
SM221, 4042, Examination 1 

Spring Semester 2007 
 

 
Conditions:  You may use one page of notes for reference, and a calculator line the Voyage200 for computations.  You may consult 

only with the instructor about questions on the examination. 

 
Answer the question s on the paper provided, one question per page.  Return the examination with your solutions to the problems.   

 

Credit will be awarded for the solution of a problem—the lines of development leading to the answer-- not merely an answer to a 
problem.  In cases of miscalculation, partial credit may be awarded based upon the extent of the development of an answer to a 

problem.   

 

Notations: We represent points in 3-space in Cartesian (rectangular) coordinates by the ordered triple ( ), ,P x y z , in cylindrical 

coordinates by ( ), ,P r zθ  and in spherical coordinates by ( ), ,P ρ θ φ . 

 

 

 

1.  While taking R&R on the Apollo 14 mission, then Capt. Alan Shepard tried a round of golf.  Because of 

the Moon’s smaller size and “mass concentrations”, while in flight, with the origin of the coordinate system 

at the tee, the horizontal (x) axis under the line of flight of the ball, the vertical (y) axis up, and with the i 

and j unit vectors specified accordingly (see picture on board), assume that the acceleration that the ball 

experienced while in flight was 

 

( ) ( )( ) 26 cos ft/st t= − +a j  

 

He chipped the ball with a launch speed of about 100 ft/s , with a loft angle of about 30o .  Taking the tee 

as the origin,  

a) (12 points) What are the velocity and position vector functions governing the flight of the golf 

ball?  

b) (4 points) On TV, the time of flight for the ball was clocked at about 16.6346 seconds.  Does your 

model for the motion support this value, or was it as optical illusion?  Justify your assertion, using 

your model. 

c) (4 points) If the time of flight for the ball was 16.6346 seconds, how far downrange did the ball 

travel? 

d)  (4 points) What was its speed at impact? 

e) (6 points) How far through the air did the ball travel along its trajectory? 

 

Ed note:  At the time, people were wow’ed by the video of the shot (still available on the web).  Ironically, 

we’ve grown so jaded to the wonders and whimsy of the universe that hardly anyone took notice when a 

Russian cosmonaut launched a golf ball into orbit from the International Space Station in 2006.  

 

Solution 

a) We integrate the acceleration vector function with respect to time to obtain the general form for the 

velocity vector function.  We use the initial velocity to compute the constants of integration, and to extract 

the velocity vector function specific for our problem. 
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We integrate the velocity vector function with respect to time to obtain the general form for the position 

vector function.  We use the initial position to compute the constants of integration, and to extract the 

position vector function specific for our problem. 
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b)  If the time of flight is 16.6346 sft = , then ( )fy t  should be zero.  We test this condition: 

( ) ( ) ( ) ( ) ( )216.6346 cos 16.6346 1 50 3 16.6346 3 16.6346

0.0003 ft

fy t y= = − + −

≅ −
 

 

That’s about right on impact. 

c) If the time of flight is 16.6346 sft = , the horizontal distance downrange that the golf ball travels is  

 

( ) ( ) ( )16.6346 50 3 16.4346 1440.6 ft (!!)fx t x= = ≅  

 

d)  We can compute the speed of impact by computing the magnitude of ( )ftv .  The quickest way to do 

that would be to compute the square root of the dot product of this vector with itself. 
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Ed note:  The result is reasonable.  Even though the variation in the acceleration is approximate, we 

anticipate that the gravitational force is conservative.  Since the height of the launch point and the point of 

impact essentially coincide, we expect the kinetic energy of the ball at impact (hence, the speed of the ball) 

to coincide with the kinetic energy of the ball (hence, its speed) at launch. 

 

e)  To find the length of the arc the ball travels, we integrate the speed function over the duration of the 

flight.  First, the speed function is the magnitude of the velocity vector function. 
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Observe that the ball travels a greater distance than the downrange distance, but not too much.  That’s 

because the ball didn’t “loft” that much. 

■ 

 

 

 

2.  (12 points) From the origin ( )0,0,0O  and the two points ( )1,2,2P  and ( )0,3,4Q , we can construct 

three vectors , ,OP OQ= =a b
uuur uuur

 and PQ=c
uuur

, as shown in the figure: 

 

 
 

a) Compute the angle POQ�  between the vectors a  and b . 

b) Compute the scalar projection of vector b  onto vector a . 

c) Compute the analytical specification of a vector perpendicular to the vectors a  and b . 
 



Solution 

First, we specify analytically the vectors a and  b, as they are the only ones germane to the questions: 
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a)  Set POQθ = � .  Then 
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b) The scalar projection is 
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c) Since the cross product of the two vectors is perpendicular to each, we compute 
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3. (8 points) Does the line 
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Intersect the plane 2 9x y z− + = ? 

