Calculus I Chapter 1 Practice Problems Name Solution Key

1. Use your calculator to find the value for x accurate to 2 decimal places for each of the following triangles:
 a) \[x = 57.3^\circ \]
 b) \[x = 69.81^\circ \]

2. a) Write equations defining the piecewise function graphed on the right.
 b) Sketch the graph for \(y = -f(x + 1) \) on the same axes.

3. The graph of \(y = f(x) \) is shown on the left.
 a) Plot the graph of \(y = f^{-1}(x) \) (inverse) and
 b) Plot the graph of \(y = 1 / f(x) \) on the same axes.

4. If \(g(x) = \begin{cases}
1-x, & x \leq 1 \\
1 + \frac{1}{x}, & x > 1
\end{cases} \) and \(f(x) \) is defined by the table
 \[
 \begin{array}{c|cccc}
 x & 0 & 1 & 2 & 3 \\
 f(x) & 3 & 2 & 1 & 5 \\
 \end{array}
 \]
 then find a) \((g \circ f)(0) \), b) \(g(f(2)) \), c) \((f \circ f)(1) \), d) \((g + f)(2) \).

5. If \(f(x) = \sqrt{1-x} \) and \(g(x) = \cos(x) \)
 (a) find \((f \circ g)(x) \) and state its domain and range, and
 \[
 \sqrt{1 - \cos^2(x)} ; \quad D = (-\infty, \infty) ; \quad R = [0, 1]
 \]
 (b) find \((g \circ f)(x) \) and state its domain and range.

6. Find the formula for and graph the 3rd degree polynomial satisfying
 \(f(-1) = f(1) = f(2) = 0; f(0) = -1 \).

7. Use your calculator to graph \(y = x^2 \) and \(y = x^2 - 1 \) on the same axes and determine any points of intersection to 1 decimal place.

8. (a) Find the exponential function of the form \(y = Ce^x \) going through the points \((1, 2) \) and \((2, 1) \).
 \(y = 4 \left(\frac{1}{2} \right)^x \)
 (b) A rancher has 100 cattle. The herd doubles every 3 years. How many cattle will there be in 9 years? How many cattle will there be in 10 years? How many cattle will there be in 50 years?
 \(P(t) = 100 \cdot 2^{\frac{t}{3}} \)

9. a) If \(\log_a(x) = 2 \) and \(\log_a(y) = 3 \), find \(\log_a(x / y^2) = -4 \).
 b) Solve for \(x \) if \(-10 = 2 + 5(1 - e^{-x}) \).
 \[x \approx -1, 2.2 \]