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Abstract

In this paper we propose modeling and analysis techniques for ge-
netic networks that provide biologists with insight into the dynamics
of such systems. Central to our modeling approach is the framework
of hybrid systems and our analysis tools are derived from formal
analysis of such systems. Given a set of states characterizing a prop-
erty of biological interestP , we present the Multi-Affine Rectangular
Partition (MARP) algorithm for the construction of a set of infeasible
states I that will never reach P and the Rapidly Exploring Random
Forest of Trees (RRFT) algorithm for the construction of a set of
feasible states F that will reach P . These techniques are scalable to
high dimensions and can incorporate uncertainty (partial knowledge
of kinetic parameters and state uncertainty). We apply these methods
to understand the genetic interactions involved in the phenomenon
of luminescence production in the marine bacterium V. fischeri.

KEY WORDS—genetic networks, hybrid systems, formal
analysis, rapidly-exploring random trees

1. Introduction

The recent completion of a draft of the human genome and
the sequencing of several other organisms has provided a vast
amount of genomic data for advancing our understanding of
fundamental biological processes. However, in order to un-
derstand different cellular behaviors such as differentiation,
response to environmental signals, and cell-to-cell communi-
cation, we need to study the regulatory systems determining
the expression of genes. This is usually a complex process,
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which can be regulated at several stages such as transcrip-
tion (the best studied form of regulation), translation, and
post-translational modification of proteins. An example of
transcriptional regulation is repression: a regulatory molecule
binds to a regulatory site of some gene preventing the ribo-
nucleic acid (RNA) polymerase from transcribing the gene.
The number of regulating factors is usually large, and it in-
volves proteins (products of other genes and possibly of the
gene itself), RNA, and other molecules. A collection of in-
teracting genes, their products, and some other molecules
involved in the regulation of the genes form a “genetic regu-
latory network”.

The traditional approach to modeling of genetic networks
leads to highly nonlinear systems of differential equations
for which analytical solutions are not normally possible. One
way to work around the difficulties of the nonlinearities is to
use simplified, approximate models. Existing work focuses
on very low-dimensional genetic networks. Decoupled piece-
wise linear differential equations (PLDEs) are considered in
Glass (1975) and Mestl, Plathe, and Omholt (1995), where
gene regulation is modeled as a discontinuous step function
and chemical reactions are ignored. This (over)simplified ap-
proach to modeling allows for interesting qualitative analysis
(de Jong et al. 2003). An even more radical idealization is ob-
tained if the state of a gene is abstracted to a Boolean variable
and the interaction among elements to Boolean functions, as
in Boolean networks (Kauffmann 1969). While amenable for
interesting analysis, the methods mentioned above are based
on assumptions which disregard important biochemical phe-
nomena. Most of them only capture protein dynamics but
cannot accommodate chemical reactions (Kauffmann 1969).

Our modeling approach is based on hybrid systems (Lynch
and Krogh 2000), i.e., systems in which discrete events are
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combined with continuous differential equations. In rectan-
gular regions of the state space where the chemical dynamics
can be reasonably approximated as smooth we model them
using deterministic, nonlinear (multi-affine) ordinary differ-
ential equations. We assume that the chemical concentrations
are spatially homogeneous, locally, eliminating the need to use
partial differential equations or rarefied molecular stochastic
models. Similar to the Boolean approach described above, the
discrete component of the model captures the switching be-
havior that is observed in phenomena such as transcription,
protein–protein interactions, and cell division and growth. We
also propose the use of hybrid system as the natural frame-
work for giving a global description of a biological system
described locally around operating points by simpler dynam-
ics, which are easier to approach for analysis. Our own work
using hybrid systems to model, simulate and perform prelim-
inary analysis on low-dimensional genetic networks is given
(Alur et al. 2001, 2002a, 2002b; Belta et al. 2001; Belta, Ha-
bets, and Kumar 2002); other work includes Glass (1975) and
de Jong et al. (2003).

We are interested in developing general modeling, sim-
ulation, and analysis techniques for metabolic and genetic
networks. Our ultimate goal is to create tools enabling us
to answer biologically significant questions of the following
types. “If an organism is initially in a state described by certain
ranges of metabolite and enzyme concentrations, and levels
of activation of genes, describe the set of states that the or-
ganism can reach in T seconds.” Or, “describe the states with
the property that if the system starts in any of them it will
never reach an undesired state.” The undesired state could
correspond, for example, to a certain disease. We denote the
set associated with properties of interest as P . To answer the
questions formulated above, we are interested in determin-
ing two disjoint sets of initial conditions that can be associ-
ated with the set P (see Figure 1). First, we are interested
in characterizing feasible sets F , consisting of initial con-
ditions that make it possible for the system to enter the set
P under some combination of parameter values and noise.
We are also interested in the infeasible sets I, from which
it is impossible to enter the set P . Knowledge of F may as-
sist in experiment design; while a knowledge of the set I, is
particularly useful for model validation. If experimental data
indicate the system enters P and if experimental conditions
were known to lie in set I, one could prove the model to be
inconsistent with the experimental data. In many ways, the ap-
proaches to generating the two sets, and the information they
encode, are complementary—neither approach alone is com-
plete. Together however, knowledge of the sets F and I can
enable us to make some powerful assertions about the system’s
behavior.

The connection between biomolecular networks and
robotic systems exists on two levels. From a modeling point
of view, robotic systems share many of the salient features
of biological system models described above. Just as the rate

P
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F

Fig. 1. The three sets of interest: the property set P , the
infeasible set I from which no trajectory can enter P , and the
feasible set F from which there exists at least one trajectory
which can enter P .

equations for biomolecular networks are known to qualita-
tively switch based on the presence or absence of various
inhibitor genes, robotic systems often employ different con-
trollers and estimators in different regimes (Das et al. 2002)
and their dynamics switch based on the contact mechanics
of rolling and sliding. Therefore, both types systems can be
modeled as hybrid systems. In addition, many robotic sys-
tems consist of multi-agent teams, and therefore the interac-
tions and messaging among the team members must be taken
into account and many of the system properties are distributed
spatially. Multicell networks behave in much the same way.
Finally, the significant modeling uncertainty, which is cen-
tral to our discussion and analysis of biological systems, is a
common theme in mobile robotics operating in unstructured
environments.

