Series and Parallel Duality

Series

I is the same through E, R_1, R_2, R_3

Total Resistance: $R_T = R_1 + R_2 + R_3$

KVL: $\Sigma V_{\text{closed loop}} = 0$

$\Sigma E_{\text{rise}} = \Sigma E_{\text{drop}}$

$E = V_1 + V_2 + V_3$

Voltage Divider $V_x = E \frac{R_x}{R_T}$

R_T is the total resistance for the resistors/components that are in series.

E is the total voltage of the resistors/components that are in series.

Parallel

Voltage is the same across E, R_1, R_2, \ldots, R_N

Total Resistance: $R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_N}}$

KCL: $\Sigma I_{\text{node}_a} = 0$

$\Sigma I_{\text{in}} = \Sigma I_{\text{out}}$

$I_T = I_1 + I_2 + \ldots + I_n$

Current Divider $I_x = I_T \frac{R_T}{R_x}$

R_T is the total resistance for the resistors/components that are in parallel.
Series and Parallel Duality