
A Hybrid Systems Framework for Multi-robot
Control and Programming

Joel M. Esposito
Vijay Kumar

GRASP Laboratory, University of Pennsylvania
jme,kumar@grip.cis.upenn.edu

April 26, 2002

Abstract

In this paper, we present a framework and the software architecture for the
deployment of multiple autonomous robots in an unstructured and unknown en-
vironment with applications ranging from scouting and reconnaissance, to search
and rescue and manipulation tasks. Our software framework provides the method-
ology and the tools that enable robots to exhibit deliberative and reactive behaviors
in autonomous operation, to be reprogrammed by a human operator at run-time,
and to increase system reliability in unstructured, dynamic environments.

1 Introduction and motivation

There is extensive literature on the control of robot manipulators or mobile robots in
structured environments, and traditional robot control is a well understood problem
area. However, traditional control theory mostly enables the design of controllers in
a single mode of operation, in which the task and the model of the system are fixed.
The last few years have seen active research in the field of control and coordination
for multiple mobile robots in unknown and unstructured environments, with applica-
tions including tasks such as exploration [2], surveillance [6], search and rescue [8],
mapping [19, 7], distributed manipulation [16, 10] and transportation of large ob-
jects [17, 18]. A review of contemporary work in this area is presented in [11]. When
operating in unstructured or dynamic environments with many different sources of un-
certainty, it is very difficult if not impossible to design a single continuous controller
that will guarantee performance even in a local sense. Any real world applications
will require using several different controllers for different phases of the task, as well
as using multiple estimation algorithms and even possibly multiple plant models. In
addition, messaging over a local wireless network, geometric planning algorithms and
image processing routines are constantly being run, adding a discrete and algorithmic
component to control and estimation. In light of these issues, designing reliable sys-
tems is a challenging task especially as the number of robots gets large.

1

The challenge in designing such systems is that as the switching logic becomes
more complex, the difficulty in maintaining and debugging the code increases dramat-
ically unless good programming practice is used – and it is all too easy, in trying to
quickly put together an application, to write code in haste. It is not uncommon for
programmers to write blocks of code encased in complex erroneous conditional state-
ments whose execution is precluded; and all too difficult to discover the sources of
runtime errors. Furthermore, control laws, estimation schemes, plant models, and al-
gorithmic components can become inextricably entangled, forcing one to “reinvent the
wheel” each time a new application is created or when there is a change of platforms.
Poorly organized code needs to be completely redesigned when changes must be made
or new tasks are introduced. A deeper issue lies in predicting the aggregate behavior
of the system when each piece of code is designed and tested in isolation. It is well
known that mixed discrete/continuous system can exhibit behavior not predicted by
either control theory or discrete mathematics alone. Therefore as robotic applications
become increasingly sophisticated and safety critical, it is imperative that programmers
have a formal way of designing, representing, and programming such software based
control systems.

Our goal, in this paper, is to describe a set of software tools that allows the devel-
opment of controllers and estimators for multi-robot coordination. The tools consist of
a framework for developing software components, and an architecture for composing
control and estimation modules. Our software framework divides the overall multi-
robot control task into a set of modes or behaviors, which may be executed either
sequentially or in parallel. Modes can consist of high-level behaviors such as planning
a path to a goal position, as well as low-level tasks such as obstacle avoidance. We
use a high-level language to formally describe how and when transitions between these
modes are to take place in order to achieve a set of global objectives.

The benefits of using such formalisms include: ease of maintenance; rapid devel-
opment of new applications; improved performance estimates; greater code reuse; and
guaranteed extensibility. The remainder of the paper is organized as follows: Sec-
tion 2 provides a mathematical definition of our prefered modeling formalism, Hybrid
Automata. Section 3 illustrates how this definition can be applied to robot systems.
Section 4 lists basic features of modern programming languages that facilitate efficient
software development and maintanence. Section 5 explains how we have incorporated
these concepts into the CHARON programming language and illustrates its main fea-
tures through examples. Finally in Section 7 we explain how the formal model can be
exploited for the purposes of simulation and, eventually, analysis.