Perhaps a deeper connection between the two fields exists
at the level of the types of problems we seek to solve. The
problem of finding sets of states F , from which the system
may reach P , is similar to the motion planning problem in
robotics where the goal is to find a trajectory (if one exists)
from the starting configuration to the goal configuration. De-
termining an infeasible set I, from which it is impossible to
reach the property set P is closely related to trajectory gen-
eration, controllability and steering. As one can imagine, the
literature on simulation and verification of hybrid systems is
also particularly relevant to our discussion (Henzinger et al.
1995, 2000; Lafferriere, Pappas, andYovine 1999; Butchkarev
and Tripakis 2000; Mitchell and Tomlin 2000; Asarin, Dang,
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and Maler 2001; Chutinam and Krogh 2003; Tabuda and Pap-
pas 2003).

In this paper we develop methodologies for finding the sets
shown in Figure 1. In Section 2, we introduce the hybrid sys-
tem modeling paradigm and provide the basic definitions that
will be used throughout the paper. In Section 3, we exploit the
particular structure of the hybrid models of genetic networks
to derive a computationally attractive algorithm, the Multi-
Affine Rectangular Partitioning (MARP) algorithm, to com-
pute infeasible setsI based on evaluating the vector field at the
vertices of the rectangular invariants. In Section 4 we extend
the popular Rapidly Exploring Random Tree (RRT) algorithm
from the motion planning literature to address time-invariant
uncertainty such as unknown initial conditions or rate con-
stants. The resulting algorithm, called the Rapidly Exploring
Random Forest of Trees (RRFT) algorithm, allows one to ad-
dress the reachability problem probabilistically for complex
high-dimensional systems having both time-varying and time-
invariant uncertainty, providing a natural way to determine if
a set should be included in F . The algorithm, which has po-
tential for parallel implementation, estimates the growth and
coverage of the trees and uses this information to modify the
search. The usefulness of the two algorithms is illustrated
in Section 5, where we study the phenomenon of biolumi-
nescence production in the marine bacterium V. fischeri by
analyzing the corresponding genetic network. The paper con-
cludes with final remarks and directions of future research in
Section 6.

2. Hybrid System Modeling of Genetic Networks

Hybrid systems are dynamical systems with both discrete and
continuous state changes (Lynch and Krogh 2000). We are in-
terested in a special class of hybrid systems, called switched
systems, which are defined as having different dynamics in
different non-overlapping regions of the state space. In our
view, hybrid and switched systems are appropriate and attrac-
tive for modeling the dynamics of biomolecular networks for
two main reasons:

Hybrid Systems are Global Descriptions from Simpler
Local Models. Computationally attractive formalisms for
modeling biomolecular networks such as linearizations, half-
systems (Savageau and Voit 1987), synergistic (S) systems
(Savageau 1969), generalized mass action (GMA; Peschel and
Mende 1986), and power law (Heinrich and Schuster 1996)
are only valid locally around operating points. For example,
the S-systems can be thought of as linearizations of “real”
systems in logarithmic coordinates (Savageau 1969). Then,
in this case, a global description of the network is a collec-
tion of regions with different polynomial vector fields in each
region, therefore a hybrid system. The specific nonlinearities
of dynamics in each region are simpler than the dynamics of
a global continuous description, and easier to approach for
analysis.

Hybrid Systems Capture Discrete Events. Discrete dynam-
ics are necessary to capture switching behavior that is ob-
served in phenomena such as transcription, protein–protein
interactions, and cell division and growth. Consider, for ex-
ample, the case when a metabolite from the network regulates
the production of a metabolic enzyme expressed from a gene
with a strong promoter. Then, the gene can be “on” and “off”,
which induces two different dynamics of the network, as a
function of the concentration of the metabolite.

Formally, hybrid systems are defined as tuples

HS = (Q, X, X0, I, T , F ) (1)

where Q is a finite set of discrete variables, X is the set of
continuous variables x, X is the set of all evaluations of x

over the corresponding domains, Q is the countable set of
discrete states, called modes, or locations, X0 ⊂ Q × X is a
set of initial states, I is a map which assigns to each discrete
location in Q an invariant set, T ⊂ Q × X × Q is a set of
discrete transitions, and F : Q → (X → T X) is a mapping
that specifies the continuous (possibly time-dependent) flow
in each discrete state.

We focus on vector fields f that are products of the state
components to capture the nonlinearities, which are specific
to dynamics of chemical reactions. To take into account pos-
sible modeling noise and to accommodate non-deterministic
modeling approaches, we also allow for an additive noise term
ν(t) in the vector field. Therefore, as suggested by Kepler and
Elston (2001), the vector field associated with the map F takes
the form F = f (x)+ ν(t). The form of f is made precise in
the next subsection, while ν is discussed in Section 4.

We are also interested in constant parameters that might
be unknown. Examples of these parameters are binding con-
stants and other constants determining reaction rate kinetics.
While these constants are known to lie within a certain range,
their exact values are often unknown. It is useful to note that
these unknown constants can be viewed as state variables with
trivial dynamics, e.g., x = c, ẋ = 0, while the corresponding
projection of X0 characterizes the known bounds. Thus, our
definition of HS in eq. (1) allows for unknown parameters
that lie in some specified set.

Finally, since molecular networks are qualitatively de-
scribed in terms of ranges of concentrations of the involved
species, a rectangular partition of the state space is naturally
induced and the invariants are rectangular.