 

If so, specify the coordinates of the point of intersection; if not, briefly justify why not? 

 

Solution 

Alternative 1. 

The equations for the line and the equation for the plane constitutes a system of four equations for four 

unknowns, ( ), , ,x y z t .  If the equations are consistent there will be a unique solution (a quartet of values) 

for these variables that will determine when and where the motion whose “vapor trail” constitutes the line 



intersects the plane.  If the equations are inconsistent, a contradiction will arise as we try to solve for the 

four variable; in which case, the line does not intersect the plane. 

 

To solve the equations, let us substitute the first three equations into the fourth to obtain one equation for 

the one unknown, t: 
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We obtain a contradiction.  We conclude that the line does not intersect the plane. 

 

Alternative 2 

We observe that the “launch point” for the motion (the 0t =  location) is not a point on the plane: 
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The line will intersect the plane only if the (velocity) vector tangent to the motion that delineates the line is 

not perpendicular to the normal vector to the plane.  We extract from the parametric equations for the 

straight line motion the (velocity vector), we extract from the equation for the plane the components of a 

vector normal to the plane, and we compute the dot product of the two.  If the dot product is zero, the two 

vectors are perpendicular, and the line is parallel to the plane. 

 

The components of the (velocity) vector for the straight line motion we identify from the coefficients of the 

parameter in the parametric equations for the line: 
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The components for a normal vector to the plane we extract from the coefficients of the variables in the 

equation for the plane. 
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The dot product of the two vectors under consideration is immediate: 

 



( ) ( )1 2 1 1 1 1 1 2 1 0• = − + • + + = − + =N v i j k i j k  

 

The dot product is zero; the two vectors are perpendicular.  The line either lies entirely in the plane or it lies 

parallel to the plane, never to intersect.  Since the “launch point” does not lie in the plane, the latter 

alternative is the case.  The line does not intersect the plane. 

■ 

 

 

4.  (10 points)  Construct the equation for a plane that intersects the line of problem #3 and is perpendicular 

to it. 

 

Solution 

If we take the (velocity) vector for the motion specified by the parametric equations that produce the line, 

to be the normal vector to the plane we desire, then by design the plane will be perpendicular to the line.  In 

addition, we need an “anchor point” in addition to a normal vector to specify a plane.  Let’s take the anchor 

point to be the “launch point” (the 0t =  point) in the straight line motion.   

 

The components of the (velocity) vector for the straight line motion we identify from the coefficients of the 

parameter in the parametric equations for the line: 
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The coordinates for the launch point are 

 

( ) ( ) ( )( ) ( )0 0 , 0 , 0 3, 6,3P x y z = − −  

 

The equation for the plane now follows from the following line of reasoning.  Let ( ), ,R x y z  denote a 

generic point on the plane.  Then the vector 0P R
uuur

 that specifies the position of the generic point relative to 

the anchor point for the plane must be perpendicular to the normal vector N to the plane.  If we set that 

normal vector to be the velocity vector for the line, =N v , the requirement that the normal and relative 
position vectors be perpendicular produces the equation of the plane we desire. 

 

( )( ) ( )( ) ( ) ( ) ( ) (

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

0

0

1 1 1

3 3 6 3 3 6

0 require 

1 1 1 3 3 6 0

3 3 6 0

0

P R x y z x y z

P R

x y z

x y z

x y z

= = + +

= − − + − − + − = + + + + −

• = ⊥

+ + • + + + + − =

+ + + + − =

+ + =

N v i j k

i j k i j k

v

i j k i j k

uuur

uuur

 

■ 

 

 

5. (12 points) Describe and sketch the following geometric objects: 

a)  ,0122 =+−+ zyx  



b)  ,52 =+ zy  

c)  the intersection of a) and b). 

 

Solution 

a)  Represent the equation as  

 

( ) 2 21z x y− = +  

 

Taking ( )1z c c= ≥ , a constant, we see that “horizontal slices” of the graph of the equation produce 

circles.  Setting  
2 2 2x y r+ = , we see that “vertical slices” in the ( ),r z  plane (θ  fixed) of cylindrical 

coordinates produce parabolae.  Consequently, our surface must be a circular paraboloid, aligned along the 

z axis (“odd exponent out”), opening “upward” (positive z axis) from the vertex ( )0,0,1 .  Its shape is 

what we’d expect, which we draw using Maple for convenience: 

 

 
 

b)  Represent the equation as  
25z y= −  

 

Since the x coordinate is absent from the equation, the surface must be a cylinder consisting of straight lines 

parallel to the x axis.  The “ribs” or generating rays along which these lines are affixed is specified by the 

equation above: a parabola in the yz plane that is aligned along the z axis, opening downward  (negative z 

axis) from the vertex (0,0,5).  Consequently, our surface must be a parabolic cylinder, aligned along the x 

axis (“missing coordinate”), opening “downward” (negative z axis) from the vertex ( )0,0,5 .  Its shape is 

what we’d expect, which we draw using Maple for convenience: 

 



 
 

c)  If we add the equations for the two surfaces, we eliminate the z variable; hence, we gain the equation for 

the “shadow” of the intersection of the two surfaces that we’d see in the xy plane, were we to look straight 

down along the z axis.  The sum of the two equations is 
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The equation characterizes an ellipse, with center on the z-axis, “x-radius” of 2, “y-radius” of 2 .  In 
particular, the intersection of the two surfaces is a closed curve. 