2 Definitions

In this section we discuss our modeling formalism,Hybrid Automata, and illustrate
how it can be used to model robot systems.

A hybrid system can be viewed in many ways: perhaps as a generalization of a
switched control system, or as a finite state machine augmented with differential equa-
tions. Many modeling paradigms have been introduced (see [1] for an overview). A
commonly accepted model is that of a Hybrid Automata. The definitions that follow

2

x <-- R1b(x)

g 1a (x) > 0

g 1b (x) > 0

g 2a (x) > 0

g 2b (x) > 0

x <-- R1a(x)

x <-- R2a(x)

x <-- R2b(x)

Flow: x’ = f1 (q1, x)
Mode q1

Inv: I1(X) < 0
Flow: x’ = f2 (q2, x)

Flow: x’ = f3 (q3, x)

Inv:I I3(X) < 0

Mode q3

Inv: I2(X) < 0

Mode q2

Figure 1: A graphical representation of a generic hybrid automata.

have been adapted from [9]

Hybrid Automata A hybrid automaton is a collectionH = (Q,X , Init, f , I , E,G,
R), where

� Q is a countable set of discrete variables;

� X is a set of continuous variables;

� Init � Q�X is the set of initial states;

� f : Q�X ! TX is a vector field defining the continuous flow;

� Inv : Q! 2X assigns to eachq 2 Q an invariant set;

� E � Q�Q is a collection of possible discrete transitions (edges);

� G : E ! 2X assigns to each edge,e = (q; q0) 2 E, a guard; and

� R : E �X ! X assigns to each edge,e = (q; q0) 2 E, a reset relation.

This definition represents a fairly broad and powerful modeling framework which sub-
sumes continuous differential equations, discrete time difference equations, finite au-
tomata, and timed automata; as well as switched control systems and non-smooth dif-
ferential equations. A more intuitive explanation of the components of the Hybrid
Automata definition is presented via an example in Section 3 Frequently, graphic rep-
resentations of hybrid automata appear in the literature. They are depicted as shown in
Figure 1.

The evolution of a hybrid automata’s state over time is called anexecutionand
is essentially a concatenation of continuous flows (like those of ordinary differential

3

equations), and discrete transitions (consisting of mode changes and resets). An execu-
tion begins at some state(q; x) 2 Init and the continuous state’s evolution is governed
by a differential equation prescribed by the flow_x = f(q; x). Time increases during
this part of the evolution. If at anytime during the continuous flow, there exists an edge
fe = (q; p) : p 2 Qg connecting the current discrete state,q, to any other discrete state,
p , for which the edges associated guard conditionge(x) is true, a transition will occur.
When a transition occurs, two things happen: the value of the current discrete state
jumps fromq to p and a reset mapping associated with the edgee = (q; p) is applied
which changes the value of the continuous state. The reset mappingR(e; x)! x0 may
be a simple algebraic function or a very complex algorithm. This transition is assumed
to occurinstantaneously(i.e. no time flows during the discrete update). After the tran-
sition occurs, time resumes its passage and the continuous state now flows according
to _x = f(p; x) with initial conditionx0. The process continues this way.

3 Modeling

The various sets and mappings which constitute the definition of a Hybrid Automata
can be explained in a mobile robotics context. As an illustrative example, consider a
security mobile robot with unicycle type dynamics whose mission is to traverse the
perimeter of a warehouse while looking for intruders; if the robot accidentally collides
with the fence or some unexpected obstacle, it should back up and try to resume its
patrol; if an intruder is located the robot should notify the police via its radio link and
follow the intruder until they arrive.

The robot and its controllers and estimators are modeled as a hybrid system (see
Figure 2). Returning to the Hybrid Automata definition,

� Q is the set of possible modes, in this case each mode is a different controller
and estimator for best suited for a different part of the task, they are labeled
q 2 fpatrolling, tracking, collision recoveryg.