2.1. Rectangular Multi-Affine Hybrid Systems

Rectangular multi-affine hybrid systems are characterized by
rectangular invariants and multi-affine continuous dynamics.
A function with a vector argument is called multi-affine if it is
affine in each component of its argument, i.e., when all other
components are kept constant. More formally, we define a
multi-affine function as follows.
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DEFINITION 1. [Multi-affine function] A multi-affine func-
tion f : R

N −→ R
N is a polynomial in the indeterminates

x1, . . . , xN with the property that the degree of f in any of
the indeterminates x1, . . . , xN is less than or equal to 1. Stated
differently, f has the form

f (x1, . . . , xN) =
∑

i1,... ,iN∈{0,1}
ci1,... ,iN x

i1
1 · · · xiN

N , (2)

with ci1,... ,iN ∈ R
N for all i1, . . . , iN ∈ {0, 1} and using the

convention that if ik = 0, then x
ik
k = 1.

An N -dimensional rectangle in R
N is characterized by two

vectors a = (a1, . . . , aN) ∈ R
N and b = (b1, . . . , bN) ∈ R

N ,
with the property that ai < bi for i = 1, . . . , N :

RN(a, b) = {x = (x1, . . . , xN) ∈ R
N | i = 1, . . . , N :

ai ≤ xi ≤ bi}. (3)

The variables xi , i = 1, . . . , N are species concentrations and
are restricted to the positive quadrant. Also, there are practical
upper bounds on the concentration of each species. Therefore,
the set X as in eq. (1) is usually specified as an N -rectangle.
A rectangular partition of X is defined as follows. Each axis
Oxi , i = 1, . . . , N is divided into ni ≥ 1 intervals by the
thresholds 0 = θ 0

i
< θ 1

i
< . . . < θ

ni

i . The j th interval on
the Oxi-axis, i = 1, . . . , N is therefore defined as θ

j−1
i ≤

xi < θ
j

i , j = 1, . . . , ni . By convention, θ 0
i
= 0 and θ

ni

i is
an upper bound giving a physical limit of xi . The thresholds
θ are defined as values of species concentrations for each
the dynamics of the overall system changes. For example,
they can be concentrations of regulatory species for which
specific genes are turned “on” and “off”. The division of the
axes determines a partition of the state space into

∏N

i=1 ni

rectangles. If we let

a(q1 ...qN ) = (θ
q1−1
1 , . . . , θ

qN−1
N ) ∈ R

N, b(q1 ...qN )

= (θ
q1
1 , . . . , θ

qN

N ) ∈ R
N, (4)

for qi = 1, . . . , ni , i = 1, . . . , N , then an arbitrary rectangle
in the partition is given by

RN(a(q1 ...qN ), b(q1 ...qN )) = {(x1, . . . , xN) ∈ R
N |θqi−1

i ≤ xi ≤ θ
qi

i ,

i = 1, . . . , N}. (5)

Due to the different levels of gene transcription activation
and enzymatic action, in each of the rectangles the system
evolves along specific multi-affine vector fields (2):

f (q1 ...qN )(x1, . . . , xN) =
∑

i1,... ,iN∈{0,1}
c

(q1 ...qN )

i1,... ,iN
x

i1
1 · · · xiN

N , (6)

where x ∈ RN(a(q1 ...qN ), b(q1 ...qN )) and c
(q1 ...qN )

i1,... ,iN
∈ R

N for all
i1, . . . , iN ∈ {0, 1} captures specific reaction rates.

Therefore, our models of biomolecular networks are hy-
brid systems (1) with the set of labels for the discrete
states Q = (q1 . . . qN), the set of all

∏N

i=1 ni modes
Q = {(q1 . . . qN)|, qi = 1, . . . , ni, i = 1, . . . , N}, X

is the set of species symbols x1, . . . , xN , the invariant
I (q1 . . . qN) is the corresponding rectangle (5), and the map
F has a deterministic part described by eq. (6). A transition
((q1 . . . qN), x, (q ′1 . . . q ′

N
)) corresponds to the crossing of the

boundary between rectangles I (q1 . . . qN) and I (q ′1 . . . q ′
N
) at

state x.

REMARK 1. Due to the particular shape of the invariants, a
convenient way of representing a rectangular multi-affine hy-
brid system (6), (5) is as a simple graph with

∏N

i=1 ni nodes.
Node (q1 . . . qN) corresponds to rectangle I (q1 . . . qN) =
RN(a(q1 ...qN ), b(q1 ...qN )) and has associated dynamics (6). An
edge in the graph connects nodes corresponding to adjacent
rectangles, i.e., there is an edge between any pair of nodes
that differ by a Hamming distance of 1. See Figure 7 for an
example with N = 3, n1 = n2 = n3 = 3.

2.2. Set Definitions

As stated before, we are interested in characterizing the prop-
erties of the system HS related to whether it can reach a
given set of interest P described by a rectangle I (p1 . . . pN),
(p1 . . . pN) ∈ Q.

DEFINITION 2. [Infeasible set] An infeasible set I is a col-
lection of rectangles I (q1 . . . qN), (q1 . . . qN) ∈ Q with the
property that the system can never reach I (p1 . . . pN) if it
starts in any of the initial states contained in any of rectangles
in I.

DEFINITION 3. [Feasible set] A feasible set F is a collection
of rectangles I (q1 . . . qN), (q1 . . . qN) ∈ Q with the property
that they contain initial states that will reach I (p1 . . . pN) in
a pre-specified finite time interval.

3. Computing An Infeasible Set I

In this section we introduce the MARP algorithm, which uses
the properties of hybrid multi-affine rectangular systems to
construct infeasible setsI, and extends some results presented
in Belta, Habets, and Kumar (2002). In the form presented in
this paper, the algorithm can only be applied to determin-
istic vector fields where F = f . However, as explained in
Section 1, it can easily accommodate rectangular parametric
uncertainties since set-valued uncertainty in a constant pa-
rameter can be included in the set of initial conditions, X0.

3.1. Preliminaries

The MARP algorithm is based on the fact that the value of a
multi-affine function (6) is uniquely determined everywhere
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in the rectangular invariant I (q1 . . . qN) by its values at the
vertices. Moreover, it is a convex combination of these values.

