II. Solving First Order Separable ODEs

An ordinary differential equation of the form

\[y' = \frac{p(x)}{q(y)} \]

is called a first order separable ODE where \(p(x) \) is a function of only the variable \(x \) and \(q(y) \neq 0 \) is a function of only the variable \(y \).

Solution: Method of Separation of Variables

1. Multiply both sides of the ODE by \(q(y) \) to get it in the form

\[q(y) y' = p(x) \]

2. Replace \(y' \) by (the Leibniz) differential form \(\frac{dy}{dx} \)

\[q(y) \frac{dy}{dx} = p(x) \]

3. Multiply both sides of this last ODE by \(dx \):

\[q(y) dy = p(x) dx \]

thus “separating variables”: each side of the equation now has one and only one variable present.

4. Integrate both sides (an allowable operation because of the Chair Rule for derivatives)

\[\int q(y) dy = \int p(x) dx \]

5. If both integrals can be evaluated, then we have an “implicit” solution to the original ODE in the form

\[Q(y) = P(x) + C \]

after collecting the integrals’ arbitrary constants on one side as \(C \).

6. You might be able to solve that last equation for \(y \) in terms of \(x \)

\[y = F(x) \]

or perhaps \(x \) in terms of \(y \)

\[x = G(y) \]
in order to get an “explicit” solution to the original ODE.

Special case: *Linear first order ODE with constant coefficients*

To solve

\[ay' + by = c \]

where \(a \neq 0, b \neq 0, \) and \(c \) are constants.

1. Divide through by the number \(a \) to get an ODE of the form

\[y' + py = q \]

where numbers \(p = b/a \) and \(q = c/a \).

2. Subtract \(py \) from both sides and write \(y' \) in differential notation \(\frac{dy}{dx} \):

\[\frac{dy}{dx} = q - py \]

3. Divide both sides of the ODE by \(q - py \), multiply both sides by \(dx \)

\[\frac{dy}{q - py} = dx \]

and then integrate

\[\int \frac{dy}{q - py} = \int dx \]

4. Use the method of substitution with \(u = q - py \) so that \(du = -p \, dy \) or \(dy = (-1/p) \, du \) to evaluate the left hand side of the preceding equation

\[\int \frac{dy}{q - py} = \int \frac{(-1/p) \, du}{u} \]

\[= \frac{-1}{p} \ln |u| + C_1 \]

\[= \frac{-1}{p} \ln |q - py| + C_1 \]

where \(C_1 \) is an arbitrary constant.

5. Putting parts 3. and 4. together

\[\frac{-1}{p} \ln |q - py| + C_1 = x + C_2 \]
or, after combining the two arbitrary constants on the right side

$$\ln |q - py| = -px + C$$

which, after taking the antilogarithm of both sides, yields

$$|q - py| = e^{-px+C} = e^{-px}e^C = Ae^{-px}$$

where $A = e^C$ is an arbitrary positive constant. Then after eliminating the absolute values we are left with

$$q - py = \pm Ae^{-px}$$

from which we can solve for y

$$y = \frac{q}{p} - \frac{\pm A}{p}e^{-px}$$

We replace $\frac{\pm A}{p}$ by C to stand for an arbitrary constant. And looking back we see that since $q = c/a$ and $p = b/a$, the solution to the ODE may be written

$$y = \frac{c}{b} + Ce^{-\frac{b}{a}x}$$