� X is the set of continuous states in the traditional sense (i.e. position, velocity,
etc.), the dimension of the state may change in each mode. For example, in the
trackingmode, the intruder’s position may be considered a state variable, while
in the other modes, only the robot’s position and velocity are part of the state.

� Init is the set of initial conditions for the robot, this may be the entire state space
in this situation.

� f(q; x) q 2 Q, andx 2 X , is the continuous dynamics of the closed loop system,
as one would expectf is not necessarily a continuous function of the discrete
stateq; although, ifq is held constant,f is continuous inx. The controller used
in patrolling andtrackingmay be qualitatively different closed loop controllers;
while the controller used incollision recoveryis simply an open loop controller
which causes the vehicle to travel in reverse for a brief period.

� Inv, is a condition the designer believes will remain true when a given mode
is active. If this condition is violated, a flag can be raised, a message sent or

4

corrective action taken. This tool is primarily diagnostic. For example, during
the patrol mode, one may want to verify they the robot is never greater that 5
meters from the building. If at anytime the controller overshoots this amount, a
warning is logged.

� E captures the connectivity of the modes.E is the set of all possible mode tran-
sitionsfpatrol ! tracking; patrol ! collsion; tracking ! patrol; : : : g. It
is even possible to have “self-transitions”ftracking ! trackingg.

� G is the set of logical conditions which determine when mode switches occur.
For example the transitionpatroling ! tracking may occur whenintruder =
true mathematically,intruder is a inequality condition on the sensor readings.

� R is an algebraic assignment or algorithm which is executed upon transition.
For example when the transition is enabledpatroling ! tracking, a wireless
message might be sent to the police or to the human security guards; or for
example upon colliding with an obstacle the robot’s velocity might be set to
zero.

Factory

Patrol Perimeter

Flow: x’ = f1 (q1, x) Flow: x’ = f2 (q2, x)

Flow: x’ = f3 (q3, x)

Patrolling Tracking

Collision Recovery

Target_distance < 2

Send Message: Found;

Send Message: Lost;

Send Message: Position;
Timer =0

Building_distance < 1

Velocity < 0

Timer > 5

Target_distance >2

Target_distance < 2

Velocity =0 AND Input > 0

Figure 2: Left The security patrol application.RightThe robot’s behavioral program
modeled as a hybrid automata.

While the previous example illustrates one way the Hybrid Automata framework
can be used to model a software based control system, there are clearly many modeling
decisions to be made when applying the framework.

4 Software design concepts

One also needs to keep in mind that the Hybrid Automata framework is simply an ab-
stract mathematical entity. There are many ways to represent this entity in software.
Given a choice of representations one would like to use a representation which facili-
tates efficient programming, ease of maintenance, etc. Ideally a representation would

5

capitalize on the desirable features of other modern programming languages such as:
formalism; modularity; andhierarchy.

The advantages of using aformalismare many. Adhering to a formal program-
ming paradigm ensures consistency and readability of the code, which is critical when
projects involve more than one programmer. Concepts like type checking and scoping
encourage better programming practice, and throw compile time errors when poorly
written code is used. Finally, having a formal language means that a uniform graph-
ical representation, such as the one in Figure 2 can be used so that programmers can
visualize the final design.

Modularity implies that various pieces of code can be interchanged with minimal
effort. For example if one would like to replace the estimator used in thetrackingmode
with a different estimation scheme one should not have to rewrite the entire closed loop
dynamics of the mode but rather just simply swap the part of the code that contains the
estimation scheme. In order to do this one needs to write code in which the distinction
between the dynamics, estimator and controllers are clearly defined, in much the same
way that it is desirable when programming other types of applications to break large
tasks into subroutines and procedures rather than write one large block of code. Clean
interfaces must also be used, so that it is clear what the “inputs” and “outputs” of any
new block of code must be to ensure that it is compatible with the existing software.
The advantages of this approach are that it is easy to maintain code, by simply updating
parts of it; and quicker to develop new applications because old blocks of old code can
be reused. In a similar fashion, the use ofhierarchyalso reduces development times
because it limits the amount of code that needs to be rewritten. It allows more complex
programs to be built up out of simpler blocks of code.