Formally, for an arbitrary rectangle (3), let

VN(a, b) =
N∏

i=1

{ai, bi} (7)

denote the set of its 2N vertices. Let ξ : {a1, . . . , aN, b1, . . . ,

bN} −→ {0, 1} be defined by

ξ(ak) = 0, ξ(bk) = 1, k = 1, . . . , N. (8)

PROPOSITION 1. A multi-affine function f : RN(a, b) −→
R

N is a convex combination of its values f (v1, . . . , vN) at the
vertices VN(a, b). Explicitly,

f (x1, . . . , xN) =
∑

(v1,... ,vN )∈VN (a,b)

N∏
k=1

(
xk−ak

bk−ak

)ξ(vk) (
bk−xk

bk−ak

)1−ξ(vk)

f (v1, . . . , vN),

(9)

with

1 =
∑

(v1,... ,vN )∈VN (a,b)

N∏
k=1

(
xk − ak

bk − ak

)ξ(vk) (
bk − xk

bk − ak

)1−ξ(vk)

(10)

where (v1, . . . , vN) ∈ VN(a, b).

The proof of this proposition can be found in Belta, Ha-
bets, and Kumar (2002). Since the projection of a multi-affine
vector field along a given direction is a multi-affine function,
an immediate consequence of Proposition 1 can be used to de-
velop a computationally efficient algorithm for constructing
infeasible sets for rectangular multi-affine hybrid systems, as
follows.

COROLLARY 1. The projection of a multi-affine vector field
defined on a rectangle along a given direction is positive (neg-
ative) everywhere in the rectangle if and only if its projection
along that direction is positive (negative) at the vertices.

3.2. MARP algorithm

We assume that the piecewise defined vector field (6) (possibly
non-differentiable) is continuous everywhere, i.e., the vector
fields in adjacent rectangles coincide on the common facet. A
simple consequence of Corollary 1 can be used to qualitatively
analyze the system.

Corollary 1 is applied to the facets of the N -rectangles (5)
and to the projections of the vector fields along the corre-
sponding outer normals. Each facet is an (N − 1)-rectangle.
An infeasible set I can be built by defining an orientation
for the simple graph of the network defined in Remark 1.

We allow for both unidirectional and bidirectional edges in
the oriented graph. The semantics of the orientation are de-
fined as follows. Let (q1 . . . qN) and (q ′1 . . . q ′

N
) be two adjacent

nodes in the graph and I (q1 . . . qN) and I (q ′1 . . . q ′
N
) the cor-

responding adjacent rectangles. A unidirectional edge from
(q1 . . . qN) to (q ′1 . . . q ′

N
)means that there exists at least one tra-

jectory originating in I (q1 . . . qN) that enters into I (q ′1 . . . q ′
N
)

through the separating facet, and there is no trajectory start-
ing in I (q ′1 . . . q ′

N
) going to I (q1 . . . qN) through that facet. A

bi-directional edge ensures the existence of at least one tra-
jectory originating in I (q1 . . . qN) entering into I (q ′1 . . . q ′

N
)

and at least one trajectory originating in I (q ′1 . . . q ′
N
) entering

into I (q1 . . . qN).

Algorithm 1. Define an oriented graph
for each node (q1 . . . qN), qi=1, . . . , ni , i=1, . . . , N do

for each incident edge do
for each vertex of the corresponding facet do

calculate the projection of f (q1 ...qN ) along the outer
normal of the facet

end for
if the projections are positive at all vertices then

the edge is unidirectional oriented out of
(q1 . . . qN)

end if
if the projections are negative at all vertices then

the edge is unidirectional oriented towards
(q1 . . . qN)

end if
if there is a sign change among the projections at the
vertices then

the edge is bidirectional
end if

end for
end for

Note that, in the oversimplified description above, Algo-
rithm 1 seems inefficient. Indeed, if we apply it to all the rect-
angles in the partition, most of the vertices are visited more
than once, and such multiple evaluation at vertices is avoidable
because the vector fields in adjacent triangles match on the
separating facet. A more efficient description would require
more complicated notation and a more detailed discussion
which we omit because it is peripheral to the main ideas in
the paper.

Using the oriented graph, we can now construct an infea-
sible set I. Let P = I (p1 . . . pN) denote the target rectangle,
or, equivalently, (p1 . . . pN) is the target node in the graph.
The following algorithm constructs a set R of nodes with the
property that if the system starts in any of the corresponding
rectangles, then it may be possible to reach P . The comple-
ment of this set is an infeasible set I.

Algorithm 2. Construct an infeasible set I
initialize R with P
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repeat
for each element (q1 . . . qN) of R

for all incident nodes (q ′1 . . . q ′
N
) connected with an

edge (uni or bi-directional) oriented towards
(q1 . . . qN) do

if (q ′1 . . . q ′
N
) is not already in R then

add (q ′1 . . . q ′
N
) to R

end if
end for

end for
until cardinality of R increases
I := complement of R with respect to the set Q of all

nodes

Algorithm 2 for the construction of the infeasible set I
might be too conservative, i.e., the set I might be unneces-
sarily small. Indeed, our method guarantees the existence of
a trajectory from a rectangle I (q1 . . . qN) to an adjacent rect-
angle I (q ′1 . . . q ′

N
) if the (unidirectional or bidirectional) edge

between the corresponding nodes in the oriented graph has
an arrow from (q1 . . . qN) to (q ′1 . . . q ′

N
). However, if there is

an edge from (q1 . . . qN) to (q ′1 . . . q ′
N
) and also an edge from

(q ′1 . . . q ′
N
) to (q ′′1 . . . q ′′

N
), we cannot guarantee that there is a

trajectory of the system from I (q1 . . . qN) to I (q ′′1 . . . q ′′
N
). In

our analysis, we simply say that there might be a trajectory
from I (q1 . . . qN) to I (q ′′1 . . . q ′′

N
).

