1. Use the sign of f, f', and f'' to sketch a graph of $f(x) = x^4 - 2x^3$. Label all relative maximums and minimums and inflection points.

2. The graph of the derivative f' of a function f is shown.

 a) On what intervals is f increasing?

 b) On what intervals is f concave up?
3.a) The Mean Value Theorem states that for the function f graphed on the right there is a number c in the interval $[a, b] = [-2, 2]$ where $f'(c) = \frac{f(b) - f(a)}{b - a}$. Based on the graph, which of the following numbers is the best estimate for c?

a) -2 b) -1 c) 0 d) 1 e) 2

3.b) Use the Mean Value Theorem to prove the following theorem. If $f' > 0$ on and interval (a, b), then f is increasing on (a, b).

4. A particle moves horizontally along a line with acceleration $a(t) = e^t - \sin(t) + t$. Find its velocity $v(t)$ and position $s(t)$ if $v(0) = 3$ and $s(0) = 4$.
5. (a) Find \(\lim_{x \to 0} \frac{x - \sin(x)}{x + \cos(x)} \).

(b) Find \(\lim_{x \to 0} \frac{e^x - 1}{x^3} \).

(c) Find \(\lim_{x \to 0^+} x \ln(x) \).

6. A farmer wants to enclose a rectangular area of 15,000 square feet, and then divide it into 2 pens with fencing parallel to one of the sides. What dimensions will minimize the cost of the fence?
7. Consider the function \(f \) graphed on the right consisting of a semi-circle and a line segment.

(a) Find the exact value for \(\int_0^4 f(x)dx \).

(b) Approximate \(\int_0^4 f(x)dx \) using \(R_4 \) (using right endpts and 4 subintervals) and show the rectangles you are using on the graph above.

8. Evaluate the following:

(a) \(\int_{-1}^{2} (6x^2 + 6x + 6) \, dx \)

(b) \(\int (e^{3x} + \sec(x) \tan(x)) \, dx \)