5 The CHARON Language

We have developed CHARON, an acronym for Coordinated Control, Hierarchical De-
sign, Analysis, and Run-Time Monitoring of Hybrid Systems, a high-level language
to facilitate the programming of multiple, interacting hybrid systems. The language is
designed with the goal of being able to control multiple mobile, autonomous robots for
mission-critical applications and stringent requirements on safety. More details about
the language, the semantics and the formal description are presented in [14], [13]. Here
we will illustrate the language’s features informally through the use of examples. Other
examples appear in [15] and [12] and on the CHARON web page

http://www.cis.upenn.edu/mobies/charon/

5.1 Formalism

Formal CHARON code for the modepatrolling could be written as follows. Lines with
// are comments, which explain the purpose of each line to the reader.

mode patrolling(real v_max, real k) f
// above line names the mode class and describes the
// parameters that must be specified when it is created

6

// (in this case: maximum forward speed v_max
// and a gain k.

// this is the name of its entry point, it is used in
// describing the transition edges later
entry enterPatrol

// the name of the exit point
exit exitPatrol

// these are the continuous (called analog) state
// variables (position and orientation)
// along with the reference steering angle phi.
// they are readWrite since they will be both read
// to evaluate various functions within the mode,
// as well as written to as time flows during
// the continuous evolution
//
// Note that externally defined types such
// as ‘‘Position’’ can be used
readWrite analog Position myPos;
readWrite analog real theta;
readWrite analog real phi;

// this defines the differential equations for the
// continuous states
diff diffSteer f d(myPos.x) == v*Math.cos(theta);

d(myPos.y) == v*Math.sin(theta);
d(theta) == omega g

// these are algebraic assignments. In one case a
// simple control law in the other an external
// planning algorithm is called to compute the
// desired reference signal phi
alge algePhi phi == externPlanner(myPos, theta)
alge algeOmega omega == k * (theta - phi)
alge algeV v == v_max

// the invariant in this situation is simply that
// the robot’s distance to the
// building is less than some threshold
inv invBuildingDistance externDistToBuilding <= 5

g // end of mode patrolling

7

First note that this is essentially aclassdefinition in the object oriented programming
sense – it is a template. Many instances of the mode class can be defined. For exam-
ple aggressivePatroling may be defined aspatrolling(vmax =5, k
= 10) while slowPatrolling = patroling(vmax =1, k = 2) .

In generaldiff is used to define the flowf , inv denotes invariantsInv, andalg
is used to define simple algebraic assignments (such as control laws). Variables, are
typed as real, int, etc., and externally defined types are also allowed as in the case of
position . In addition to typing, variables can be discrete or analog. Analog vari-
ables are updated continuously, while discrete variables are updated only upon initial-
ization and mode switches. Likewise, one could write specifications for the remaining
modes

mode tracking(real v, position target, real k) f
...

g // end of mode

mode collisionRecovery(real v) f
...

g // end of mode

Note that the entry and exit points for a mode are labeled using the key wordsentry
andexit , however the guards and reset maps are not defined within the individual
modes since they describe how the modes are connected (a global property) rather than
being local properties of the individual modes. The “top level” mode is a mode which
contains such global information. The top level mode also creates (or instantiates)
particular instances of the individual modes, specifying values of their parameters.

mode topRobotMode(Position initPos,
Position target, real v, real phi, real initTheta, real initOmega, real k)

entry entryPt;

// defining variables
readWrite analog Position myPos;
private analog real timer;

diff diffTime d(timer) == 1.0

// instantiate the three modes
mode slowPatroling = patrolling(2, 2)
mode aggressiveTracking = tracking(4, target, 5)
mode backup = collisionRecovery(-2)

// define all the transitions (guards, edges and resets) connecting the mode
trans from slowPatrolling.enterPatrol to backup.entry when (collide==true) d

myVel = 0.0; timer = 0.0 g

8

...
trans arrival from backup.exit to slowPatrolling.enterPatrol

when (timer==2) do fg
...

