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KINDS OF MEASUREMENTS AND THEIR RELIABILITY 
 

 One aspect of physical sciences and engineering which differs from most other disciplines is the 
prevalence of quantitative measurements.  Observations in the physical sciences often generate 
measurements, i.e., numbers.   In most cases, a measurement can be of either a single property, or it can 
involve two properties where the property being measured depends in some way on the other property.   
 
 Single property measurements are normally repeated several times.  While in principle one would 
expect identical values among a set of measurements, in practice there are many factors which cause the 
repeated measurements to be different from each other.   A common example from chemistry is the 
titration to an endpoint of identical samples.  In principle, the same volume should be required for 
reaching the endpoint in each trial, but in practice, there will be some variance in the volumes. 
 
 Measurements involving the relationship between two properties are normally carried out by 
measuring the value of one of the variables, then measuring the other, and then repeating this several 
times for different values of the first variable, resulting in a series of pairs of measurements.  An example 
is the measurement of the mass of a fluid as the volume of the fluid is varied through several values.  In 
principle, a consistent pattern of dependence of the one variable on the other is expected, but in practice, 
there will be some variance from absolute consistency.   The goal of such a measurement process is to 
determine the exact way in which the second variable (e.g., mass) depends on the first variable (e.g., 
volume).  In many cases, as in the example of mass vs. volume, the graphed points produced by plotting 
the pairs of measurements follow a linear trend.  In the case of mass vs. volume, the slope of this line has 
physical significance, e.g., it corresponds to the density of the fluid. 
 
 Accuracy and precision are two different terms that are used to refer to the numbers that result 
from measurements, and both are applicable to single property and two-property measurements.  
Accuracy refers to the agreement between the measured quantity and the “true” value.  An accurate value 
is one that is very close to the true or actual value.  Precision refers to the degree of consistency among a 
set or series of measurements.  It reflects the reproducibility of the measurements. 
 
Single Property Measurements 
 
 Consider two junior officers learning about the chemical tests performed on boiler water, several 
of which involve specific titrations to determine the amount of certain chemical species in the water.  
They are each provided several identical samples of boiler water, and perform the same chemical titration 
on those samples.  As each titration is completed, they record the volume of solution added.  This volume 
represents a single property, and in principle, one would expect identical values for each trial performed 
by the two officers. 
 The results for the two officers’ trials are symbolically represented below.  Clearly, each trial did 
not result in an identical measurement.  In fact, there are some glaring differences which warrant further 
explanation and clarification. 
 

First officer:  inaccurate, precise Second officer:  accurate, imprecise

 Volume added in titration

Measurements 

True value True value 
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Volume added in titration 
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 The first officer’s measurements were very close to each other, but none of them was close to the 
true value.  The second officer’s measurements were not very close to each other, but they tended to 
surround the true value.  What do these results mean in terms of accuracy and precision?   The first 
officer’s measurements, though highly precise, are clearly very inaccurate.  The second officer’s 
measurements, though not as precise, yield an average which is much more accurate (i.e.,  closer to the 
true value).    
 There is some inherent systematic error (i.e., always too high or always too low) in the first 
officer’s measurements, even though the way he or she performs the measurements is highly reproducible 
from trial to trial.  Systematic error can arise for a variety of reasons (e.g., burets with misplaced 
markings, or consistently improper reading of the meniscus).   One must carefully account for and explain 
systematic error.  Generally precautions are taken to avoid such error, if within the control of the 
investigator.   
 Both officers’ readings, as is the case for all measurements,  include random error, where 
measurements fall slightly above or below the average.   The first officer’s measurements have smaller 
random errors than the second officer’s measurements.  This relates to the precision. 
 
Random Error Analysis 
   

A single measurement of some property (e.g., mass or volume) may be randomly either slightly 
too high or too low.  If the property is measured several times, and then averaged, these random 
deviations will tend to cancel out.  Thus, more measurements of the property followed by averaging 
should give a better (i.e., more accurate) result for the measurement, so long as there are no systematic 
errors inherent in the measurement process.  The precision of the measurement is related to the size of the 
random deviations of the individual measurements from the average.  Two common methods for 
determining precision are (1) the average deviation from the mean, and (2) the standard deviation from 
the mean. 
 
Example of Error Analysis 
 
 Actual data from an officers’ titrations will be used below to illustrate the terms and methods 
described above.  The officer performs four titrations on identical boiler water samples, resulting in 
titration volumes of 6.58 mL, 6.66 mL, 6.61 mL, and 6.55 mL.   
 
A. Mean or average 
 

Often, the first step in analyzing data is to determine the mean or arithmetic average.  In 
general, the actual or true value lies within the range of the measured values if there is no 
significant systematic error.  The mean ( )x  is calculated by dividing the sum (Σ) of the values 
obtained (xi) by the total number of values (n): 

 

n
x

x i∑=  

 
Example:  (6.59 mL + 6.66 mL + 6.61 mL + 6.55 mL) / 4 = 6.60 mL 

 
 

B. Average deviation from the mean 
 

The average deviation from the mean is the simplest method of describing precision.  It 
indicates how close, on an average, the individual values are to the average or mean.  A set of 
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measurements with a large average deviation from the mean is not very precise.  The average 
deviation from the mean is calculated by taking, for each data point,  the absolute value of the 
difference between a data point and the mean, and then averaging these: 

 

Average deviation from the mean 
n

xxi∑ −
=  

 
Example:  (0.01 mL + 0.06 mL + 0.01 mL + 0.05 mL) / 4 = 0.03 mL 

 
Therefore, using the mean and the average deviation from the mean, the reported titrated 

volume would be 6.60 ±  0.03 mL. 
 
