
This paper was published as

Carl Wick, Joel Esposito and Ken Knowles, “The MATLAB Toolbox for the
Intelitek Scorbot (MTIS): an open source educational robotics development
library”, American Society of Engineering Education’s Annual Conference, Jun
2011, Vancouver BC, p 1189 – 1288.

Please cite accordingly.

It now serves as the documentation for MTIS.

• See Appendix A for installation and set up instructions

• Appendix B contains a command reference

• Section 3 describes some principles of operation

• Section 4 provides an example program

Report all bugs to esposito@usna.edu

The MATLAB Toolbox for the Intelitek Scorbot (MTIS):
an open source educational robotics development library

Abstract - We present a MATLAB toolbox that interfaces directly with the Intelitek Scorbot –
one of the most widely used educational articulated robots. The toolbox provides a user-
friendly, open source method of accessing the robot’s functionality from within MATLAB’s
powerful integrated development environment, which already includes numerical solvers, image
processing routines, neural network libraries, and control system design tools. We describe the
development process and the toolbox’s features; and illustrate its capabilities with some projects
from our own Introductory Robotics class where it was beta tested. A student opinion survey
indicated that the toolbox was well received, but suggests its stability could be improved.

1. Introduction
It has been widely noted that engineering students benefit from a variety of
teaching approaches, in particular visual and experiential learners prefer hands on
laboratory experiences [1]. Teaching robotics is no exception [2, 3]. More recently
there has been a movement toward developing and distributing free and open
source software (FOSS) for robotics education and research [4, 5]. Inspired by
these ideas, and the success of the MATLAB Toolbox for the iRobot Create [6]
and Robotics Toolbox [7], we present a MATLAB toolbox that interfaces directly
with the Intelitek Scorbot – one of the most widely used educational articulated
robots.

For the past two decades the robotics educational scene has been dominated by the
Intelitek Scorbot robot line. These devices have been among the most widely used
tabletop articulated robot manipulators used for education.

Figure 1: (left) The Intelitek Scorbot, with teach pendant and control box. (right) A close-up of the teach
pendant.

Older versions of this robot were provided with a control box that could be
controlled by either a “dumb” serial terminal or a personal computer (PC) via an
RS232 serial port connection. A set of simple native ASCII commands were
provided to control the robot’s basic functions. While RS232 data transfer rates
could be slow, it had two main advantages. First, the interface was driverless –
making it platform independent. Therefore the robot could be controlled by any
terminal, PC, or microcomputer with a serial interface. Second, the relatively
simple ASCII commands were completely transparent, making it relatively easy to
develop open source libraries to control the robot from a variety of high level
programming languages, such as C, C++, Python, or MATLAB. In particular, the
authors have had many years of experience using MATLAB as the development
environment of choice in their classes. MATLAB has been especially useful since
robots are rarely stand alone systems. As such, they are frequently interfaced with
existing image processing or path planning routines, which may likely have been
written in one of these higher level languages.

In contrast, the latest Scorbot model, the ER 4u, is no longer controlled through an
RS232 type serial link. The new interface requires connecting a PC to the control
box via a Universal Serial Bus (USB). This provides superior data transfer rates,
but requires a proprietary software environment (ScorBase) to control the robot.

This paper describes the development and use of a MATLAB Toolbox for the
Intelitek Scorbot (MTIS). This Toolbox provides a series of seamless, high level
MATLAB functions that can be used to control the Scorbot-ER 4u directly.

The remainder of the paper is organized as follows. Section 2 details our detective
work for reverse engineering the required DLL files. Section 3 provides an over
view of the MATLAB functions in the toolbox. Section 4 provides example code
and projects from our undergraduate robotics laboratory at the U.S. Naval
Academy. Section 5 presents some benchmark tests, to confirm the performance
superiority of the USB interface to our previous RS232 interface. Section 6
concludes with the results from a usability survey we conducted from a test group
of over 40 users. Appendix A provides installation instructions and compatibility
information. Appendix B contains a Quick Reference of the toolbox’s functions.