// end of mode top

5.2 Modularity

One type of modularity was illustrated in the specification of thetopRobotMode
above. Many different individual modes can be designed in isolation and composed
as needed by instantiating them and specifying the edges between them. This is often
referred to assequential composition. Another type of composition –parrelel compo-
sition– is described below by introducing the concept of anagent.

An agent is simply a software entity defined by grouping parts of the model together
under a top mode for convenience and specifying some variables asinput and other
asoutput . The input-output dependencies define an interface and let one compose
various agents to get a larger system. In CHARON the channel keyword is used
to create such an interface. For example in a mobile manipulator system wherex is
the set of state variables of the mobile base andy is the set of state variables for the
manipulator, the system dynamics are

_x = fb(x; y) (1)

_y = fm(x; y); (2)

a single CHARON agent can be written for the system

agentRobot(...) mode top = topRobotMode(...)

where the top mode is

mode topRobotMode() f
...

private analog real x, y;
diff dynamics fd(x) == fb (x; y) ;

d(y) == fm (x; y) ; g
... g

However, it may be more advantageous to define the base and manipulator dynamics
as separate agents and compose them.

agent base() fmode topBase=topBaseMode() g
agent manipulator() fmode topManipulator=topManipulatorMode() g

with the top mode defined as

9

mode topBase() f
...

channel of real myState
channel of real otherState
receive (otherState, y)
send (myState, x)
diff dynamics fd(x) == fb (x; y) g

... g

mode topManipulator() f
...

channel of real myState
channel of real otherState
receive (otherState, x)
send (myState, y)
diff dynamicsd(y) == fm (x; y) ;

... g

agent Robot() f

private channel of real baseToManipulator,
manipulatorToBase;

agent theBase = base () [baseToManipulator,
manipulatorToBase]

agent theManipulator = manipulator () [baseToManipulator,
manipulatorToBase]

g

The key is that the two are different ways of representing the same Hybrid Au-
tomata – mathematically they are identical. It is only their software representation that
is different. But the second representation may be much more useful because individual
model components can be redefined as needed and composed into a new system.

In general inter-connected agents behave like block diagrams in terms of signal
flow. Thus controller agents, plant agents, and estimator agents can be defined and
wired together using thechannel keyword. Another application of agent composi-
tion is to convey discrete signals between two systems rather then to express continu-
ous signal flow. For example many copies to the robot agents can be instantiated and
a wireless network can be modeled using channels. The resulting system is a team of
robots.

10

Robot

topRobotMode

AgentRobot

X

Y
Base Manipul.
Agent Agent

=

Agent

Figure 3: A graphical representation of parallel composition of the base and manipu-
lator agents. From an input-output point of view the two representations are externally
identical.

5.3 Hierarchy

One type of hierarchy was illustrated in the previous section. A manipulator agent
and a base agent were composed together as a robot agent. In such a situation where
mode complex agents are built out of less complex agents we refer to the agents as
super-agents and sub-agents respectively. This is often called architectural hierarchy.

Another type of hierarchy occurs at the mode level where, likewise, sub-modes
and super-modes are used. This is called behavioral hierarchy. A two level hierar-
chy was seen in the patrolling example when the basic (or atomic) modespatrolling,
tracking, andcollisionRecoverywere grouped together inside thetopMode. However,
a behavioral hierarchy can have any number of levels. Suppose we wanted to pro-
gram a general purpose robot, capable of executing many different missions. We might
rename what was originally referred to astopModeto securitySuperMode. Then we
might reuse some of thepatrolling, tracking, or collisionRecoverymodes along with
newly designed atomic modesexploration, pushing, goToGoal, etc. to build other high
level behaviors in addition tosecuritySuperModeas in Figure 4. High level modes
such assurveyingSuperMode, searchAndRescueSuperMode, etc. could be constructed.
Even higher level behaviors could be constructed out of these super modes.