 

C. Percent average deviation from the mean 
 

The percent average deviation from the mean compares the average deviation from the 
mean to the mean itself.  For example, a one meter average deviation in measuring the distance to 
the moon gives a very small percent average deviation from the mean because the distance 
measured is so much greater than the average deviation.  When shooting basketballs, however, a 
one meter average deviation from the basket gives a very large percent average deviation from 
the mean because the distance measured is comparable in magnitude to the average deviation.  
The % average deviation from the mean is calculated by taking the percent of the average 
deviation from the mean and dividing it by the mean: 

 

percent average deviation from the mean = 
( )
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Example:  [ 0.03 / 6.60 ] x 100%  =  0.45% 

 
 

D. Standard deviation from the mean 
 

The standard deviation from the mean is commonly used when there are many individual 
measurements being analyzed.  It is similar to the simple average deviation from the mean (see B 
above), except that it involves the squares of the individual deviations rather than the absolute 
deviations.  It is defined as follows: 

 

standard deviation from the mean =  
( ) 2/12
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where n is the number of measurements.  If the “n-1” term in the above expression is replaced by 
“n,” the expression would be simply interpreted as the square root of the average of the squared 
deviations from the mean.  For theoretical reasons, however, the term “n-1” is employed instead 
of “n.”  This method of determining the precision of a measurement process is extremely useful 
in many applications of statistical analysis. 

 
Example:  [ (0.012 + 0.062 + 0.012 + 0.052)/ 3 ]1/2 = 0.05 mL 
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E. Absolute error 
 

Absolute error is a measure of the accuracy of a measurement.  It is a comparison of the 
measured value and the true or accepted value.  It is defined as the difference between the 
observed value and the accepted value, xt.  The concept can be applied to individual 
measurements or to averages of measurements: 

 
Absolute error (for an individual measurement) = xi - xt

 
Example:  If the “correct” value for the titration were known to be 6.62 mL, the first 

titration volume would have an absolute error of 6.58 mL – 6.62 = -0.04 mL.  The “sign” in 
included, providing explicit information about the direction of the error (i.e., too high or too low). 

 
 

F. Relative error 
 

Relative error (or percent error or percent deviation) is often a more useful quantity than 
absolute error.  The relative error is the percentage of the absolute error (for an individual 
measurement or for an average of measurements) divided by the accepted value: 

 
percent error = [(xi – xt)/xt] x 100% 

 
Example:  The first titration volume would have a percent error of (6.58 – 6.62)/6.62 x 

100%  =  -0.60% 
 

 
 
Independent and Dependent Property Measurements (Two Variables) 
 

The same concepts also apply to measurements of some property (e.g., mass) which depends on 
another variable (e.g., volume).  Typically, the dependent property is measured for each of a series of 
values of the independent variable (e.g., masses measured for each of a series of volumes).  For this 
situation, the data are usually plotted on a graph, with the dependent property as the y-coordinate, and the 
independent variable as the x-coordinate.  For cases where the plotted data points follow a linear trend, 
the slope of the line is often of importance (e.g., in the case of the mass and volume, the slope would be 
the density = mass/volume).   
 

Systematic error can occur in this type of analysis, just as in the single property measurements 
discussed above.   Either or both of the measured variables can be subject to systematic error.  As before, 
one must carefully account for and explain systematic error.  Generally precautions are taken to avoid 
such error, if within the control of the investigator.  In the discussion below, we will assume that there is 
no systematic error in the measurement process. 
   
Error Analysis for Linear Dependence Case 
 
If only two data points are obtained, each point being randomly slightly too high or too low, the slope of 
the line through the points will likely be in error.  If several data points are obtained, however, the random 
highs and lows of each measurement tend to cancel each other out more effectively, and the best-fit line 
through the points will be closer to the correct value (i.e., more accurate), as illustrated in the following 
graphs: 
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Solid line - correct relationship
Dashed line - Best fit with only two data points 

(slope likely to be significantly in error)
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Solid line - correct relationship
Dashed line - Best fit with four data points (slope 
likely to be much closer to correct relationship)

y = 0.4897x + 5.0534
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The precision of this set of measurements is related to how close each individual data point is to 
the best-fit line through the points.  Best-fit straight lines are usually characterized by their slope and 
intercept values, as indicated on the second graph above.  The precision of best-fit lines is usually 
characterized by the quantity R2,, also known as the correlation coefficient.  The closer this coefficient is 
to the number 1, the more precise or closer the individual data points come to falling along the straight 
line.   High precision measurements will typically have R2 values very close to 1, e.g., 0.99 or higher. 
 
Tools for Analyzing Measurements 
 

Spreadsheets have special functions which allow for the determination of simple averages, 
average deviations, and standard deviations for repeated single property measurements, and slopes, 
intercepts, and quality-of-fit for measurements involving two properties.  Some calculators are also pre-
programmed with functions that yield these values.  Students should become familiar with these 
calculational tools and use them routinely in analyzing laboratory data. 
 
Bad Data Points
 
 Sometimes, a data point among a set of repeated measurements is obviously in error for some 
reason.  Equivalently, a point among a set of plotted points may be clearly in error compared to most or 
all of the other points.  Though there are some sophisticated statistical methods for correctly determining 
whether to reject such points from your data sets, at this level of treatment, students should feel 
empowered to intuitively decide whether to remove such points.  If omission of a data point reduces the 
total number of usable points to too small a number (e.g., two), it is best to perform the measurement 
again, if possible. 
 
 

Solid line - correct relationship
Of the four data points, one is obviously in error 

and should be omitted before determining best fit 
line
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Volume added in titration 

Measurements 
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