1. (10 points) The graph below shows level curves $f(x,y)$ for a differentiable function f. At the point P_m determine the sign of each of the indicated partial derivatives. (Just mark the correct answer; no penalty for guessing, and no partial credit.)

(a) f_x positive negative zero, or too close to tell
(b) f_y positive negative zero, or too close to tell
(c) f_{xx} positive negative zero, or too close to tell
(d) f_{xy} positive negative zero, or too close to tell
(e) f_{yy} positive negative zero, or too close to tell
2. (65) Suppose that \(f \) is a differentiable function of 3 variables, and that \(w = f(x,y,z) \). Assume that \(f(1,2,3) = 4 \) and that \(\nabla f(1,2,3) = \langle -2,3,-1 \rangle \).

(a) Find the directional derivative \(D_u f(1,2,3) \), where \(u \) is the unit vector \(\text{u} = \begin{pmatrix} 3 & 12 & -4 \\ 13 & 13 & 13 \end{pmatrix} \).

(b) Find the unit vector \(v \) such that \(D_v f(1,2,3) \) is as large as possible.

(c) Find an equation for the plane tangent to the surface \(w = 4 \) at the point \((1,2,3) \).

(d) Give a reasonable estimate of \(f(.97, 2.01, 3.02) \).

(e) Suppose that \(x = s^2 \), \(y = s^2 + s \), and \(z = 4-s^3 \). This makes \(w \) into a function of \(s \). Find \(\frac{dw}{ds} \) when \(s = 1 \).
3. (25) Find positive numbers x, y, and z (not necessarily integers) such that \(x + 3y + z = 9 \) and \(x^2yz \) is as large as possible.