6 Implementation

The CHARON compiler and simulator was written in Java. However the low-level im-
plementation of this programming structure used to control actual hardware platforms
was done in C++. It usesLive Objects. Live Objectshave been developed as part of
the software architecture for implementation on the hardware platforms. A live object
encapsulates algorithms and data in the usual object-oriented manner together with
control of a thread within which the algorithms will execute, and a number of events
that allow communication with other live objects. At the top of the hierarchy, the algo-
rithms associated with the objects are likely to be planners, while at bottom they will be
interfaces to control and sensing hardware. The planner objects are able to control the
execution of the lower level objects to service high-level goals. To offer platform inde-
pendence, only the lowest level objects should be specific to any hardware, and these

11

Flow: x’ = f1 (q1, x) Flow: x’ = f2 (q2, x)

Target_distance < 2

Send Message: Found;

Building_distance < 1

Target_distance >2

Target_distance < 2

Pushing
Exploring

Flow: x’ = f1 (q1, x) Flow: x’ = f2 (q2, x)

Flow: x’ = f3 (q3, x)

Patrolling Tracking

Collision Recovery

Target_distance < 2

Send Message: Found;

Send Message: Lost;

Send Message: Position;
Timer =0

Building_distance < 1

Velocity < 0

Timer > 5

Target_distance >2

Target_distance < 2

Velocity =0 AND Input > 0

ordinanceRemovalSuperMode

securitySuperMode

Figure 4: A graphical representation of hierarchical composition of modes to form
higher level behaviors.

should have a consistent interface for communication with the more high level planning
objects that control their execution. Visual servo control algorithms have been incorpo-
rated into the live object framework for such basic functionality as obstacle avoidance,
wall-following, formation keeping, mapping and localization.

7 Discussion

The principle advantage of modeling systems using a formal framework is that the
structure of the model is preserved and can then be exploited for other purposes.
Throughout this tutorial we have tried to demonstrate how this structure could be ex-
ploited to reduce software development and maintenance times. We showed how, using
hierarchy and modularity, new applications can be prototyped quickly by leveraging
and reusing existing software modules.

12

We are currently working toward exploiting this structure for producing more ac-
curate and efficient simulations of Hybrid Automata. For example in [5], we develop
a method of selecting integration step sizes when a discrete transition is about to occur
in such a way as to ensure that the transition is properly detected and handled. The
step size selection methodology uses concepts from nonlinear control systems design
to correctly simulate system with model singularities, an area in which many other
simulation algorithms fail.

Traditional simulators can be notoriously slow when applied to complex hierarchi-
cal or multi-agent examples. In [4] we address the simulation of multi-agent systems.
We introduce the first algorithm which is capable of simulating, for example, a multi-
robot team in an asynchronous way. It allows a different integration step size to be
used for each agent rather than constraining the simulation to be executed with a single
global step size. The algorithm produces significant efficiency gains by allowing each
agent to use an individually selected, largest acceptable step size – yet it still properly
handles discrete events which depend on the configuration of the overall team. Like-
wise, in [3] we address asynchronous methods for simulating hierarchical systems with
similar results. Ultimately, one would like to exploit this structure for performing au-
tomated analysis such as verification, abstraction, as well as control synthesis. Some
initial steps have been taken in this directions but significant challenges remain.

Acknowledgments
We gratefully acknowledge support from DARPA grant MOBIES F33615-00-C1707 and NSF CDS-97-
03220. The first author is also partially supported by a DoE GAANN grant.

References
[1] Michael Branicky. Studies in Hybrid Systems: Modeling, Analysis and Control. PhD thesis, MIT,

Cambridge, MA, 1995.

