To satisfy the minimum requirements for this course, you should be able to:

- 1. Describe the features of spontaneous and nonspontaneous processes; be able to provide an example of each.
- 2. State the second law of thermodynamics and explain the role that entropy plays in determining whether a process will be spontaneous.
- 3. Describe how entropy is related to randomness/disorder/dispersal of energy and
 - recognize that the entropy of a substance generally increases with the size and complexity of the molecular structure
 - predict whether the sign of ΔS_{rxn} is positive, negative, or near zero for a chemical or physical change.
 - describe how and why the entropy of a substance changes with temperature or when a phase change occurs.
 - be able to describe the role of entropy in the solution process.
 - calculate ΔS°_{rxn} for any reaction from tabulated standard molar entropy values, S° (found in Table A4.3, Appendix 4, pp. APP-18 APP-24).
- 4. State the third law of thermodynamics and explain standard molar entropy, S°.
- 5. Calculate the standard free-energy change, ΔG°_{rxn} , at 25°C from tabulated standard free energies of formation ΔG°_{f} (found in Table A4.3, Appendix 4, pp. APP-18 APP-24).
- 6. Explain the relationship between the free-energy change, ΔG_{rxn} and the work available for a process, and relate the sign of the free-energy change, ΔG_{rxn} , to the spontaneity of a process in the forward direction.
- 7. Predict and calculate how ΔG_{rxn} will change with temperature, given the signs and/or values for ΔH_{rxn} and ΔS_{rxn} .
- 8. NavApp: Thermodynamics of the CO₂ Scrubber
 - be able to relate Δ H, Δ S, and Δ G to the MEA + CO₂ chemical equilibrium