To satisfy the minimum requirements for this course, you should be able to:

1. **Discuss the nature of energy by:**
 - comparing and contrasting kinetic and potential energy
 - identifying heat \(q \) and work \(w \) as the two forms of transient energy (energy transfer)
 - distinguishing between heat \(q \), internal energy \(U \) and temperature \(T \)

2. **Demonstrate an understanding of thermochemistry by:**
 - explaining the relationships among the following: system, surroundings, and universe; exothermic process and endothermic process; internal energy \(U \) and enthalpy \(H \); \(\Delta U \), \(\Delta H \), \(q_v \), and \(q_p \)
 - associating the sign of \(\Delta H \) with whether the process is exothermic or endothermic
 - calculating the quantity of heat involved in a reaction given the quantity of reactants and the enthalpy change for the reaction
 - calculating the amount of reactant needed to generate a given amount of heat
 - distinguishing between state functions and path functions and identifying examples of each
 - stating the first law of thermodynamics in words and performing calculations using the first law for a closed system \((\Delta U = q + w) \)
 - explaining the sign conventions for heat and work

3. **Demonstrate an understanding of the concept of calorimetry by:**
 - describe the concept of specific heat capacity (symbolized \(C \))
 - performing calculations using the equation \(q = C \times m \times \Delta T \)
 - using constant pressure calorimetry data to calculate the standard reaction enthalpy \((\Delta_r H^o = q_p) \) or to calculate the specific heat of a substance

4. **Name the six phase change processes and be able to:**
 - use Kinetic Molecular Theory to explain the relative energy changes associated with each phase change \((\Delta_{vap} H, \Delta_{fus} H, \Delta_{sub} H) \)
 - use heat capacities and heats of fusion and vaporization to calculate the heat absorbed or evolved when a substance is heated or cooled and undergoes phase changes

5. **Calculate the standard enthalpy of reaction \((\Delta_r H^o) \) using:**
 - standard enthalpies of formation \((\Delta_f H^o) \) of reactants and products (direct method)
 - Hess's law (indirect method)

6. **NavApp: Explosives**
 - describe the characteristics of explosions and explosives, and describe the main causes of the destructive power of chemical explosives
 - distinguish between high and low explosives, and explain the uses of each
 - define the terms deflagrate, detonate, shock wave, and burning front
 - recognize that nitrogen and/or oxygen are found in most explosives as part of high-energy bonding arrangements such as nitro \(-\text{NO}_2\) , nitrate \(-\text{O-NO}_2\) or nitramine \(-\text{N-NO}_2\) groups, and peroxides \(-\text{O-O}\) or perchlorate \(-\text{O-ClO}_3\) groups
 - approximate the energy change for an explosion by calculating the enthalpy change for the explosion reaction
 - calculate the temperature change of gases formed in an explosion