2. Reverse Engineering the Intelitek Dynamic Link Library Upon inspection
we determined that the ScorBase Software provided with the Scorbot simply calls
an Intelitek proprietary and undocumented dynamic link library (DLL) to
communicate with the Scorbot’s Control Box. Although a complete picture of the

routines encapsulated in this DLL is not known outside of the manufacturer, there
are web sites that share some incomplete knowledge about the DLL routines [8].
In addition, these primitive routines are very similar to those used with the old
Scorbot.

However, our initial efforts to load the DLL into MATLAB failed. Unfortunately,
it turned out that the new DLL was apparently written in C++ and was compiled in
such a way that the library function names could not be successfully read by
MATLAB.

The reason may be obscure to many non-computer scientists, and has to do with
some of the flexibility afforded by programming languages like C++. One of these
flexibilities is to be able to have several software routines with the same function
name, but with different lists of parameters (similar to overloading). The compiler
is left to decide which variant to use based on the parameters the programmer
provides. This extension also allows for default parameters when incomplete lists
are provided. For the compiler/linker to be able to decide upon which routine to
use and how to handle parameters to the routines, each routine name must
somehow have additional information available for the compiler/linker to use for
proper selection. In C++ the term to describe this additional information is “name
mangling”. Essentially, when C++ names are “mangled”, each routine name is
changed in such a way that parameter information becomes part of the subroutine
name. What is gained is that other C++ programs can potentially access variable
class information directly and make correct decisions about which routine variant
to use under any circumstance. What is lost in this process is unfortunately there is
no universal way that name mangling is done. To be truly universal, a software
package would currently have to be able to detect the method of mangling it sees
from a large number of methods in use by different compiler manufacturers. The
default taken by MATLAB (and probably many others) is to simply try to read
names and give up if they are mangled. The end result is that we could load the
DLL in MATLAB using the loadlibrary command, but no subroutine names could
be found.

When the DLL was opened with a text editor (‘notepad’) a quick search for known
DLL subroutine names quickly confirmed the use of name mangling. Consulting
mangling techniques in use by several common compiler writers revealed that the
technique was common to Microsoft compilers.

Figure 2: The calling structure of MTIS. MATLAB functions call an intermediate DLL, which calls the
manufacturer’s name-mangled DLL to control the Scorbot via a USB connection.

After much thought, it was determined that it still could be possible to use the
original Scorbot DLL routines if a second intermediate DLL was written and
compiled without mangling the names (see Figure 2). This second DLL would, for
the most part, simply pass parameters and call the mangled functions in the
original, but by writing and compiling it with Microsoft C++, the second DLL
would be also able to resolve the mangled names in the Scorbot DLL. If name
mangling was ‘turned off’ when the second DLL was compiled, the routine names
contained within the second DLL could be loaded into MATLAB.

Development of the new intermediate DLL proceeded by selecting from the known
routines in the existing Scorbot DLL those routines normally used in our
laboratory environment and for which sufficient knowledge was known to write an
interface statement. As synchronization issues exist between robot motion and
software (for example, robot motion must be completed before a new command is
issued), several “Callback” functions from the original DLL were also used to help
synchronize MATLAB calls with robot motion.

Parallel to this effort, it was discovered by examining software packages that came
with the Scorbot, and with some trial and error, which directories the DLLs should
reside in (see Appendix A for installation instructions).

3. Operating Principles
Once the DLL issue was resolved, we wrote a series of MATLAB “wrapper”
functions that call the intermediary DLL (using MATLAB’s callib function).
Installation instructions for the DLL and wrapper function is given in Appendix A.
A comprehensive list of toolbox commands and syntax is provided in Appendix B.

PC

 Intelitek
Scorbot
Control Box

 USB

 MTIS
Intermediary DLL

 MTIS

MATLAB
Functions

 Intelitek
Name Mangled DLL

This section provides an overview of some of the conventions and operating
principles the toolbox employs.

