. 

Difficulties Recall in the case of holonomic systems, the 
idea behind the method introduced in this paper was to se- 
lect inputs U such that 

. av * aG dG V = - U < <  and G = - U + - < < ,  
aq aq at 

however, in the case of underactuated nonholonomic sys- 
tems, these inequalities would become 

~ = - F u < <  av and G = - F u + - < Q ,  * dG 8G 
84 aq at 

where F E !EJZNxK. When dim(u) < dim(q) (i.e. K < 
N )  its becomes more difficult to ensure a that a feasible 
direction is contained within span(F).  

Results Because the nonholonomic constraints on mo- 
bile robots are prohibitively restrictive we do not directly 
apply our methodology to nonholonmic mobile robots. In 

stead we proceed as [12], by assigning V(q) to be a dipo- 
lar field. We then proceed to computationally solve the 
dynamic planning problem outlined in Sect. 3 as if the sys- 
tem was holonomic. We then backstep the ideal holonomic 
input to obtain an input to the nonholonomic system. In 
doing so the completeness properties of the static solution 
are preserved; however it is difficult in practice to ensure 
the dynamic constraints are satisfied at all times. In theory 
it is always a possible to mimic the ideal trajectory of the 
holonomic system by having high enough gains and a large 
enough lookahead time but it is difficult to actually select 
these values since they are problem dependent. 
This idea was first simulated, the results of which are 
shown in Fig. 5. In the scenario depicted there a unicycle 
type robot, with the kinematic model 

[ i ]  = [ ri;8] v +  [ i ]  w ,  

has an initial map of the environment which does not con- 
tain any obstacles. It uses the dipolar potential field and 
controller from [12] as a static solution. The left frame 
of the figure shows that the nominal trajectory would have 
steered the robot on a collision course with an obstacle that 
is unmodeled initially but detected at run time. The right 
panel shows the trajectory of the robot using the method- 
ology outlined in this paper, once the robot detects the ob- 

cos 8 
(10) 
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Figure 5:  (L) The robots nominal trajectory would cause it to bump into the unmodeled obstacle (dark circle). (R) The 
dynamic planning methodology enables the robot to steer around the unexpected obstacle on-the-fly. 

tems, implementing the technique on an experimental plat- 
form and focus on modeling other types of applications 
such as cooperative manipulation. 
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