To satisfy the minimum requirements for this course, you should be able to:

1. Understand the concept of reaction rates and be able to
 - use the coefficients of a balanced chemical equation to express the rate of reaction in terms of the change in concentration of a reactant or product over time.
 - distinguish between instantaneous rates and average rates from a graph.

2. Determine the rate law from initial rate data and be able to determine
 - the order of reaction with respect to each reactant.
 - the overall order of reaction.
 - the rate constant with units.

3. Recognize the integrated rate laws and be able to
 - use integrated zero-order, first-order, and second-order rate laws to find the value of one variable, given values of the other variables.
 - explain the concept of reaction half-life and describe the relationship between half-life and rate constant for first-order and second-order reactions.
 - determine the order of the reaction from plots of concentration versus time, ln(concentration) versus time, and 1/(concentration) versus time.

4. Use Collision Theory to explain how reactions occur at the molecular level, and
 - explain the concept of activation energy and how it relates to the variation of reaction rate with temperature.
 - be able to interpret potential energy profiles and use them to determine the activation energy and potential energy changes for a reaction.
 - be able to use the Arrhenius equation to calculate a rate constant, activation energy, and frequency factor.

5. Define a reaction mechanism and
 - identify the reaction intermediate(s) and catalyst(s), write the overall reaction, and determine the molecularity of each step.
 - describe the effect of a catalyst on the energy requirements for a reaction.
 - sketch a potential energy profile showing the activation energies for the forward and reverse reactions and show how they are affected by the addition of a catalyst.

6. Explain how enzymes act as biological catalysts and how they interact with specific substrate molecules within their effective temperature range.

7. NavApp: Chemical Warfare:
 - recognize selected classes of toxic agents of military importance: blister agents, (mustard, lewisite), nerve agents (sarin, VX), choking agents (chlorine, phosgene), blood agents (HCN), riot control agents
 - explain the mechanism by which sarin inhibits acetylcholinesterase