Role of the Wrapper Functions: The wrapper functions are matlab files that call
the DLLs. In some cases these functions simply replace particularly enigmatic or
cumbersome library calls, with intuitively named functions. For example, setting
the speed to 20% of maximum speed is much easier using the MTIC wrapper
function, even though one could call the DLL directly without it.

Matlab’s DLL Call: calllib('RobotDll' , 'RSetSpeed',int16(20))
Using MTIC: ScorSetSpeed(20)

In other cases, the wrapper functions perform more sophisticated roles, such as
grouping together sets of library routines commonly called together, performing
unit conversions, resolving sign inconsistencies, performing error checking or
expanding the functionality of the original DLL.

Naming: Every function in the toolbox begins with the letters “Scor” to readily
distinguish them from any built in MATLAB functions (ex. ScorInit, ScorHome,
etc.). Commands that set properties of the robot have the word “Set” in them (ex.
ScorSetSpeed); while ones that get sensor readings have the word “Get” (ex.
ScorGetGripper).

Absolute vs. Relative Motion: All sensor/motion commands return/send absolute
positions, unless otherwise stated. Relative, or incremental motions can be
commanded using the version of the motion command with “Delta” in its name
(ex. ScorCartMove vs. ScorDeltaCartMove)

Units: All commands use Centimeters and Degrees to indicate position and angles
respectively.

Coordinates: The tool box uses two types of coordinates: Cartesian and Joint, as
illustrated in Figure 3. Cartesian coordinates are specified as a 5 X 1 vector of the
form [X Y Z Pitch Roll]. Commands that utilize Cartesian coordinates contain the
characters “Cart” in the function name. (ex. ScorCartMove([X Y Z P R]). Joint
coordinates are specified as a 5 X 1 vector of angles the form [Base Shoulder
Elbow Pitch Roll]. Commands that utilize Joint coordinates contain the characters
“Jt” in the function name (ex. ScorJtMove([X Y Z P R]) . Users should note
that Intellitek’s DLL is internally inconsistent in that the positive sense of the

angles does not match the positive sense used by the teach pendant. The toolbox
corrects for this mismatch – matching the labeling of the teach pendant.

Also, note that Pitch is defined differently in these two coordinate systems.
Cartesian pitch is the orientation of the end effecter relative to the horizontal plane,
whereas the joint angle version of pitch is defined as the relative angle between the
forearm and the end effecter.

Figure 3: Illustration of the two coordinate systems used in the toolbox. (left) Cartesian coordinate system
(XYZPR) and (right) Joint coordinate system (BSEPR). Note that pitch is defined differently in the two
coordinate systems, but the roll angle is identical.

Teach Pendant Modes: There is a dial on the teach pendant to switch between
“Teach Mode” (in which the teach pendant controls the robot) and “Auto” mode
(in which the Control Box as authority over the robot). It turns out that the Scorbot
cannot properly confirm that a motion is completed in Teach mode. The toolbox
automatically detects which mode the pendant is in and asks the user to switch
modes as appropriate.

Confirmation: Most commands in the tool box have an optional output argument
called “confirmation”, which indicates the command was successfully executed
(confirmation =1) or not (confirmation = 0). For example a command to move the
robot outside the boundaries of its workspace will result in failure
>> confirmation = ScorCartMove([1000 0 0 0 0])
confirmation = 0

When in teach mode, the proper execution cannot be determined, and the value of
confirmation is set to -1.

Command Blocking: It is possible to send commands to the robot much faster
than it can physically execute them. This creates the possibility of missed
commands if the buffer overflows. To remedy this, the toolbox blocks MATLAB
from sending new commands to the Scorbot until two conditions are met. First,
Intelitek’s DLL contains a function called ‘RmotionIsDone' which, despite its
name, returns a Boolean indicating if the robot has received a command – not
completed it. Second, we also block the sending of new commands until the
Scorbot is within 5 millimeters of the commanded pose (this tolerance can be
adjusted).

Kinematic Functions: Several functions are provided with the toolbox to solve
typical kinematic problems in articulated robotics: forward kinematics, inverse
kinematics and translational velocity Jacobian. These functions do not interact
with the hardware in anyway, and are independent of the DLLs. Educators may
wish to remove them from their installation if they want students to solve these
problems themselves.