This “conservativeness” is the main issue in discrete ab-
stractions, where the central problem is to determine partitions
of continuous or hybrid systems such that the discrete quo-
tient determined by the partition is equivalent with the initial
system with respect to reachability properties. Intuitively, it is
easy to see that this problem is solved if and only if all trajec-
tories in a given region reach exactly one neighboring region.
In this case, the initial continuous or hybrid system is called
decidable and the discrete quotient induced by the partition is
said to be bi-similar (Park 1980; Pappas 2003) with the initial
system. Finding classes of decidable systems is a very hard
problem that received much attention lately (Henzinger et al.
1995). In this context, Algorithm 1 produces a “sufficient”
abstraction (Alur, Dang, and Ivancic 2002c), that can be used
to “conservatively” construct infeasible sets.

REMARK 2. The above algorithm can be easily extended to
construct infeasible sets I under rectangular parameter uncer-
tainties. This is possible because the parameters c capturing
kinetic constants enter the vector fields (6) in the same way
as the variables x, so the system (1) defined on an extended
space formed by species concentrations and parameters is still
characterized by multi-affine vector fields. The components
of the vector fields corresponding to parameters will be zero,
meaning that the kinetic constants are assumed constant but
unknown within given ranges.

REMARK 3. Algorithm 1 requires the vector field f to be
evaluated at each vertex. If there are Nr rectangular sets in the
partition, the number of evaluations is Nr×2N . If each coordi-

nate is divided into K intervals, Nr = KN . Thus, the number
of computations scales as (2K)N . While the complexity of
this algorithm is exponential in the number of dimension, the
alternative, which is exhaustive simulation, is impractical.

4. Determining The Feasible Set F

In this section we briefly describe the RRFT algorithm, a ran-
domized algorithm that can be used to delineate a feasible set
F—a collection of rectangles I (q1, . . . , qN), (q1, . . . , qN) ∈
Q which contain initial conditions that can reach P . Our al-
gorithm leverages the work in randomized motion planning
pioneered by the robotics community. We briefly review this
work before introducing our algorithm.

4.1. Motion Planning

Probabilistic Road Maps (PRMs) can be used to solve the
motion problem (Amato and Wu 1996; Kavraki et al. 1996),
which involves finding a path from a starting point to a goal
point in configuration space. The problem is usually cast in
a geometric setting with no kinematics or dynamics. In con-
trast, RRTs (LaValle and Kuffner 2001a) generate random
states for dynamic systems directly by working in the space
of admissible input functions u(t) ∈ U . The algorithm (see
Figures 2 and 3) constructs a tree Tx0 rooted at initial state x0,
whose vertices are states x ∈ X and whose edges are inputs
u(t) ∈ U , which cause the system to evolve from one ver-
tex to a connected vertex. The algorithm constructs the tree
beginning with a user-supplied initial state, which we refer
to as the seed value. A sample state is generated at random,
xrand ∈ X. It is then determined which of the existing states,
xnear ∈ Tx0 , in the tree are closest to the new state, and which
unew(t) ∈ U , when applied for predetermined time interval
�t , would bring the system as close as possible to xrand . The
resulting new state xnew is added as a vertex to Tx0 with unew(t)

the input characterizing the edge from xnear to xnew. This pro-
cedure has the effect of growing a tree whose distribution
of vertices approaches that of the random distribution which
was used to create xrand , causing it to cover the state space
rather rapidly. A survey of the algorithm’s properties appears
in LaValle and Kuffner (2001b).

Of course, the application of such algorithms requires the
ability to simulate system dynamics. For hybrid systems, this
requires a special set of algorithms (e.g. Park and Barton 1996;
Esposito, Pappas, and Kumar 2001a) to properly address the
non-smooth nature, and integration algorithms capable of han-
dling system evolving at disparate time-scales (e.g., Esposito
and Kumar 2001; Esposito, Pappas, and Kumar 2001b).

4.2. The RRFT Algorithm

Unlike motion planning in which the end goal is to phys-
ically steer the system, our intention is merely to deter-
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xinit , qinit

xrand , qrand

xinit , qinit

xrand , qrand

xnear , qnear

Fig. 2. Growth of individual trees in the RRT algorithm (LaValle and Kuffner 2001a). Each tree consists of vertices which are
states x, and edges which are input functions u(t) ∈ U . First, a new state is generated at random, xrand (left). The algorithm
then determines the closest state, xnear in the tree to the random state (right).

xinit , qinit

xrand , qrand

xinit , qinit

xrand , qrand

xnew , qnew

Fig. 3. Growth of individual trees in the RRT algorithm (continued from Figure 2). After finding the closest node, the
algorithm determines which u(t) ∈ U brings xnear closest to xrand (left). unew(t) is applied for a predetermined duration �t

and the new state xnew and unew are added to the tree (right).

mine if it is possible for the system to reach P from some
x0 ∈ I (q1, . . . , qN) ⊂ X0 within a finite time-span t ∈
[t0, tf ]. If so, the set I (q1, . . . qN) is added to F . All possi-
ble I (q1, . . . qN) in X0 are tested. In this way, our usage of
the RRT method for analysis rather than synthesis (Karatas
and Bullo 2001; Frazzoli, Dahleh, and Feron 2002; Kim and
Ostrowski 2003) is closely related to our work on test gen-
eration for hybrid systems (Kim, Keller, and Kumar 2003).
While the RRT algorithm is in many ways suited to applica-
tions such as ours, where the system dynamics are complex
and high-dimensional, the RRT only addresses time-varying
inputs such as u(t). Recall that the evolution of our hybrid
system is characterized by two elements:

• the initial condition x0 ∈ X0 for the evolution of the
state;

• The exogenous modeling noise ν(t) ∈ N that “steers”
the system.

In our algorithm, the repeated application of the RRT algo-
rithm results in a tree for every choice of initial condition x0.

Accordingly, we need to consider a set of trees that rapidly
explore the state space.

