To satisfy the minimum requirements for this course, you should master the following learning objectives.

Describe the properties of chemical equilibrium and be able to
 • write the equilibrium expression (K, or K_p for gaseous reactions) for a balanced chemical equation.
 • understand the concept of activity and how it relates to the “true” equilibrium constant.
 • classify any equilibrium as heterogeneous or homogeneous.
 • given a chemical reaction and its equilibrium constant, determine the new equilibrium constant when the reaction has been reversed or multiplied by a constant.
 • numerically evaluate K and K_p from knowledge of the equilibrium concentrations (or pressures) of reactants or products, or from the initial concentration and the equilibrium concentration of at least one substance.
 • interpret the magnitude of K and K_p and what this tells you about the extent of reaction and the composition of the equilibrium mixture.
 • interconvert K_p and K for a gas phase reaction.
 • use K_p and K to calculate equilibrium concentrations (i.e., apply ICE tables).

Understand the relationship between kinetics (rates of reactions) and equilibrium.

Understand the concept of reaction quotient, Q, and by comparison with the value of K
 • determine whether a reaction is at equilibrium.
 • predict in which direction a reaction will shift to reach equilibrium.

Explain how the relative equilibrium quantities of reactants and products are shifted by changes in temperature, pressure, volume, or the concentrations of substances in the equilibrium reaction (Le Châtelier’s Principle).

Explain what effect the presence of a catalyst has on the position of equilibrium in a chemical system.