4. Example Program and Projects
An example of a very basic MATLAB program which uses the MTIS wrapper
functions to pick up an object and determine its size is included below.

 ScorInit; % Loads the DLL and initializes USB
ScorHome; % The Scorbot must be homed before
beginning
ScorSetSpeed(80); % Set speed at 80 percent of max

ScorCartMove([40 0 30 -90 0]); % Moves to a position 40 cms in front
of robot
% with end effector pointing down
ScorSetGripper(-1); % Opens gripper fully

ScorDeltaCartMove([0 0 -10 0 0]); % Moves down 10 cms to pick up
object
ScorSetGripper(0); % Closes fully around object
ObjectWidth = ScorGetGripper(); % Get width of object in gripper in cm

fprintf(‘The object is %f centimeters wide. \n’, ObjectWidth)

The following are some additional laboratory exercises, taken from our
introductory robotics class, to illustrate other functionalities of the toolbox.

Example Project #1: Towers Of Hanoi
Students program the Scorbot to solve the classic puzzle (Figure 4 left) which
involves moving a stack of rings/blocks from one peg to another according to
specific rules. Typically students use the teach pendant and the ScorGetCart
command to record the location of the three pegs. ScorDeltaCartMove is used to
complete the vertical motions, and ScorGetGripper can be used to sense which, if
any, of the three blocks is currently in the gripper.

.
Figure 4: Three example projects: Towers of Hanoi Puzzle, Defusing an IED, and Cup Crushing.

Example Project #2: Defusing an IED (or Hasboro’s “Operation” game)
Students attempt to thread a ½” inner diameter washer, along a taut vertical wire
(Figure 4 center). A small pager motor and a 9 volt battery were rigged to buzz if
the washer accidentally touches the wire. Students use ScorGetJt to get the joint
angles and ScorJacobian to compute the Jacobian matrix. They use the inverse of
the Jacobian to determine how to move the end effector in a straight line using only
ScorDeltaJointMove.

Example Project #3: Cup Crushing
Students use the Scorbot’s end-effector to crush inverted plastic cups (Figure 4
right). While crushing a single cup is trivial, stacks of two or more cups can only
be crushed in certain optimal locations in the workspace due to current limitations
(thus maximum torque available) on the Scorbot’s motor drivers. Students write a
program which samples points in the robot’s workspace, computes the joint angles
using ScorInvKin, and the Jacobian with ScorJacobian. They find the location
which maximizes the robot’s mechanical advantage, and then crush plastic cups
using ScorDeltaCartMove.

5. Benchmarking
We did three benchmark tests to compare the old RS232 interface with the USB
interface:

1. Encoder Reading: Mean time to measure the joint angles (ScorGetJt), across 1000
trials.

2. Movement Time: Mean time to execute a 10 cm vertical motion with a desired movement
time of 1 second: ScorSetMoveTime(1); ScorDeltaCartMove([0 0 10 0 0]). A
stopwatch was used to record the motion duration. Averaged across 60 moves.

3. Sequences of Motions: A test program sent the Scorbot a rapid sequence of 100 random
motion commands. We manually recorded how many were missed.

 RS-232 interface MTIS
Encoder Reading (avg time in seconds) 0.12 0.02
Movement Time (target is 1 second) 1.24 1.01
Missed Motions (of 100) 12 0

As expected, improvement in performance is indicated in every test. In the case of
the encoder, since the hardware is essentially identical, we conclude the difference
in times is attributable to the time it takes to transmit the data over the RS232
(19200 baud) vs. the USB interface. In the case of the Movement time, since the
hardware is identical, the difference is likely due to the data transfer rate, but may
also depend on some of the inverse kinematic computation in the Scorbot’s control
box as well. However, we note that the additional time of 0.01 is within the
margin of error of the stop watch. For us, one of the most significant
improvements is that there were no missed motions by the Scorbot. Using the
older RS232 interface, missed motions – or worse yet crashing the robot – was a
relatively common occurrence. Students often inserted “pause” commands in
their code, in an ad hoc manner, to avoid this. This improvement is most certainly
due to the improved error handling of the toolbox.