One key component of this approach is that each RRT can
be computed in parallel on a different CPUs; therefore, we
assume a fixed computational resource that will dictate the
number of trees that can be simultaneously computed in par-
allel. Let this number be nt . We propose the RRFT algorithm
as follows. For each set I (q1, . . . , qN) in X0, a set of seed
values S = {s1, . . . snt } is generated from a quasi-random se-
quence, where each si ∈ I (q1, . . . , qN). RRTs, Ts1 , . . . Tsnt ,
are planted for each of these “seed” values. As the RRT algo-
rithm progresses, we monitor the progress of each tree. If, at
any point, the growth of one of the trees (as measured by a
function g(Tsi )) drops below a threshold ḡ, or the coverage of
the state space (as measured by some function c(Tsi )) drops
below a threshold c̄, the tree is terminated. Provided the set
I (q1, . . . , qN) is not adequately covered (again as measured
by some function µ(S)) a new “seed” is planted and a new
tree is initiated. The process of planting and growing new
trees continues until a trajectory linking I (q1, . . . qN) and P
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is discovered (in which case I (q1, . . . qN) is added to F), or
until I (q1, . . . qN) is sufficiently covered (µ(S) ≤ µ̄) with
trees that have stopped growing. A new set I (q ′1, . . . , q

′
N
) is

selected and the process is repeated until all of X0 has been
tested.

We defer the discussion of how to compute the func-
tions g(Tsi ), c(Tsi ), and µ(S) until Section 4.3. Note that in
the description of the algorithm below, we use the notation
x0 + ∫ �t

HS(ν(t)) dt to denote the simulation of the hybrid
system HS, characterizing the biomolecular network, over
an interval time �t , using the disturbance function ν(t), and
initial condition x0.

Algorithm 3. Construct a feasible set F .
for each I (q1, . . . , qN) in X0 do

Generate initial seed set S = {s1, . . . , snt } where si ∈
I (q1, . . . , qN)

for i = 1, . . . nt do
Initialize RRT Tsi

end for
while (true) do

for i = 1, . . . nt do
Extend(Tsi )
if Tsi ∩ P � = � 0 then

add I (q1, . . . , qN) to F
break

else
if g(Tsi ) ≤ ḡ, OR,c(Tsi ) ≤ c̄ then

terminate Tsi

nt ← nt − 1
if µ(S) > µ̄ then

generate new seed point snew and append to S

initialize Tsnew

nt ← nt + 1
end if

end if
end if

end for
if nt = 0 then

break
end if

end while
end for

Algorithm 4. Extend(T ).
xrand ← random()
xnear ← nearestNeighbor(T , xrand)
νnew = arg minν∈N {dist ((xrand, xnear + ∫ �t

HS(ν(t))dt)}
xnew = xnear + ∫ �t

HS(νnew(t))dt

add vertex xnew to T
add edge νnew, from xnear to xnew, to T

4.3. Adequacy Criteria

Theoretical results on RRTs from the motion planning litera-
ture (LaValle and Kuffner 2001b) suggest that as the number

of nodes in the tree goes to infinity, the tree should cover the
entire reachable set, although it is impossible to determine the
reachable set in advance. However, because the input function
space must be discretized and because the algorithm is inher-
ently greedy, it is possible for the tree to create new nodes that
are very close to the existing nodes. Therefore, there are two
plausible reasons to stop growing a tree Tsi : (1) the state space
is sufficiently covered that one can be confident no trajectory
exists linking I (q1, . . . , qN) and P; or (2) the tree is no longer
actively growing.

In order to determine how to allocate our computational re-
sources effectively we must monitor the progress of each tree.
In particular, we are interested in three measures: the coverage
of the state space by an individual RRT c(Tsi ); the growth rate
of an individual RRT, g(Tsi ); and coverage of I (q1, . . . , qN)

by the set of seeds S, µ(S). We explored different measures
of growth and coverage including the discrepancy and disper-
sion (Branicky et al. 2001), the size of the Voronoi regions
(LaValle and Kuffner 2001b), as well as the volume of the
convex hull of the tree nodes and other bounding polygons.
However, we found these measures to be either too expen-
sive to compute in high dimensions or overly conservative.
Instead, we begin by overlaying a grid of ng points and spac-
ing δ on the state space. Note that this grid is not used to
construct the tree, merely to assess its coverage and growth.
We calculate the minimum distance from each grid point to
the set of nodes in the tree, dj . The quantity min(dj , δ) may
be thought of as the radius of the largest ball centered at each
grid point which does not contain a tree node or another grid
point (see Figure 4). Clearly, the maximum value of the ra-
dius is δ, the spacing between adjacent grid points. It should
be stressed that this list of distances can be updated incremen-
tally as new tree nodes are added, since the effect of each new
node is local. We define the coverage of the tree Tsi , c(Tsi ),
as the average of all the distances obtained in this manner,
normalized by the grid spacing:

c(Tsi ) = 1

δ

ng∑
j=1

min(dj , δ)

ng

. (11)

Here, ng is the number of grid points, and dj is the radius
of the largest ball centered at each grid point. Clearly, this
measure is a monotonically decreasing function. If it goes to
zero on a given grid, it tells us that any set whose distance
along its smallest dimension is greater than the grid spacing
has been entered. Said another way, the state space is covered
up to a resolution equal to the grid spacing. This measure
is similar to an approximation of dispersion (Branicky et al.
2001), but less conservative and faster to compute. Overall
one of the advantages of this measure is that the grid size can
be as fine or coarse as one chooses. Finer grids will require
more distance queries but are more accurate indications of
coverage.

