Chapter 9
Thermochemistry: Energy Changes in Chemical Reactions
Learning Objectives

To satisfy the minimum requirements for this course, you should be able to:

1. Demonstrate an understanding of thermochemistry by:
 - explaining the relationships among the following: system, surroundings, and universe; exothermic process and endothermic process; internal energy (E) and enthalpy (H); \(\Delta E \), \(\Delta H \), q, and \(q' \)
 - associating the sign of \(\Delta H \) with whether the process is exothermic or endothermic
 - calculating the quantity of heat involved in a reaction given the quantity of reactants and the enthalpy change for the reaction
 - calculating the amount of reactant needed to generate a given amount of heat
 - distinguishing between state functions and path functions and identifying examples of each
 - stating the first law of thermodynamics in words and performing calculations using the first law for a closed system (\(\Delta E = q + w \))
 - explaining the sign conventions for heat and work

2. State the definitions of the standard states for elements, solids, liquids, gases, and solutes in solution.

3. Use the Kinetic Molecular Theory to explain the relative energy changes associated with each phase change (\(\Delta H_{\text{vap}} \), \(\Delta H_{\text{fus}} \), \(\Delta H_{\text{sub}} \)) and calculate the energy associated with heating or cooling a substance through a temperature range that includes phase changes, given the appropriate thermodynamic data.

4. Demonstrate an understanding of the concept of calorimetry by:
 - describe the concept of heat capacity (\(C_P \)), specific heat (\(c_P \)) and molar heat capacity (\(c_{P,n} \)). Note: follow the units of heat capacity to be able to apply the correct formula.
 - performing calculations using the equations:
 a. \(q = m \ c_P \ \Delta T \)
 b. \(q = C_P \ \Delta T \)
 c. \(q = n \ c_{P,n} \ \Delta T \)
 d. \(q = n \ \Delta H \) for a chemical reaction
 - using constant pressure calorimetry data to calculate the standard reaction enthalpy or to calculate the specific heat of a substance

5. Calculate the standard enthalpy of reaction (\(\Delta H_{\text{rxn}}^\circ \)) using:
 - standard enthalpies of formation (\(\Delta H_f^\circ \) found in Table A4.3, Appendix 4, pp. APP-16 - APP-22) of reactants and products (direct method)
 - Hess's law (indirect method)

6. Relate bond energies (Bond Energies are both in Table 4.6, p. 166 and Table A4.1, Appendix 4, p. APP-15) to estimate \(\Delta H \)

7. NavApp: Fuels and Lubricants (see handout)
 - understand the term fuel value (or energy content) and compare fuel values for fuels
 - describe how the percent oxygen in a fuel affects its fuel value, and explain how adding ethanol to gasoline affects its fuel value
 - distinguish between straight-chain and branched hydrocarbons and explain their effects on gasoline quality (knocking)
 - define the terms flashpoint, flammability, and volatility
 - describe the relative flammability of the military fuels: JP-4, JP-5, and JP-8
 - describe several uses of lubricating oils

N.B. Section 9.8 will not be covered.