6. User Survey
The resulting MTIS package presents a “seamless” interface to the student and can
be maintained within the MATLAB environment. As many software developers
know, one of the best places to test software is in a student laboratory setting. The
transition to these new robotic arms has been incredibly smooth. At the end of a
semester-long course, which included eight 2-hour laboratory exercises involving

the Scorbot, students (N=42) were asked to rate how easy it was to use the
Toolbox (Figure 5) and how stable the Toolbox was (Figure 6), according to a
predefined scale.

Very Easy Easy Moderate Hard
The function names were
self explanatory, no further
documentation needed.

The help file
resolved any
confusion.

Some help files
confusing or
inconsistent.

After reading the help
file, I still could not
figure it out.

Figure 5: Student users of the toolbox (N=42) were asked: “How easy was it to learn how to use the
functions in the toolbox?” According to the scale provided, the vast majority rated it as “easy”.

Rock Solid Issues in Early Labs Moderately Unstable Unstable
Rarely crashed. Rarely crashed after bug

fixes were installed.
Frequently crashed after Bug

fixes installed.
Crashed so frequently I
could not complete the

assignments.
Figure 6: Student users of the toolbox (N=42) were asked: “How stable was the toolbox?” According to
the scale provided, most rate it “Rock Solid” or “Stable After Bug Fixes”.

Regarding ease of use, Figure 5 shows that the vast majority of student rated it
“Easy”. We are satisfied with this result, considering that the survey subjects are
novice programmers / MATLAB users. Informally, we would guess that if the
same students were asked to rate MATLAB’s overall ease of use, they would
likely rate it “moderate” on average.

Regarding stability, Figure 6 shows that all but 6 of the students were happy with
the stability by the end of the semester. The initial deployment of the toolbox did
not perform some of the error checking discussed in Section 3. In particular, it did
not force the user to switch the teach pendant to Auto mode, nor did it check to see
if the motion was complete before allowing new commands to be sent to the robot.
These changes were added after the second of eight laboratory exercises, and had a
notable impact on stability. However, even after the bug fixes, six of the 42
students still rated the stability as “Moderate – Frequently Crashed even after bug
fixes were installed”. Unfortunately, we were unable to replicate these issues and
are currently investigating their cause.

7. Conclusion
In conclusion, we have provided a MATLAB interface consisting of a DLL and a
set of documented wrapper functions that allow one to control the Intelitek Scorbot
ER-4U from within MATLAB’s integrated development environment.

There are several advantages to this.

1. The toolbox takes care of the low level hardware interfacing, allowing instructors who do
not possess such programming expertise to offer laboratory based exercises in their
classrooms.

2. The online distribution of this material frees researchers to focus their time on algorithm
development instead of reinventing the low level interfaces.

The functions are freely available on the web. While the toolbox is free, of course
MATLAB itself requires a license to use. In that sense it is not FOSS (Free and
Open Source Software). However, we feel MATLAB is a viable alternative since:

1. many universities, the target market for the Scorbot, already possess a site license for
MATLAB;

2. MATLAB, as compared to Python or Java, is frequently taught to non-computer science
majors such as mechanical engineers; and finally

3. MTIS allows one to integrate the Scorbot with MATLAB’s other powerful toolboxes
such as Neural Networks, Control Systems, and Image Processing as well as third party
toolboxes such as the Robotics Toolbox [7].

Regarding avenues of future work, one is to investigate the cause of occasional
crashes. A second major thrust is to expand the capability of the toolbox to
include velocity-based control commands. Finally, we plan to investigate the
compatibility of the toolbox with Octave and other freeware MATLAB clones.

APPENDIX A: Getting Started

Version Compatibility
The toolbox is developed for the Intelitek ER-4U with USB connection. The
Scorbase software version was 5.3.3.2. The control box software was version 14.