The derivative of c(Ti ) indicates the growth of the tree.
Therefore
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Fig. 4. A grid is superimposed on the state space. The
shaded regions indicate unreachable sets. The average of the
distances from the grid points to the closest nodes (shown as
dashed arrows) should converge to a finite number as the tree
fills the reachable space.

g(Tsi ) = −�c(Tsi )/�nv,i, (12)

where nv,i is number of vertices in tree rooted at si .
Regarding the coverage of the set I (q1, . . . , qN) by S, one

appropriate measure, which first appeared in the Monte Carlo
literature and later has been used in the context of RRTs (Bran-
icky et al. 2001), is dispersion. Dispersion is the radius of the
largest empty ball whose center lies in I (q1, . . . , qN) which
does not include a point in S. It is a measure of the largest
region which is not covered. Therefore, we use normalized
dispersion as a criteria for coverage of I (q1, . . . , qN):

µ(S) = sup
x∈I (q1,...,qN )

min
x̄∈X̄

d(x, x̄)/µ(S)max. (13)

Here, X̄ is a set of the nodes in I (q1, . . . , qN) and µ(S)max

is the largest possible dispersion for a given space. From a
computational point of view, it is impractical to compute dis-
persion in high dimensions. Fortunately, there exist sequences
of quasi-random numbers which have low dispersion. Ac-
cordingly, we use Halton (1960) sequence to generate the
initial seed values. However, we cannot use a deterministic
sequence to plant a new seed due to the existing nodes gen-
erated in I (q1, . . . , qN) as trees grow. The grid-based method
introduced above can be used to approximate the normalized
dispersion. We overlay grid points in I (q1, . . . , qN) and mea-
sure the distance between each grid point and existing nodes
in the set to find the radius of the largest empty ball whose
center is one of the grid points. A new seed is planted at the
center of the largest empty ball.

5. Case Study: Luminescence Control in
Vibrio fischeri

In this section, we show how the theory and algorithms de-
veloped in this paper can be applied to study the behavior
of a specific genetic regulatory network. We consider for il-
lustration the phenomenon of bioluminescence production in
the marine bacterium V. fischeri, which is controlled by the
transcriptional activation of the lux genes (James et al. 2000;
Belta et al. 2001). The lux regulon is organized in two tran-
scriptional units, OL and OR, separated by a regulatory region
called the lux box, as shown in Figure 5. The leftward operon,
OL, contains the1 luxR gene encoding protein LuxR, a tran-
scriptional regulator of the system. The rightward operon OR

consists of seven genes luxICDABEG. The expression of the
luxI gene results in the production of protein LuxI, which
is required for endogenous production of autoinducer, Ai, a
small membrane-permeant signal molecule. The other genes
in OR are involved in the production of luminescence. Finally,
the autoinducer Ai binds to protein LuxR to form a complex
C, which has an electronic affinity to the lux box. The tran-
scription of both luxICDABEG and luxR is activated by the
binding of C to the lux box, which is modeled using a contin-
uous piecewise linear activation function (see Figure 6).

A nine-dimensional model for this network is presented in
Belta et al. (2001). For illustrative purposes, we consider a
simplification that is possible under the assumption that the
dynamics of protein LuxI are fast (James et al. 2000). With
this simplification, the system becomes three-dimensional
(N = 3) with state x = [x1 x2 x3]T, where x1, x2, and x3

represent the concentrations of protein LuxR, complex C,
and autonducer Ai, respectively. The main reason for choos-
ing this simplified model is because the reduction in di-
mensionality allows us to include three-dimensional trajec-
tories and reachability graphs, which would not be possible
in higher-dimensional space. Examples of analysis in higher-
dimensional space are presented in James et al. (2000) and
Belta et al. (2004).

Two additive exogeneous inputs ν = [ν1 ν2]T (m = 2) are
present in the model. In the presence of a plasmid that pro-
duces LuxR independently, ν1 is the rate of transcription of the
plasmid, while ν2 models an external source of autoinducer.
More generally, they can represent stochastic uncertainty that
may be inherent in the model. We will let N be a rectangular
set given by [0, ν1,max] × [0, ν2,max].

Regarding the rectangular partition of the state space, we
consider n1 = n2 = n3 = 3. The thresholds θ 2

j
, j = 1, 2

represent the values of x2 for which the dynamics are changed
due to different activation rates (see Figure 6), while j = 0, 3
represent physical lower and upper bounds. The other division
points θ i

j
, i = 1, 3, j = 0, 1, 2, 3 were chosen so that the

1. We use italics (e.g., luxR) to indicate the genes and plain font to denote the
protein expressed by the gene (e.g., LuxR).
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Fig. 5. Schematic representation of the genetic network regulating the luminescence production in the marine bacterium
V. fischeri.
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Fig. 7. The simple graph for the partitioning in eq. (14).

state space is divided into regions of interest, which could be
thought of as “small”, “medium”, and “large” with respect
to the corresponding specie concentrations. The numerical
values of these constants are given by

θ 0
1 = 0 θ 1

1 = 10 θ 2
1 = 50 θ 3

1 = 100
θ 0

2 = 0 θ 1
2 = 1.9 θ 2

2 = 23.8 θ 3
2 = 100

θ 0
3 = 0 θ 1

3 = 10 θ 2
3 = 50 θ 3

3 = 100
ν1,max = 200 ν2,max = 200

(14)

and by eq. (4)

a(q1q2q3) = (θ
q1−1
1 , θ

q2−1
2 , θ

q3−1
3 ),

b(q1q2q3) = (θ
q1
1 , θ

q2
2 , θ

q3
3 ), q1,2,3 ∈ {1, 2, 3}.

Following the notation introduced in Section 2, the system can
be represented as the simple graph in Figure 7. The dynamics
in each of the 27 rectangles R3(a

(q1q2q3), b(q1q2q3)) = I (q1q2q3),
with q1,2,3 ∈ {1, 2, 3} are given by

ẋ = f (q1q2q3)(x)+ Bν (15)

where

f (q1q2q3) =

 k2x2 − k1x1x3 − bx1 + qr(q1q2q3)

k1x1x3 − k2x2

k2x2 − k1x1x3 − nx3 + pr(q1q2q3)


 ,

B =

 s 0

0 0
0 n


 (16)

and

r(q11q3) = (1− l)x2

θ 1
2

, r(q12q3) = 1− l(θ 2
2 − x2)

θ 2
2 − θ 1

2

, r(q13q3) = 1,

for q1, q2 = 1, 2, 3 and l = 0.2 (see Figure 6). The dynamics
are everywhere continuous, and therefore the vector fields
on adjacent rectangles coincide on the common facet. The
significance of the state variables and parameters is given as
follows:
x1 = protein LuxR (ml−3);
x2 = complex C (ml−3);
x3 = autoinducer Ai(ml−3);
k1 = binding rate constant (30 l3m−1t−1);
k2 = dissociation rate constant (10 t−1);
n = diffusion constant (10 t−1);
b = degradation constant for LuxR (3t−1);
p = formation of Ai due to lux gene activity

(30ml−3t−1);
q = formation of LuxR due to lux gene activity

(5ml−3t−1);
s = scaling constant (10 t−1).