 

If we subtract the equations for the two surfaces, we eliminate the y variable; hence, we gain the equation 

for the “shadow” of the intersection of the two surfaces that we’d see in the xz plane, were we to look 

straight along the y axis.  The difference between the two equations is 
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The equation characterizes a parabola in the xz plane, vertex ( )0,3  opening upward along the positive z 

axis.  The requirement from the previous equation (of the ellipse) inform us that x cannot exceed the value 

2.   

 



We conclude that the intersection is a “wavy” closed curve that’s elliptical and parabolic in shape.  Indeed 

intersecting the two surfaces displays such a curve, drawn using Maple for convenience. 

 

 
 

 

 

 

 

6. (12 points) Does the motion 

 

( ) ( ) ( ) ( ) ( )( )2 22cos 2 sin 4 cos sint t t t t= + + + −r i j k  

 

a) traverse the curve described in problem #5c)?  If so, demonstrate why; if not, demonstrate why 

not. 

b) What is its velocity vector function? 

c) What is its acceleration? 

 

Solution 

a) To traverse the curve that is the intersection, the coordinate functions would have to satisfy 

simultaneously the equations for both surfaces.  We try the equation for the circular paraboloid first. 
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The trajectory lies on the circular paraboloid.  Now we examine the parabolic cylinder: 
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The trajectory lies on the parabolic cylinder also.  Consequently, the trajectory for the motion is the curve 

of intersection of the two surfaces. 

 

b)  We compute the velocity vector function by differentiating the position vector function. 
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c)  We compute the acceleration vector function by differentiating the velocity vector function. 
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7. (16 points) Sketch (including a coordinate system) or describe in words the surfaces represented by the 

following equations.  If describing the surface in words, be specific about the location, orientation and 

shape of the surface.  Hint: you may represent the equation in any coordinate system that is most 

comfortable for you. 

a) 2 2 4r z+ =  

b) 2 2 4r z− =  

c) ( )cos 4ρ φ =  

d) ( )cos 4r θ =  

 

Solution 

a)  If we draw the figure that relates spherical, cylindrical and Cartesian coordinates, 

 

 
 

We see the relation between the cylindrical radial coordinate r and the Cartesian coordinates x, y is the 

Pythagorean relationship 

 
2 2 2r x y= +  

 

Consequently, in Cartesian coordinates, the equation is  

 
2 2 2 4x y z+ + =  

 

Pro forma, we recognize this equation as characterizing a sphere, center (0,0,0) and radius 2.  

Alternatively, we could deduce this surface by taking slices of it and producing a wireframe. 

 

b)  Using the relation between the cylindrical radial coordinate r and the Cartesian coordinates x, y, the 

equation becomes, in Cartesian coordinates, 

 
2 2 2 4x y z+ − =  

 

Pro forma, we recognize this equation as characterizing a one-sheeted circular hyperboloid aligned along 

and symmetric about the z axis.  This "wormhole" has its narrowest constriction in the 0z =  plane, where 

the circle of intersection has radius 2.    

 



Alternatively, we could deduce this surface by taking slices of it and producing a wireframe.  Slicing with 

planes parallel to the z axis produces circles aligned along the z axis, whose radii increase as you move 

away from the xy plane.  Slicing with the 0x =  plane (yz plane) produces the hyperbola that serve as the 

"backbone" to which the circles attach. 

 

 
 

c)  If we draw the figure that relates spherical, cylindrical and Cartesian coordinates, 

 

 
 

we can deduce (or recall)  the relation 

 

( )z ρ φ= cos  

 

Consequently, in cylindrical or Cartesian coordinates, the equation for the surface reads as  

 

4z =  
 

Perhaps you recognize immediately that this equation specifies a plane parallel to the xy ( )or 0z =  plane 

and four “units” above it. 

 

d)  If we draw the figure that relates spherical, cylindrical and Cartesian coordinates, 



 

 
 

we can deduce (or recall)  the relation 

 

( )x r θ= cos  

 

Consequently, Cartesian coordinates, the equation for the surface reads as  

 

4x =  

 

Perhaps you recognize immediately that this equation specifies a plane parallel to the yz ( )or 0x =  plane 

and four “units” in front of it. 

 

■ 

 

 

 