The toolbox was tested on MATLAB R2010B and Windows XP 2002, but is
likely to work on releases dating back to 2007. It is likely to work on any 32 bit
version Windows based operating system. It is unlikely to work on 64 bit
operating systems or Apple operating systems. It has not been tested on Octave or
other freeware MATLAB clones.

Installation

1. Download and unzip the files from
http://www.usna.edu/Users/weapsys/esposito/scorbot.matlab/

2. Copy the contents of the ToMATLABBinWin32 folder and paste them into your
MATLAB’s BinWin32 directory

3. Copy the contents of the ScorbotMATLABFiles in a convenient and accessible location.

4. In MATLAB add the folder from step 3 to the path. The path is the list of directories
MATLAB looks at for function definitions. For example, if you placed that folder in
C:\MATLAB\ScorBotToolBox
>> addpath 'C:\MATLAB\ScorBotToolBox';

You will need to do Step 4 each time you restart MATLAB. If you want the change to be
permanent add:
>> savepath;

Troubleshooting
All of these things have to be true in order to move the robot. If your robot is not working, find and
check each of them.
Software: Open MATLAB, and type >> ScorInit; MATLAB will prompt you to put the teach
pendant in Auto Mode; then type ScorHome; and wait until the pendant reads “Homing Complete”.
Emergency Stop: The button on teach pendant is raised;
Emergency Stop: The button on control box is raised; and
Deadman Button: depressed or Teach pendant is in the magnetic holster.

TIP: Mnemonic SEED

Warning: When using the toolbox, do NOT home the robot with the teach pendant (ex. Run
<0><ENTER>). Only home the robot programmatically using the toolbox command ScorHome

APPENDIX B: Quick Command Reference

Command Syntax Description
Initializations
ScorInit Loads DLLs, Enables Motors, Sets up USB

Communications
ScorHome Homes all joints
Confirmation =
ScorControlEnable(OnOff)

OnOff=1 turn on all motors, 0 Off
Useful to recover after impacted axis errors. Can
also be done on Teach pendant. CONTROL
ON/OFF <ENTER>

Speed
Confirmation =
ScorSetMovetime(tsec)

Sets time limit to execute move in seconds --
effectively dictating speed. A very low time can
cause moves to fail (Confirmation = 0 after
motion commands).

Confirmation = ScorSetSpeed
(PercentSpeed)

Set speed to an integer between 1 and 100. Units
are percent of max. Optional output argument is
1 if command successful and 0 if it fails.

Using the Encoders
BSEPR = ScorGetJt Returns current position as BSEPR= [Base

Shoulder Elbow Pitch Roll] degs 1X5 vector note
.

XYZPR = ScorGetCart

Returns current position as XYZPR = [X Y Z
Pitch Roll] cms / degs 1X5 vector.

Moving the Arm
confirmation=
ScorCartMove (XYZPR)

Moves the end effector in a straight line, from
current position to XYZPR = [X Y Z Pitch Roll]
in centimeters and degrees respectively. Will
fail if move is outside of workspace. Note
XYZPR must be 1 X 5.

confirmation=
ScorDeltaCartMove(deltaXYZ
PR)

Incrementally moves the end effector in a
straight line, by deltaXYZPR = [deltaX deltaY
deltaZ deltaPitch deltaRoll] in centimeters and
degrees respectively. Will fail if move is outside
of workspace (confirmation =0). Note
deltaXYZPR must be 1 X 5.

confirmation =
ScorJtMove(BSEPR)

Moves the end effector, from current position to
BSEPR= [Base Shoulder Eblow Pitch Roll]
defined in degrees. Trajectory is a straight line
in joint space (apparently arced in Cartesian
space). Will fail if move is outside of
workspace. Note BSEPR must be 1 X 5.

confirmation =
ScorDeltaJtMove(deltaBSEPR)

Incrementally moves the end effector from
current position by deltaBSEPR= [deltaBase
deltaShoulder deltaElbow deltaPitch deltaRoll]
defined in degrees. Generally deltas should be
small (<<180). Note BSEPR must be 1 X 5.