5.1. Obtaining The Infeasible Set I by Using MARP

Since the vector field given by eqs. (15) and (16) with ν1 =
ν2 = 0 is continuous, we can simply apply Algorithm 1 to
determine the orientation of the edges of the graph given in
Figure 7. The result is given in Figure 8.

Assume the property set P is given by the target rectan-
gle (222). This requires the execution of the repeat loop in
Algorithm 2 four times:

• R := P = {(222)}
• R = {(222), (223), (322), (212)}
• R = {(222), (223), (322), (212), (213), (323), (312)}
• R = {(222), (223), (322), (212), (213), (323), (312),

(313)}.
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Fig. 8. The oriented graph obtained by applying Algorithm 1 to the simple graph in Figure 7. Note that P = {(222)}.

The infeasible set I is the complement of R, and it consists of
the remaining 27− 8 = 19 rectangles. The biological signif-
icance of this result is that luminescence (which is described
by relatively high values of complex x2 and autoinducer x3)
can only be achieved if the initial level of autoinducer x3 is
high.

5.2. Obtaining A Feasible SetF Using The RRFT Algorithm

In this section, we consider the construction of feasible set F
for the system with noise ν(t) using RRFT. In Figure 9, sev-
eral sample trajectories illustrate the computation of candidate
trajectories corresponding to the (111)–(121) transition, and
the (121)–(111) transition. Each of these trajectories is the
result of planting a tree with a different seed. Thus, the RRFT
algorithm can be used to obtain sample trajectories for edges
in the directed graph in Figure 8.

Recall that the property setP is the rectangle (222).We first
consider the rectangle (111) to determine candidate points for
the feasible set F . Figure 10 shows the forest of trees where
a solution trajectory is found. Ten initial seeds are generated
and a forest starts to grow until a solution is found. The so-
lution trajectory, the modes, and the transitions are shown in
Figure 11. Figure 12 shows c(Tsi ) and g(Tsi ) for the trees.
As thresholds for coverage criteria, we use c̄ = 1 × 10−6,
ḡ = 1 × 10−6, and µ̄ = 0.1. Four new seeds are generated
beyond the initial seeds in this case. Figure 13 shows the cov-
erage of the set (111) as new seeds are generated. First, ten
initial seeds are generated using a Halton sequence and the
next four seeds are generated by the grid-based method.

6. Conclusion

Hybrid systems are widely used in robotics to model the use
of specific controllers and estimators in different regimes,
switches based on contact mechanics of rolling or sliding, or

to take into account the interactions and messaging in a mul-
tirobot team. Hybrid systems also arise naturally as models
of genetic and metabolic networks. They capture the switch-
ing behavior that is observed in phenomena such as tran-
scription, protein–protein interactions, and cell division and
growth, and also provide global descriptions of biological sys-
tems described locally around operating points. More impor-
tantly, as shown in this paper, they allow local approximations
that lend themselves to symbolic reasoning and more efficient
computation.

In this paper, we develop computationally efficient tech-
niques to analyze hybrid models of biomolecular networks by
exploiting their specific structure. We have defined the frame-
work of multi-affine rectangular hybrid systems, where the
vector fields have product type nonlinearities to capture the
dynamics of chemical reactions and the invariants are rect-
angular, because different behaviors emerge as a function of
different ranges of concentrations of regulatory species. To
prove qualitative properties of such systems, which are biolog-
ically significant, we developed the MARP algorithm and the
RRFT algorithm. The MARP algorithm yields conservative
results due to overapproximations of the underlying reach-
able sets. In contrast, the RRFT algorithm, which is based on
trajectories generated from simulation, always underapprox-
imates the reachable set. However, both algorithms provide
complementary tools for analysis. This is illustrated by a case
study, the phenomenon of luminescence production in the ma-
rine bacterium V. fischeri. While a low-dimensional case study
was deliberately chosen to facilitate graphical illustration, the
techniques here are applicable to very high-dimensional sys-
tems (Alur et al. 2002a). Future work is being directed towards
developing tools for formal analysis of larger classes of hybrid
systems, which could capture more complicated biochemical
phenomena, and developing control laws for species in the
network that can be directly controlled from outside the cell.
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Fig. 9. Sample trajectories from (111) to (121) (left) and (121) to (111) (right).

0

5

10

15

20

0

20

40

60

80

100

0

10

20

x
1x

2

x 3

0

5

10

15

20

0
20

40
60

80
100

0

10

20

x
1

x
2

x 3

Fig. 10. The forest of trees computed by Algorithm 3 with initial conditions from the (111) rectangle with the goal of finding
a trajectory that reaches (222). The forest is shown on the left. The trajectory found by the algorithm that reaches (222) is
highlighted (shown dark) on the right.



232 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February–March 2005

0

5

10

15

0

5

10

15

20

0

5

10

15

x
1

x
2

x 3

0
2

4
6 0

1

2

3

0

2

4

6

8

x
2

x
1

x 3

0

5

10

15
0

5
10

15
20

25

0

5

10

15

x
2

x
1

x 3

0

5

10

15
0

5
10

15
20

0

5

10

15

x
2

x
1

x 3

Fig. 11. A close up of the trajectory found by Algorithm 3, shown in Figure 10, showing the trajectory in different modes:
top left, overall solution trajectory; top right, segment from (111) to (121) (note that the axis has been rotated to facilitate
visualization); bottom left, (121)–(122); bottom right, (122)–(222).



Belta et al. / Genetic Network Dynamics 233

0 500 1000 1500 2000
0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

no. of iteration

c(
T

si)

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

no. of iteration

g(
T

si)
Fig. 12. Coverage of the trees. New trees are started at 1046, 1072, 1294, and 1379 iterations because the growth rate slows
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