SM221 Spring 2007 Examination 3

Conditions: Symbolic manipulators and graphing calculators may be used on the examination.

1. A ¹/₂-ball of *diameter 4* sits centered at the origin. A conical wedge

$$z = \sqrt{3\left(x^2 + y^2\right)}$$

is drilled out of it, as shown in Figure 1.

- a. Set up an iteration of integrals that will produce the volume of the solid that remains.
- b. What is the volume of the solid that remains?

2. A solid is bounded by the surfaces

$$z + y2 = 1$$
$$x - y = 1$$
$$z = 0$$
$$x = 0$$
$$y = 0$$

Matter is distributed throughout the solid with a density directly proportional to the distance from the *xy*-plane,

$$f(x, y, z) = 5z \quad kg / m^3.$$

The total mass of the solid is the integral of its density over the volume of the solid,

$$M = \iiint_V f \, dV$$

- a. Set up an iteration of integrals for the total mass of the solid.
- b. Compute the mass of the solid.
- 3. A four-bladed propeller is shown in cross section as Figure 2. Each blade is 1 meter long. In polar coordinates, the equation for the curve bounding the edge of the cross section is

$$r = \cos(2\theta)$$

Assume the propeller has a uniform area mass density of 10 kg/m^2 . The total mass of the propeller is the integral of its density over the area of all four blades,

$$M = \iint_A 10 \, dA$$

- a. Set up the multiple integral for the mass of the propeller.
- b. Evaluate the integral to compute the mass.

4. a) Use the mid point rule to approximate $\int_{x=0}^{8} \int_{y=10}^{30} f(x, y) dy dx$ with the number of

partitions m = 2 = n, if the following values are known for the function f(x, y)

y/x	0	2	4	6	8
10	60	50	42	93	30
15	90	10	6	20	30
20	50	2	75	10	70
25	60	25	90	5	0
30	80	50	70	30	90

b) Reverse the order of integration for the following integrals (hint: a sketch of the region of integration helps)

$$\int_{x=0}^{2} \int_{y=0}^{x^{3}} g(x, y) dy dx \qquad \int_{y=0}^{1} \int_{x=y^{3}+1}^{\sqrt{y}+1} h(x, y) dx dy$$

5. Set up an iteration of integrals that produces the area of the surface $x^2 + y^2 + z = 4$ that is contained within the surface $(x-1)^2 + y^2 = 1$ **Do not evaluate** the integral, just set it up. (**Hint:** draw the surfaces to see the extent.)

Left out. Problem #1

- a. Set up an iteration of integrals that will produce the area of portion of the spherical surface that remains after the wedge is drilled. *Do not evaluate* the integral, just set it up.
- b. What is the area of the spherical surface that remains?
- 6. A surface is described by the parametric equation

$$x(u, v) = u + v$$

$$y(u, v) = u2 + v2$$

$$z(u, v) = 2uv$$

and shown in Figure 3. Over the extent $0 \le u \le 1$, $0 \le v \le 1$, set up an iteration of integrals for the surface area. *Do not evaluate* the iteration of integrals.

Figure 3

7. Set up the area integral of f(x, y) = 3xy over the region R bounded by the curves

$$(x-1)^{2} + y^{2} = 1$$

(x-1) - y² = 0
(x-1)^{2} + y^{2} = 1
(x-1) - y^{2} = 0

Do not evaluate the integral.