Gripper Functions
confirmation=ScorSetGripper(c
m)

cm=-1: Open gripper
cm=0; Close gripper
cm = 1-7 centimeters, resolution of 1mm
Does not account for width of pads (about 3
mm).

cm= ScorGetGripper Returns distance in centimeters gripper is
currently open.

Kinematic Solutions
J=ScorJacobian(BSEPR)

Linear Velocity Jacobian (3 X 5 Matrix). Given
joint angles [Base Shoulder Elbow Pitch Roll]
(deg) computes Jacobian. Units are centimeters

XYZPR=ScorFwdKin(BSEPR)

Forward Kinematic Solution. Given joint angles
[Base Shoulder Elbow Pitch Roll] (deg)
computes [X Y Z Pitch Roll] (cms and degs)

BSEPR=ScorInvKin(XYZPR)

Inverse Kinematic Solution. Given [X Y Z Pitch
Roll] (cms and degs) compute joint angles [Base
Shoulder Elbow Pitch Roll] (deg)

Utilities
confirmation =
ScorAddToVec(Pt,XYZPR)

Used by other commands. Save a pose as point #
Pt (1 to 999). Pose specified in XYZPR = [X Y
Z Pitch Roll] format (cms, degs). Must be a
1X5. See ScorGetCart. Will fail if point I
outside of workspace. Not recommended as a
method to store points since points are erased if
robot rebooted.

[XYZPR, confirmation] =
ScorCapturePose(Pt)

Record current pose as point # Pt (1 to 999). For
your reference, it returns X,Y,Z in cm and Roll,
Pitch in degrees. Not recommended as a method
to store points since points are erased if robot
rebooted. Note that teach pendant should be in
Teach Mode.

confirmation=
ScorMoveToPt(Pt,LorJ)

Moves to a previously recorded point Pt (integer
from 1 – 999). See ScorCapturePose. ‘L’
produced a straight line motion. ‘J’ moves in a
straight line in joint space which produces curved
paths.

BSEPR=ScorCnts2Deg(cts)

Converts 1X5 vector of encoder counts to a 1X5
vector of joint angles [Base Shoulder Elbow
Pitch Roll]

CNTS=ScorDeg2Cnts(BSEPR)

Converts a 1X5 vector of joint angles [Base
Shoulder Elbow Pitch Roll] to a 1X5 vector of
encoder counts.

References

1 R.M. Felder and R. Brent, “Understanding Student Differences” Journal of Engineering Education, 94 (1), p. 57-
72, 2005
2 K. Nagai, “Learning While Doing: A Practical Robotics Education”, IEEE Robotics and Automation Magazine, p
39 -43, June 2001
3 J.A. Piepmeier, B.E.Bishop, and K. A. Knowles, “Modern Robotics Engineering Instruction”, IEEE Robotics and
Automation Magazine, p. 33-37, June 2003
4 G.R. Bradski and A. Kaeller, Learning OpenCV---Computer Vision with the OpenCV Library, O’Reily Media,
2008
5 S.Cousins, B.Gerkeym K.Conley, and Willow Garage, “Sharing Software with ROS”, IEEE Robotics and
Automation Magazine, June 2010, p 12-14.
6 J.M. Esposito, J. Kohler, and O. Barton, “MATLAB Toolbox for the iRobot Create (MTIC)”,
www.usna.edu/Users/weapsys/esposito/roomba.MATLAB/ 2008
7 P. Corke, “MATLAB Toolboxes: Robotics and Vision for Students and Teachers”, IEEE Robotics and
Automation Magazine, p 16-17, December 2007
8 J.C. Mojebo, “The Scorbot ER4U function reference and notes for the usbc.dll”,
www.theoldrobots.com/book45/USBC-document.pdf

http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/

	Abstract - We present a MATLAB toolbox that interfaces directly with the Intelitek Scorbot – one of the most widely used educational articulated robots. The toolbox provides a user-friendly, open source method of accessing the robot’s functionality...