[2] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot exploration. In
Proc. IEEE Int. Conf. Robot. Automat., pages 476–481, San Francisco, CA, April 2000.

[3] J. Esposito and V. Kumar. Efficient dynamic simulation of robotic systems with hierarchy. InIEEE
International Conference on Robotics and Automation, pages 2818–2823, May 2001.

[4] Joel Esposito, George Papas, and Vijay Kumar. Multi-agent hybrid system simulation. IEEE Confer-
ence on Decision and Control, December 2001.

[5] Joel M. Esposito, Vijay Kumar, and George J. Pappas. Accurate event detection for simulating hybrid
systems. In M.D. Di Benedetto and A. Sangiovanni-Vincentelli, editors,Hybrid Systems : Computation
and Control, volume 2034 ofLecture Notes in Computer Science, pages 204–217. Springer Verlag,
2001.

[6] J. Feddema and D. Schoenwald. Decentralized control of cooperative robotic vehicles. InProc. SPIE
Vol. 4364, Aerosense, Orlando, Florida, April 2001.

[7] L. Iochhi, K. Konolige, and M. Bayracharya. A framework and architecture for multi-robot coordi-
nation. InProc. Seventh Int. Symposium on Experimental Robotics (ISER), Honolulu, Hawaii, Dec.
2000.

[8] J. S. Jennings, G. Whelan, and W. F. Evans. Cooperative search and rescue with a team of mobile
robots.Proc. IEEE Int. Conf. on Advanced Robotics, 1997.

13

[9] John Lygeros and George Pappas. A tutorial on hybrid systems: Modeling, analysis and control. 14th
IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, September
1999.

[10] M. Mataric, M. Nilsson, and K. Simsarian. Cooperative multi-robot box pushing. InIEEE/RSJ Inter-
national Conf. on Intelligent Robots and Systems, pages 556–561, Pittsburgh, PA, Aug 1995.

[11] L. E. Parker. Current state of the art in distributed autonomous mobile robotics. In L. E. Parker,
G. Bekey, and J. Barhen, editors,Distributed Autonomous Robotic Systems, volume 4, pages 3–12.
Springer, Tokyo, 2000.

[12] R.Alur, C.Belta, F.Ivancic, V.Kumar, M.Mintz, G.Pappas H.Rubin, and J.Schug. Hybrid modeling of
biomolecurlar networks.Hybrid Systems Computation and Control, 2001.

[13] R.Alur, R. Grosse, I. Lee, and O.Sokolsky. Refinement for hybrid systems in charon.Hybrid Systems
Computation and Control, pages 12–21, 2001.

[14] R.Alur, R. Grosse, Y.Hur, V. Kumar, and I. Lee. Modular specification of hybrid systems in charon.
Hybrid Systems Computation and Control: Third international workshop, 3:6–19, 2000.

[15] R.Fierro, Y.Hur, I.Lee, and L.Sha. Modeling the simplex architecture using charon. InProceeding of
the 21st IEEE Real Time Systems Symposium, pages 77–80, 2000.

[16] D. Rus, B. Donald, and J. Jennings. Moving furniture with teams of autonomous robots. InIEEE/RSJ
International Conf. on Intelligent Robots and Systems, pages 235–242, Pittsburgh, PA, Aug 1995.

[17] D. Stilwell and J. Bay. Toward the development of a material transport system using swarms of ant-like
robots. InIEEE International Conf. on Robotics and Automation, pages 766–771, Atlanta, GA, May
1993.

[18] T. Sugar and V. Kumar. Control and coordination of multiple mobile robots in manipulation and
material handling tasks. In P. Corke and J. Trevelyan, editors,Experimental Robotics VI: Lecture
Notes in Control and Information Sciences, volume 250, pages 15–24. Springer-Verlag, 2000.

[19] C. J. Taylor. Videoplus: A method for capturing the structure and appearance of immersive environ-
ment.Second Workshop on 3D Structure from Multiple Images of Large-scale Environments, 2000.

14

